Journal of Geographical Sciences ›› 2016, Vol. 26 ›› Issue (6): 735-749.doi: 10.1007/s11442-016-1296-x
• Research Articles • Previous Articles Next Articles
Yang LIU1(), Zongwei MA1,*(
), Jianshu LV2,3,*, Jun BI1
Received:
2015-07-20
Accepted:
2015-12-28
Online:
2016-06-15
Published:
2016-06-15
Contact:
Zongwei MA,Jianshu LV
E-mail:liuyang0531py@126.com;lvjianshu@126.com
About author:
Author: Liu Yang (1986-), PhD Candidate, specialized in environmental planning and management.E-mail:
Supported by:
Yang LIU, Zongwei MA, Jianshu LV, Jun BI. Identifying sources and hazardous risks of heavy metals in topsoils of rapidly urbanizing East China[J].Journal of Geographical Sciences, 2016, 26(6): 735-749.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The descriptive statistics contents of heavy metals in Rizhao, East China (mg/kg)"
Range | Min | Max | Median | Mean | SD | CV (%) | Skewness | Kurtosis | Background values of eastern Shandong province ( | |
---|---|---|---|---|---|---|---|---|---|---|
As | 9.90 | 1.90 | 11.80 | 4.90 | 5.04 | 1.335 | 26.5 | 0.755 | 1.323 | 6.30 |
Cd | 4.78 | 0.026 | 4.81 | 0.095 | 0.20 | 0.227 | 196.9 | 19.922 | 413.056 | 0.108 |
Co | 22.80 | 3.00 | 25.80 | 10.30 | 10.87 | 3.497 | 32.2 | 0.975 | 1.248 | 11.00 |
Cr | 265.40 | 12.20 | 277.60 | 46.00 | 54.09 | 27.387 | 50.6 | 2.934 | 14.994 | 56.20 |
Cu | 94.90 | 4.90 | 99.80 | 15.60 | 17.57 | 8.896 | 50.6 | 3.699 | 22.382 | 19.60 |
Hg | 3.27 | 0.008 | 3.28 | 0.025 | 0.043 | 0.165 | 385.0 | 17.628 | 338.390 | 0.029 |
Mn | 920.00 | 292.00 | 1212.00 | 595.50 | 597.08 | 129.84 | 21.7 | 0.542 | 1.383 | 552.00 |
Ni | 159.20 | 7.10 | 166.30 | 20.20 | 23.52 | 12.829 | 54.6 | 4.346 | 37.054 | 23.50 |
Pb | 54.10 | 18.20 | 72.30 | 26.30 | 27.78 | 6.045 | 21.8 | 2.340 | 9.511 | 25.40 |
Zn | 152.30 | 18.30 | 170.60 | 60.30 | 63.10 | 20.087 | 31.8 | 1.077 | 2.633 | 56.10 |
Table 2
The mean contents of Rizhao compared with typical regions in the world (mg/kg)"
As | Cd | Co | Cr | Cu | Hg | Mn | Ni | Pb | Zn | References | |
---|---|---|---|---|---|---|---|---|---|---|---|
Rizhao | 5.04 | 0.20 | 10.87 | 54.09 | 17.57 | 0.04 | 597.08 | 23.52 | 27.78 | 63.10 | This work |
Juxian county | - | 0.13 | 13.26 | 68.28 | 22.97 | 0.037 | 598.65 | 29.36 | 28.4 | 65.81 | (Lv et al., 2014) |
Huizhou | 10.19 | 0.1 | - | 27.61 | 16.74 | 0.22 | - | 14.89 | 44.66 | 57.21 | (Cai et al., 2012) |
Alicante | - | 0.34 | 7.1 | 26.5 | 22.5 | - | 295 | 20.9 | 22.8 | 52.8 | (Mico et al., 2006) |
Ebro | - | 0.415 | - | 20.27 | 17.33 | 0.0356 | - | 20.5 | 17.54 | 57.53 | (Rodríguez Martín et al., 2006) |
Piemonte | - | - | 19.001 | 46.157 | 58.309 | - | - | 83.163 | 16.101 | 62.683 | (Facchinelli et al., 2001) |
Luhe | - | 0.046 | - | 55.01 | 23.94 | 0.07 | - | 29.37 | 27.37 | 65.12 | (Zhao et al., 2010) |
Zagreb | - | 0.4 | 10.9 | 54.6 | 56.1 | - | 579 | 35.2 | 23.2 | 77.9 | (Sollitto et al., 2010) |
Galicia | - | 0.31 | 14 | 54.1 | 20.5 | - | 659.9 | 23.5 | 11.7 | 98.7 | (Franco-Uria et al., 2009) |
Shunyi | 7.85 | 0.136 | - | - | 22.4 | 0.073 | - | - | 20.4 | 69.8 | (Lu et al., 2012) |
Zhengding | 6.16 | 0.15 | - | 57.77 | 21.22 | 0.08 | - | 25.04 | 18.8 | 69.96 | (Yang et al., 2009) |
Kavadarci | 8.5 | 0.32 | 15 | 50 | 30 | - | 780 | 74 | 21 | 56 | (Stafilov et al., 2013) |
Ireland | 10.2 | 0.326 | 6.2 | 42.6 | 16.2 | 0.086 | 462 | 17.5 | 24.8 | 62.6 | (Zhang, 2006) |
Yangzhong | - | 0.3 | - | 77.2 | 33.9 | 0.2 | - | 38.5 | 35.7 | 98.1 | (Huang et al., 2007) |
Duero | - | 0.159 | - | 20.53 | 11.01 | 0.0421 | - | - | 15.08 | 42.42 | (Nanos and Rodríguez Martín, 2012) |
Table 3
Correlation coefficient matrix of heavy metals in soils"
As | Cd | Co | Cr | Cu | Hg | Mn | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
As | 1 | 0.029 | -0.009 | -0.044 | 0.208** | 0.031 | 0.044 | -0.060 | -0.066 | -0.105* |
Cd | 0.029 | 1 | 0.036 | 0.020 | 0.084* | 0.030 | 0.071 | 0.025 | 0.199** | -0.047 |
Co | -0.009 | 0.036 | 1 | 0.739** | 0.367** | 0.012 | 0.719** | 0.700** | 0.164** | 0.115** |
Cr | -0.044 | 0.020 | 0.739** | 1 | 0.256** | -0.010 | 0.403** | 0.947** | 0.004 | 0.022 |
Cu | 0.208** | 0.084* | 0.367** | 0.256** | 1 | -0.016 | 0.284** | 0.249** | 0.142** | -0.055 |
Hg | 0.031 | 0.030 | 0.012 | -0.010 | -0.016 | 1 | 0.029 | -0.020 | -0.025 | -0.016 |
Mn | 0.044 | 0.071 | 0.719** | 0.403** | 0.284** | 0.029 | 1 | 0.367** | 0.251** | 0.232** |
Ni | -0.060 | 0.025 | 0.700** | 0.947** | 0.249** | -0.020 | 0.367** | 1 | 0.030 | -0.035 |
Pb | -0.066 | 0.199** | 0.164** | 0.004 | 0.142** | -0.025 | 0.251** | 0.030 | 1 | -0.066 |
Zn | -0.105** | -0.047 | 0.115** | 0.022 | -0.055 | -0.016 | 0.232** | -0.035 | -0.066 | 1 |
Table 5
The variograms fitting of heavy metals in soils"
Variable | Model | Co | Co+C | Co/Co+C | R/m | Rss | R2 | |
---|---|---|---|---|---|---|---|---|
Ordinary Kriging | PC1 | Exponential | 3.588 | 18.67 | 0.192 | 45900 | 7.42E-03 | 0.988 |
PC2 | Spherical | 1.297 | 2.195 | 0.591 | 13730 | 4.05E-03 | 0.964 | |
PC3 | Spherical | 0.297 | 1.271 | 0.234 | 8240 | 1.45E-04 | 0.943 | |
PC4 | Exponential | 0.137 | 0.167 | 0.818 | 3330 | 3.61E-03 | 0.553 | |
Univariate Indicator Kriging | As | Spherical | 0.046 | 0.233 | 0.197 | 8110 | 9.01E-04 | 0.875 |
Cd | Exponential | 0.108 | 0.235 | 0.460 | 28890 | 3.83E-04 | 0.975 | |
Co | Exponential | 0.032 | 0.221 | 0.145 | 28680 | 3.55E-04 | 0.975 | |
Cr | Exponential | 0.026 | 0.136 | 0.191 | 7770 | 4.67E-04 | 0.949 | |
Cu | Exponential | 0.024 | 0.195 | 0.123 | 4620 | 3.51E-04 | 0.847 | |
Hg | Exponential | 0.084 | 0.109 | 0.771 | 4500 | 8.50E-04 | 0.670 | |
Mn | Exponential | 0.031 | 0.248 | 0.125 | 5760 | 2.86E-03 | 0.625 | |
Ni | Exponential | 0.025 | 0.201 | 0.124 | 8460 | 3.70E-04 | 0.966 | |
Pb | Spherical | 0.119 | 0.221 | 0.538 | 9480 | 9.46E-04 | 0.879 | |
Zn | Gaussian | 0.130 | 0.318 | 0.409 | 32510 | 3.43E-04 | 0.994 | |
Multiple Variable Indicator Kriging | Co-Cr-Mn-Ni-Zn | Exponential | 0.033 | 0.156 | 0.212 | 19530 | 1.54E-04 | 0.981 |
Cd-Pb | Exponential | 0.115 | 0.172 | 0.669 | 24540 | 1.48E-04 | 0.979 | |
As-Cu | Exponential | 0.016 | 0.128 | 0.125 | 4740 | 2.04E-04 | 0.812 | |
All elements | Exponential | 0.028 | 0.056 | 0.500 | 1660 | 7.49E-06 | 0.986 |
Table 4
Results of factors matrix"
Element | PC1 | PC2 | PC3 | PC4 |
As | -0.065 | -0.179 | 0.883 | -0.091 |
Cd | 0.160 | 0.881 | 0.173 | 0.140 |
Co | 0.910 | -0.144 | 0.014 | 0.023 |
Cr | 0.810 | -0.471 | -0.118 | 0.029 |
Cu | 0.477 | 0.065 | 0.551 | -0.182 |
Hg | -0.005 | 0.001 | 0.162 | 0.968 |
Mn | 0.756 | 0.170 | 0.107 | 0.037 |
Ni | 0.792 | -0.460 | -0.137 | 0.018 |
Pb | 0.333 | 0.726 | -0.025 | -0.077 |
Zn | 0.748 | 0.518 | -0.151 | 0.004 |
Table 6
Results of environmental risk assessment of Rizhao, East China"
Probability range | Co-Cr-Mn-Ni-Zn | Cd-Pb | As-Cu | Hg | All elements | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (hm2) | Percentage (%) | Area (hm2) | Percent- age( %) | Area (hm2) | Percentage (%) | Area (hm2) | Percentage (%) | Area (hm2) | Percentage (%) | |
Non-risk (0-0.2) | 55804 | 30.2 | 45431 | 24.6 | 106320 | 57.6 | 3165 | 1.7 | 2197 | 1.2 |
Low risk (0.2-0.4) | 49423 | 26.8 | 58031 | 31.4 | 61429 | 33.3 | 32820 | 17.8 | 68712 | 37.2 |
Moderate (0.4-0.6) | 42652 | 23. | 32384 | 17.5 | 16397 | 8.9 | 79396 | 43.0 | 102097 | 55.3 |
Considerable risk (0.6-0.8) | 28841 | 15.6 | 38734 | 21.0 | 573 | 0.3 | 50835 | 27.5 | 11713 | 6.3 |
High risk (0.8-1.0) | 7999 | 4.3 | 10139 | 5.5 | 0 | 0 | 18503 | 10.0 | 0 | 0 |
1 | Alloway B, 1995. Heavy Metals in Soils. London: Chapman and Hall. |
2 |
Boruvka L, Vacek O, Jehlicka J, 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils.Geoderma, 128: 289-300.
doi: 10.1016/j.geoderma.2005.04.010 |
3 |
Cai L M, Xu Z C, Ren M Z.et al., 2012. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China.Ecotoxicology and Environmental Safety, 78: 2-8.
doi: 10.1016/j.ecoenv.2011.07.004 pmid: 22257794 |
4 | Chu H J, Lin Y P, Jang C S.et al., 2010. Delineating the hazard zone of multiple soil pollutants by Multivariate Indicator Kriging and conditioned Latin hypercube sampling.Geoderma, 158: 242-251. |
5 |
Dai J R, Pang X G, Yu C.et al., 2011. Geochemical baselines and background values and element enrichment characteristics in soils in eastern Shandong province.Geochimica, 40: 577-587. (in Chinese)
doi: 10.1007/s11629-011-2067-x |
6 | Davis H T, Aelion C M, McDermott S.et al., 2009. Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation.Environmental Pollution, 157: 2378-2385. |
7 |
Diodato N, Ceccarelli M, 2004. Multivariate Indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands.Ecological Indicators, 4: 177-187.
doi: 10.1016/j.ecolind.2004.03.002 |
8 |
Eldeiry A A, Garcia L A, 2011. Using Indicator Kriging technique for soil salinity and yield management.Journal of Irrigation and Drainage Engineering-ASCE, 137: 82-93.
doi: 10.1061/(ASCE)IR.1943-4774.0000280 |
9 |
Facchinelli A, Sacchi E, Mallen L, 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils.Environmental Pollution, 114: 313-324.
doi: 10.1016/S0269-7491(00)00243-8 pmid: 11584630 |
10 |
Franco-Uria A, Lopez-Mateo C, Roca E.et al., 2009. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain.Journal of Hazardous Materials, 165: 1008-1015.
doi: 10.1016/j.jhazmat.2008.10.118 pmid: 19070956 |
11 |
Fu K, Sun B, He D.et al., 2012. Pollution assessment of heavy metals along the Mekong River and dam effects.Journal of Geograhical Sciences, 22(5): 874-884.
doi: 10.1007/s11442-012-0969-3 |
12 | Goovaerts P, 1997. Geostatistics for Natural Resources Evaluation. New York: Oxford University Press. |
13 |
Hakanson L, 1980. An ecological risk index for aquatic pollution-control: A sedimentological approach.Water Research, 14: 975-1001.
doi: 10.1016/0043-1354(80)90143-8 |
14 |
Halvorson J J, Smith J L, Papendick R I, 1996. Integration of multiple soil parameters to evaluate soil quality: A field example.Biology and Fertility of Soils, 21: 207-214.
doi: 10.1007/BF00335937 |
15 |
Huang S S, Liao, Q L, Hua M.et al., 2007. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China.Chemosphere, 67: 2148-2155.
doi: 10.1016/j.chemosphere.2006.12.043 pmid: 17275882 |
16 |
Imperato M, Adamo P, Naimo D.et al., 2003. Spatial distribution of heavy metals in urban soils of Naples city (Italy).Environmental Pollution, 124: 247-256.
doi: 10.1016/S0269-7491(02)00478-5 pmid: 12713924 |
17 |
Inigo V, Andrades M, Alonso-Martirena J I.et al., 2011. Multivariate statistical and GIS-based approach for the identification of Mn and Ni concentrations and spatial variability in soils of a humid Mediterranean environment: La Rioja, Spain.Water Air and Soil Pollution, 222: 271-284.
doi: 10.1007/s11270-011-0822-9 |
18 |
Jang C S, 2013. Use of Multivariate Indicator Kriging methods for assessing groundwater contamination extents for irrigation.Environmental Monitoring and Assessment, 185: 4049-4061.
doi: 10.1007/s10661-012-2848-x pmid: 22948288 |
19 |
Lark R M.,Ferguson, R B, 2004. Mapping risk of soil nutrient deficiency or excess by disjunctive and Indicator Kriging.Geoderma, 118: 39-53.
doi: 10.1016/S0016-7061(03)00168-X |
20 | Lee C S, Li, X D, Shi W Z.et al., 2006. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics.Science of the Total Environment, 356: 45-61. |
21 | Lee J J, Liu C W, Jang C S.et al., 2008. Zonal management of multi-purpose use of water from arsenic-affected aquifers by using a Multi-variable Indicator Kriging approach.Journal of Hydrology, 359: 260-273. |
22 |
Li K, Liang T, Wang L.et al., 2015. Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China.Journal of Geographical Sciences, 25(12): 1439-1451.
doi: 10.1007/s11442-015-1244-1 |
23 | Lin Y P, Cheng, B Y, Shyu G S.et al., 2010. Combining a finite mixture distribution model with Indicator Kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan.Environmental Pollution, 158: 235-244. |
24 | Lu A X, Wang J H, Qin X Y.et al., 2012. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China.Science of the Total Environment, 425: 66-74. |
25 | Lv J, Zhang Z, Liu Y.et al., 2015. Identifying the origins and spatial distributions of heavy metals in soils of Ju county (Eastern China) using multivariate and geostatistical approach.Journal of Soils and Sediments, 15: 163-178. |
26 |
Mico C, Recatala L, Peris A.et al., 2006. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.Chemosphere, 65: 863-872.
doi: 10.1016/j.chemosphere.2006.03.016 pmid: 16635506 |
27 |
Nanos N, Rodríguez Martín J A, 2012. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain).Geoderma, 189: 554-562.
doi: 10.1016/j.geoderma.2012.06.006 |
28 |
Oyedele D J, Amusan A A, Obi A O, 1996. The use of Multiple-variable Indicator Kriging technique for the assessment of the suitability of an acid soil for maize.Tropical Agriculture, 73: 259-263.
doi: 10.1002/(SICI)1097-0010(199610)72:2<250::AID-JSFA651>3.0.CO;2-D |
29 | Rizhao Municipal Bureau of Statistics (RMBS), 2012. Rizhao Statistical Yearbook in 2012. Beijing: China Statistics Press. (in Chinese) |
30 | Rodríguez Martín J A, Arias M L, Corbi J M G, 2006. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations.Environmental Pollution, 144: 1001-1012. |
31 |
Sajn R, Halamic J, Peh Z.et al., 2011. Assessment of the natural and anthropogenic sources of chemical elements in alluvial soils from the Drava River using multivariate statistical methods.Journal of Geochemical Exploration, 110: 278-289.
doi: 10.1016/j.gexplo.2011.06.009 |
32 | Sebai T, Lagacherie B, Soulas G.et al., 2007. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters.Environmental Pollution, 145: 680-690. |
33 |
Smith J L, Halvorson J J, Papendick R I, 1993. Using Multiple-variable Indicator Kriging for evaluating soil quality.Soil Science Society of America Journal, 57: 743-749.
doi: 10.2136/sssaj1993.03615995005700030020x |
34 |
Sollitto D, Romic M, Castrignano A.et al., 2010. Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics.Catena, 80: 182-194.
doi: 10.1016/j.catena.2009.11.005 |
35 | Stafilov T, Sajn R, Alijagic J, 2013. Distribution of arsenic, antimony, and thallium in soil in Kavadarci and its surroundings, Republic of Macedonia.Soil & Sediment Contamination, 22: 105-118. |
36 |
Sun C Y, Liu J S, Wang Y.et al., 2013. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China.Chemosphere, 92: 517-523.
doi: 10.1016/j.chemosphere.2013.02.063 |
37 |
Van Meirvenne M, Goovaerts P, 2001. Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold.Geoderma, 102: 75-100.
doi: 10.1016/S0016-7061(00)00105-1 |
38 |
Wang H Y, Lu, S G, 2011. Spatial distribution, source identification and affecting factors of heavy metals contamination in urban-suburban soils of Lishui city, China.Environmental Earth Sciences, 64: 1921-1929.
doi: 10.1007/s12665-011-1005-0 |
39 |
Yalcin M G, Ilhan S, 2008. Multivariate analyses to determine the origin of potentially harmful heavy metals in beach and dune sediments from KizKalesi Coast (Mersin), Turkey.Bulletin of Environmental Contamination and Toxicology, 81: 57-68.
doi: 10.1007/s00128-008-9461-2 |
40 |
Yang P G, Mao R Z, Shao H B.et al., 2009. An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China.Journal of Hazardous Materials, 167: 1246-1251.
doi: 10.1016/j.jhazmat.2009.01.127 pmid: 19282107 |
41 |
Zhang C S, 2006. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland.Environmental Pollution, 142: 501-511.
doi: 10.1016/j.envpol.2005.10.028 pmid: 16406233 |
42 | Zhao Y, Wang Z G, Sun W X.et al., 2010. Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban-rural transition area in Yangtze River Delta region of China.Geoderma, 156: 216-227. |
No related articles found! |
|