Journal of Geographical Sciences ›› 2016, Vol. 26 ›› Issue (6): 673-693.doi: 10.1007/s11442-016-1292-1
• Research Articles • Previous Articles Next Articles
Yonglin LIU1(), Junping YAN1,*(
), Minyi CEN1,2, Qunsheng FANG3, Zhengyao LIU1, Yingjie LI1
Received:
2015-10-08
Accepted:
2015-11-15
Online:
2016-06-15
Published:
2016-06-15
Contact:
Junping YAN
E-mail:yorlinliu@163.com;yanjp@snnu.edu.cn
About author:
Author: Liu Yonglin (1989-), specialized in natural disaster prevention and control. E-mail:
Supported by:
Yonglin LIU, Junping YAN, Minyi CEN, Qunsheng FANG, Zhengyao LIU, Yingjie LI. A graded index for evaluating precipitation heterogeneity in China[J].Journal of Geographical Sciences, 2016, 26(6): 673-693.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Division of meteorological geography in China"
Large scale region | Provincial administrative region |
---|---|
Northeast China | Liaoning, Jilin, Heilongjiang |
Inner Mongolia | Inner Mongolia Autonomous Region |
Northwest China | Shaanxi, Gansu, Ningxia Hui Autonomous Region, Qinghai, Xinjiang Uygur Autonomous Region |
North China | Shanxi, Hebei, Beijing, Tianjin |
East China | Shandong, Henan, Hubei, Anhui, Jiangsu, Shanghai |
Jiangnan region | Hunan, Jiangxi, Fujian, Zhejiang |
Southwest China | Sichuan, Chongqing, Yunnan, Guizhou |
South China | Guangxi Zhuang Autonomous Region, Guangdong, Hainan, Hongkong Special Administrative Region, Macao Special Administrative Region, Taiwan |
Tibet | Tibet Autonomous Region |
Table 2
Graded division of drought and flood based on Z-index"
Grade | Types | Z-index | Real frequency (%) | Cumulative frequency (%) |
---|---|---|---|---|
1 | Severe flood | Z>1.645 | 5 | 100 |
2 | Moderate flood | 1.037<Z≤1.645 | 10 | 95 |
3 | Mild flood | 0.842<Z≤1.037 | 15 | 80 |
4 | Normal | -0.842≤Z≤0.842 | 40 | 70 |
5 | Mild drought | -1.037≤Z<-0.842 | 15 | 30 |
6 | Moderate drought | -1.645≤Z<-1.037 | 10 | 15 |
7 | Severe drought | Z<-1.645 | 5 | 5 |
Table 3
Skewness and kurtosis of precipitation concentration degree (PCD) in various climatic stages"
Climatic stage | Skewness coefficient | Kurtosis coefficient | Climatic stage | Skewness coefficient | Kurtosis coefficient |
---|---|---|---|---|---|
1960-1989 | -0.426 | -0.282 | 1973-2002 | -0.419 | -0.284 |
1961-1990 | -0.419 | -0.301 | 1974-2003 | -0.416 | -0.281 |
1962-1991 | -0.424 | -0.264 | 1975-2004 | -0.424 | -0.246 |
1963-1992 | -0.414 | -0.267 | 1976-2005 | -0.446 | -0.218 |
1964-1993 | -0.398 | -0.294 | 1977-2006 | -0.453 | -0.222 |
1965-1994 | -0.396 | -0.318 | 1978-2007 | -0.450 | -0.206 |
1966-1995 | -0.410 | -0.292 | 1979-2008 | -0.447 | -0.196 |
1967-1996 | -0.405 | -0.268 | 1980-2009 | -0.439 | -0.224 |
1968-1997 | -0.405 | -0.285 | 1981-2010 | -0.441 | -0.228 |
1969-1998 | -0.420 | -0.292 | 1982-2011 | -0.443 | -0.204 |
1970-1999 | -0.424 | -0.259 | 1983-2012 | -0.450 | -0.193 |
1971-2000 | -0.428 | -0.253 | 1984-2013 | -0.446 | -0.213 |
1972-2001 | -0.439 | -0.254 |
Table 4
Coefficient of skewness and kurtosis of precipitation concentration degree (PCD) after normal transformation (1960-1989)"
Transforationr method | Square | Cubic | Square root | Cube root | Reciprocal | Logarithm | arcsine | Square root arcsine | Z-index |
---|---|---|---|---|---|---|---|---|---|
Skewness coefficient | 0.24 | 0.81 | -0.92 | -1.15 | 87.16 | -1.91 | -0.07 | -0.39 | -0.10 |
Kurtosis coefficient | -0.47 | 0.60 | 0.98 | 1.97 | 9640.34 | 8.03 | -0.18 | 0.16 | -0.40 |
Table 5
Value corresponding to cumulative frequency in various climatic stages"
Climatic stage | 5% | 15% | 30% | 70% | 85% | 95% |
---|---|---|---|---|---|---|
1960-1989 | 0.275 | 0.390 | 0.482 | 0.654 | 0.729 | 0.806 |
1961-1990 | 0.269 | 0.385 | 0.477 | 0.651 | 0.725 | 0.804 |
1962-1991 | 0.272 | 0.388 | 0.479 | 0.652 | 0.726 | 0.804 |
1963-1992 | 0.272 | 0.386 | 0.478 | 0.650 | 0.724 | 0.802 |
1964-1993 | 0.271 | 0.385 | 0.477 | 0.648 | 0.723 | 0.800 |
1965-1994 | 0.268 | 0.383 | 0.475 | 0.648 | 0.723 | 0.802 |
1966-1995 | 0.273 | 0.387 | 0.479 | 0.651 | 0.725 | 0.803 |
1967-1996 | 0.273 | 0.387 | 0.479 | 0.651 | 0.725 | 0.803 |
1968-1997 | 0.270 | 0.385 | 0.478 | 0.651 | 0.725 | 0.804 |
1969-1998 | 0.270 | 0.385 | 0.477 | 0.650 | 0.725 | 0.803 |
1970-1999 | 0.271 | 0.386 | 0.478 | 0.650 | 0.724 | 0.803 |
1971-2000 | 0.268 | 0.383 | 0.476 | 0.649 | 0.723 | 0.802 |
1972-2001 | 0.266 | 0.382 | 0.474 | 0.648 | 0.723 | 0.802 |
1973-2002 | 0.269 | 0.385 | 0.477 | 0.649 | 0.723 | 0.801 |
1974-2003 | 0.269 | 0.383 | 0.475 | 0.648 | 0.722 | 0.800 |
1975-2004 | 0.271 | 0.384 | 0.475 | 0.647 | 0.720 | 0.798 |
1976-2005 | 0.272 | 0.386 | 0.477 | 0.647 | 0.720 | 0.799 |
1977-2006 | 0.271 | 0.384 | 0.475 | 0.646 | 0.719 | 0.798 |
1978-2007 | 0.271 | 0.384 | 0.475 | 0.646 | 0.719 | 0.797 |
1979-2008 | 0.271 | 0.383 | 0.474 | 0.645 | 0.718 | 0.796 |
1980-2009 | 0.269 | 0.382 | 0.472 | 0.643 | 0.717 | 0.795 |
1981-2010 | 0.267 | 0.381 | 0.471 | 0.642 | 0.716 | 0.794 |
1982-2011 | 0.269 | 0.382 | 0.471 | 0.642 | 0.715 | 0.793 |
1983-2012 | 0.268 | 0.381 | 0.471 | 0.641 | 0.714 | 0.793 |
1984-2013 | 0.267 | 0.381 | 0.472 | 0.643 | 0.717 | 0.795 |
Average | 0.270 | 0.384 | 0.476 | 0.647 | 0.721 | 0.800 |
Standard deviation | 0.002 | 0.002 | 0.003 | 0.003 | 0.004 | 0.004 |
Table 6
Graded evaluation index of precipitation heterogeneity"
Grade | Types | PCD | Real frequency (%) | Cumulative frequency (%) |
---|---|---|---|---|
1 | High centralization | PCD>0.800 | 5 | 100 |
2 | Moderate centralization | 0.721<PCD≤0.800 | 10 | 95 |
3 | Mild centralization | 0.647<PCD≤0.721 | 15 | 80 |
4 | Normal | 0.476≤PCD≤0.647 | 40 | 70 |
5 | Mild dispersion | 0.384≤PCD<0.476 | 15 | 30 |
6 | Moderate dispersion | 0.270≤PCD<0.384 | 10 | 15 |
7 | High dispersion | PCD<0.270 | 5 | 5 |
Table 7
Average frequency and variation coefficient in different grades of precipitation heterogeneity"
Grade | Types | Real frequency (%) | Cumulative frequency (%) | Variation coefficient |
---|---|---|---|---|
1 | High centralization | 4 | 5 | 2.58 |
2 | Moderate centralization | 11 | 10 | 1.30 |
3 | Mild centralization | 17 | 15 | 0.89 |
4 | Normal | 38 | 40 | 0.58 |
5 | Mild dispersion | 14 | 15 | 0.98 |
6 | Moderate dispersion | 11 | 10 | 1.37 |
7 | High dispersion | 5 | 5 | 2.09 |
1 | Alexander L V, Zhang X B, Peterson T C.et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111(D5). |
2 | Cao Y Q, Lu L, Zhang T T.et al., 2013. Spatio-temporal variation in precipitation in Zhejiang province based on PCD and PCP.Resources Science, 35(5): 1001-1006. (in Chinese) |
3 | Deng P X, Hu Q F, Wang Y T.et al., 2014. Heterogeneity study of rainfall in the Taihu Lake basin.Hydro-Science and Engineering, (5): 34-40. (in Chinese) |
4 |
Dong Q, Chen X, Chen T X, 2011. Characteristics and changes of extreme precipitation in the Yellow-Huaihe and and Yangtze-Huaihe rivers basins, China.Journal of Climate, 24(14): 3781-3795.
doi: 10.1175/2010JCLI3653.1 |
5 | Feng G Y, 1994. Discussion on intra-annual differential coefficient.Resources Science, 16(5): 67-72. (in Chinese) |
6 | Feng G Z, Li Y, Li P C, 2000. Quantification of nonuniformity in annual distribution of stream flows.The Journal Of Northwest Agricultural University, 28(2): 50-53. (in Chinese) |
7 | Gong D Y, Han H, 2004. Extreme climate events in Northern China over the last 50 years.Acta Geographica Sinica, 59(2): 230-238. (in Chinese) |
8 | Gu W L, Wang J J, Zhu Y Y.et al., 2010. Annual distribution of precipitation over the Huaihe River basin.Resources and Environment in the Yangtze Basin, 19(4): 426-431. (in Chinese) |
9 | Huang J Y, 2007. Meteorological Statistical Analysis and Prediction Method. Beijing: China Meteorological Press, 24-26. (in Chinese) |
10 | Ju X S, Yang X W, Chen L J.et al., 1997. Research on determination of station indexes and division of regional flood/ drought grades in China.Quarterly Journal of Applied Meteorology, 8(1): 26-33. (in Chinese) |
11 |
Li J, Yu R C, Sun W, 2013. Calculation and analysis of the thresholds of hourly extreme precipitation in mainland China.Torrential Rain and Disasters, 32(1): 11-16. (in Chinese)
doi: 10.3969/j.issn.1004-9045.2013.01.002 |
12 | Li Q X, Huang J Y, 2010. Study on threshold values with an extreme events of precipitation in Beijing.Advances in Water Science, 21(5): 660-665. (in Chinese) |
13 |
Li X M, Jiang F Q, Li L H.et al., 2011. Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China.International Journal of Climatology, 31(11): 1679-1693.
doi: 10.1002/joc.2181 |
14 | Liu W L, Zhang M J, Wang S J.et al., 2013. Intra-annual inhomogeneity of precipitation and its prediction in Shaanxi Province of Northwest China in 1960-2011.Chinese Journal of Ecology, 32(7): 1877-1887. (in Chinese) |
15 | Liu X Y, Shi Z T, Peng H Y.et al., 2007. Study on precipitation temporal distribution homogeneous degree based on the Gini coefficient.Journal of Meteorological Research and Application, 28(2): 46-48. (in Chinese) |
16 |
Lu Z H, Xia Z Q, Yu L L.et al., 2012. Temporal and spatial variation of characteristics of precipitation in Songhua River basin during 1958-2009.Journal of Natural Resources, 27(6): 990-1000. (in Chinese)
doi: 10.11849/zrzyxb.2012.06.010 |
17 |
Mishra A K, Özger M, Singh V P, 2009. An entropy-based investigation into the variability of precipitation.Journal of Hydrology, 370(1): 139-154.
doi: 10.1016/j.jhydrol.2009.03.006 |
18 | Qin W J, Wang Y Q, Qin Z N, 2010. Study on variation characteristics of precipitation concentration degree in Guangxi under the background of global climate becoming warm.Meteorological and Environmental Research, 1(5): 17-21. |
19 | Shi W L, Yang Q K, Li X F.et al., 2012. Study on temporal inequality of precipitation in the Loess Plateau based on Lorenz curve.Agricultural Research in the Arid Areas, 30(4): 172-177. (in Chinese) |
20 |
Shi W L, Yu X Z, Liao W G.et al., 2013. Spatial and temporal variability of daily precipitation concentration in the Lancang River basin, China.Journal of Hydrology, 495: 197-207.
doi: 10.1016/j.jhydrol.2013.05.002 |
21 |
Singh V P, 1997. The use of entropy in hydrology and water resources.Hydrological Processes, 11(6): 587-626.
doi: 10.1002/(SICI)1099-1085(199705)11:6<587::AID-HYP479>3.0.CO;2-P |
22 | Tang Q C, Cheng T W, Li X Y, 1982a. Preliminary study on the degree and time of concentration of monthly runoff of Chinese streams.Acta Geographica Sinica, 37(4): 383-393. (in Chinese) |
23 | Tang Q C, Yang X Y, 1982b. Calculation and discussion of the non-uniform coefficient of annual runoff distribution.Resources Science, 4(3): 59-65. (in Chinese) |
24 | Wang D, Zhu Y S, 2001. Principle of maximum entropy and its application in hydrology and water resources.Advances in Water Science, 12(3): 424-430. (in Chinese) |
25 | Wang J J, Pei T F, Gu W L.et al., 2007. Non-uniformity index of annual precipitation distribution.Chinese Journal of Ecology, 26(9): 1364-1368. (in Chinese) |
26 |
Wang N, Li D L, Zhang J, 2013. The intra-seasonal heterogeneity of the strong precipitation events and the corresponding atmosphere circulation characteristics in the middle and upper Yellow River Basin in flood season.Journal of Desert Research, 33(1): 239-248. (in Chinese)
doi: 10.7522/j.issn.1000-694X.2013.00033 |
27 | Wang X R, Guo J X, Wang W G.et al., 2009. China Meteorological Geographical Regionalization (Consultation Draft). National Climate Center. (in Chinese) |
28 | Xiong J, 2003. A comparative analysis of appraisal method of Gini coefficient.Research on Financial and Economic Issues, (1): 79-82. (in Chinese) |
29 | Yang Y D, 1984. Calculation method of the annual runoff distribution.Acta Geographica Sinica, 39(2): 218-227. (in Chinese) |
30 | Zhai P M, Pan X H, 2003. Change in extreme temperature and precipitation over northern China during the second half of the 20th century.Acta Geographica Sinica, 58(S1): 1-10. (in Chinese) |
31 | Zhang L J, Qian Y, 2003. Annual distribution features of precipitation in China and their interannual variations.Acta Meteorologica Sinica, 17(2): 146-163. |
32 | Zhang L J, Qian Y F, 2004. A study on the feature of precipitation concentration and its relation to flood-producing in the Yangtze River valley of China.Chinese Journal of Geophysics, 47(4): 622-630. (in Chinese) |
33 | Zhang Q, Zou X K, Xiao F J et al., 2006. Classification of Meteorological Drought, GB/T 20481-2006. Beijing: Standards Press of China. (in Chinese) |
34 |
Zhang X B, Hegerl G, Zwiers F W.et al., 2005. Avoiding inhomogeneity in percentile-based indices of temperature extremes.Journal of Climate, 18(11):1641-1651.
doi: 10.1175/JCLI3366.1 |
35 |
Zhang X B, Wang J F, Zwiers F W.et al., 2010. The influence of large-scale climate variability on winter maximum daily precipitation over North America.Journal of Climate, 23(11): 2902-2915.
doi: 10.1175/2010JCLI3249.1 |
36 |
Zheng H X, Liu C M, 2003. Changes of annual runoff distribution in the headwater of the Yellow River basin.Progress in Geography, 22(6): 585-590. (in Chinese)
doi: 10.11820/dlkxjz.2003.06.006 |
37 |
Zou L Y, Ding Y H, Wang J, 2013. Spatial and temporal characteristics of heavy precipitation long-term changes in Northeast China and causation analysis.Journal of Natural Resources, 28(1): 137-147. (in Chinese)
doi: 10.11849/zrzyxb.2013.01.014 |
[1] | WEI Wei, GUO Zecheng, SHI Peiji, ZHOU Liang, WANG Xufeng, LI Zhenya, PANG Sufei, XIE Binbin. Spatiotemporal changes of land desertification sensitivity in northwest China from 2000 to 2017 [J]. Journal of Geographical Sciences, 2021, 31(1): 46-68. |
[2] | MA Bin, ZHANG Bo, JIA Lige. Spatio-temporal variation in China’s climatic seasons from 1951 to 2017 [J]. Journal of Geographical Sciences, 2020, 30(9): 1387-1400. |
[3] | LIU Xiaojing, LIU Dianfeng, ZHAO Hongzhuo, HE Jianhua, LIU Yaolin. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China [J]. Journal of Geographical Sciences, 2020, 30(9): 1419-1435. |
[4] | WU Li, SUN Xiaoling, SUN Wei, ZHU Cheng, ZHU Tongxin, LU Shuguang, ZHOU Hui, GUO Qingchun, GUAN Houchun, XIE Wei, KE Rui, LIN Guiping. Evolution of Neolithic site distribution (9.0-4.0 ka BP) in Anhui, East China [J]. Journal of Geographical Sciences, 2020, 30(9): 1451-1466. |
[5] | YE Chao, LI Simeng, ZHANG Zhao, ZHU Xiaodan. A comparison and case analysis between domestic and overseas industrial parks of China since the Belt and Road Initiative [J]. Journal of Geographical Sciences, 2020, 30(8): 1266-1282. |
[6] | WANG Xueqin, LIU Shenghe, QI Wei. Mega-towns in China: Their spatial distribution features and growth mechanisms [J]. Journal of Geographical Sciences, 2020, 30(7): 1060-1082. |
[7] | YANG Fan, HE Fanneng, LI Meijiao, LI Shicheng. Evaluating the reliability of global historical land use scenarios for forest data in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1083-1094. |
[8] | LIU Ruiqing, XU Hao, LI Jialin, PU Ruiliang, SUN Chao, CAO Luodan, JIANG Yimei, TIAN Peng, WANG Lijia, GONG Hongbo. Ecosystem service valuation of bays in East China Sea and its response to sea reclamation activities [J]. Journal of Geographical Sciences, 2020, 30(7): 1095-1116. |
[9] | FANG Chuanglin, WANG Zhenbo, LIU Haimeng. Beautiful China Initiative: Human-nature harmony theory, evaluation index system and application [J]. Journal of Geographical Sciences, 2020, 30(5): 691-704. |
[10] | CHEN Mingxing, LIANG Longwu, WANG Zhenbo, ZHANG Wenzhong, YU Jianhui, LIANG Yi. Geographical thoughts on the relationship between ‘Beautiful China’ and land spatial planning [J]. Journal of Geographical Sciences, 2020, 30(5): 705-723. |
[11] | TANG Zhipeng, MEI Ziao, LIU Weidong, XIA Yan. Identification of the key factors affecting Chinese carbon intensity and their historical trends using random forest algorithm [J]. Journal of Geographical Sciences, 2020, 30(5): 743-756. |
[12] | WANG Shaojian, GAO Shuang, HUANG Yongyuan, SHI Chenyi. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends [J]. Journal of Geographical Sciences, 2020, 30(5): 757-774. |
[13] | SONG Zhouying, ZHU Qiaoling. Spatio-temporal pattern and driving forces of urbanization in China’s border areas [J]. Journal of Geographical Sciences, 2020, 30(5): 775-793. |
[14] | ZHAO Ting, BAI Hongying, YUAN Yuan, DENG Chenhui, QI Guizeng, ZHAI Danping. Spatio-temporal differentiation of climate warming (1959-2016) in the middle Qinling Mountains of China [J]. Journal of Geographical Sciences, 2020, 30(4): 657-668. |
[15] | WANG Jiayue, XIN Liangjie, WANG Yahui. How farmers’ non-agricultural employment affects rural land circulation in China? [J]. Journal of Geographical Sciences, 2020, 30(3): 378-400. |
|