Journal of Geographical Sciences ›› 2016, Vol. 26 ›› Issue (3): 259-271.doi: 10.1007/s11442-016-1267-2
• Orginal Article • Next Articles
Huimin YAN1(), Yongzan JI1,2, Jiyuan LIU1, Fang LIU1, Yunfeng HU1, Wenhui KUANG1
Received:
2015-06-09
Accepted:
2015-08-20
Online:
2016-07-25
Published:
2016-07-25
About author:
Author: Yan Huimin, PhD, specialized in land use change. E-mail:
Supported by:
Huimin YAN, Yongzan JI, Jiyuan LIU, Fang LIU, Yunfeng HU, Wenhui KUANG. Potential promoted productivity and spatial patterns of medium- and low-yield cropland land in China[J].Journal of Geographical Sciences, 2016, 26(3): 259-271.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 2
Four typical frequency distribution histograms43-single cropping zone in Songnen Plain (a); 82-irrigated and dryland zone in Hubei-Henan-Anhui hilly plain (b); 61-irrigated double cropping and dryland single cropping in piedmont plain of Yanshan and Taihang Mountains (c); 33-semi-humid and drought-prone single cropping in east Shanxi Province (d)"
Table 1
Promoted potential of medium- and low-yield cropland productivity in sub-zones (gC/m2/a)"
Sub-zone code | Promoted potential of low-yield cropland productivity | Promoted potential of medium-yield cropland productivity | Sub-zone code | Promoted potential of low-yield cropland productivity | Promoted potential of medium-yield cropland productivity |
---|---|---|---|---|---|
11 | 167.53 | 214.61 | 65 | 135.99 | 91.91 |
12 | 149.05 | 134.14 | 66 | 154.66 | 157.73 |
21 | 80.97 | 115.43 | 67 | 91.62 | 87.16 |
22 | 134.49 | 197.51 | 71 | 145.93 | 138.42 |
31 | 120.70 | 129.34 | 72 | 128.45 | 101.59 |
32 | 67.47 | 95.10 | 73 | 82.74 | 80.06 |
33 | 122.54 | 122.51 | 74 | 269.63 | 241.69 |
34 | 122.43 | 145.19 | 75 | 150.37 | 163.29 |
41 | 89.15 | 97.85 | 81 | 190.49 | 135.47 |
42 | 75.86 | 122.82 | 82 | 93.59 | 110.83 |
43 | 84.80 | 80.20 | 91 | 79.49 | 72.63 |
44 | 100.80 | 66.66 | 92 | 86.92 | 124.33 |
51 | 238.04 | 195.18 | 101 | 174.25 | 178.35 |
52 | 214.61 | 248.09 | 102 | 131.90 | 117.79 |
53 | 225.30 | 190.01 | 111 | 197.00 | 248.66 |
61 | 159.29 | 150.06 | 112 | 146.24 | 119.47 |
62 | 126.33 | 120.05 | 113 | 247.75 | 266.32 |
63 | 138.81 | 112.36 | 121 | 206.51 | 216.96 |
64 | 147.89 | 117.72 | 122 | 297.01 | 321.38 |
Table 2
Production capability and potential promoted productivity of low-yield cropland in each province"
Province | Area proportion of low-yield cropland (%) | Low-yield cropland productivity (×104 C) | Proportion of low-yield cropland productivity (%) | Potential promoted productivity (×104 C) | Increase rate % | Proportion of potential promoted productivity (%) |
---|---|---|---|---|---|---|
Heilongjiang | 7.96 | 1732.78 | 10.93 | 258.18 | 14.90 | 6.77 |
Jilin | 3.29 | 452.45 | 2.85 | 88.00 | 19.45 | 2.31 |
Liaoning | 2.78 | 270.01 | 1.70 | 50.67 | 18.77 | 1.33 |
Beijing | 0.28 | 51.19 | 0.32 | 15.38 | 30.04 | 0.40 |
Tianjin | 0.38 | 90.19 | 0.57 | 21.86 | 24.24 | 0.57 |
Hebei | 3.85 | 662.04 | 4.17 | 173.34 | 26.18 | 4.55 |
Shandong | 2.70 | 440.02 | 2.77 | 108.70 | 24.70 | 2.85 |
Henan | 3.60 | 1021.36 | 6.44 | 175.70 | 17.20 | 4.61 |
Shanxi | 4.18 | 569.75 | 3.59 | 141.79 | 24.89 | 3.72 |
Shaanxi | 5.39 | 430.27 | 2.71 | 97.09 | 22.56 | 2.55 |
Gansu | 5.54 | 520.49 | 3.28 | 163.77 | 31.46 | 4.29 |
Xinjiang | 3.26 | 413.12 | 2.60 | 157.81 | 38.20 | 4.14 |
Inner Mongolia | 8.75 | 1008.00 | 6.36 | 235.99 | 23.41 | 6.19 |
Ningxia | 1.48 | 161.57 | 1.02 | 68.00 | 42.09 | 1.78 |
Qinghai | 0.61 | 22.78 | 0.14 | 9.06 | 39.80 | 0.24 |
Tibet | 0.46 | 19.03 | 0.12 | 10.77 | 56.60 | 0.28 |
Jiangsu | 1.42 | 337.51 | 2.13 | 102.14 | 30.26 | 2.68 |
Anhui | 1.85 | 476.93 | 3.01 | 104.79 | 21.97 | 2.75 |
Hubei | 2.89 | 376.33 | 2.37 | 86.22 | 22.91 | 2.26 |
Hunan | 4.98 | 699.15 | 4.41 | 174.32 | 24.93 | 4.57 |
Jiangxi | 3.09 | 532.08 | 3.35 | 114.66 | 21.55 | 3.01 |
Zhejiang | 1.48 | 480.30 | 3.03 | 154.58 | 32.18 | 4.05 |
Shanghai | 0.17 | 44.21 | 0.28 | 14.97 | 33.86 | 0.39 |
Guangdong | 2.75 | 679.24 | 4.28 | 231.58 | 34.09 | 6.07 |
Guangxi | 3.56 | 532.55 | 3.36 | 169.57 | 31.84 | 4.45 |
Fujian | 1.75 | 521.27 | 3.29 | 162.21 | 31.12 | 4.25 |
Hainan | 0.35 | 95.89 | 0.60 | 40.13 | 41.85 | 1.05 |
Taiwan | 0.26 | 78.64 | 0.50 | 31.66 | 40.26 | 0.83 |
Sichuan | 7.54 | 1772.73 | 11.18 | 265.77 | 14.99 | 6.97 |
Yunnan | 5.91 | 751.06 | 4.74 | 292.76 | 38.98 | 7.68 |
Chongqing | 2.79 | 468.50 | 2.95 | 64.14 | 13.69 | 1.68 |
Guizhou | 4.69 | 148.30 | 0.94 | 28.23 | 19.04 | 0.74 |
Table 3
Production capacity and potential promoted productivity of medium-yield cropland in province"
Province | Area proportion of medium-yield cropland (%) | Medium-yield cropland productivity (×104 C) | Proportion of medium-yield cropland productivity (%) | Potential promoted productivity (×104 C) | Increase rate (%) | Proportion of potential promoted productivity (%) |
---|---|---|---|---|---|---|
Heilongjiang | 12.53 | 5591.56 | 11.35 | 851.49 | 15.23 | 9.14 |
Jilin | 4.50 | 2027.35 | 4.12 | 263.31 | 12.99 | 2.83 |
Liaoning | 4.20 | 1902.89 | 3.86 | 251.32 | 13.21 | 2.70 |
Beijing | 0.33 | 154.59 | 0.31 | 34.50 | 22.31 | 0.37 |
Tianjin | 0.50 | 228.52 | 0.46 | 43.74 | 19.14 | 0.47 |
Hebei | 6.07 | 2731.25 | 5.54 | 552.14 | 20.22 | 5.93 |
Shandong | 7.06 | 3542.15 | 7.19 | 558.29 | 15.76 | 5.99 |
Henan | 6.38 | 3368.73 | 6.84 | 440.08 | 13.06 | 4.72 |
Shanxi | 3.08 | 1272.41 | 2.58 | 282.19 | 22.18 | 3.03 |
Shaanxi | 2.70 | 1226.67 | 2.49 | 279.82 | 22.81 | 3.00 |
Gansu | 2.53 | 1046.96 | 2.13 | 303.88 | 29.03 | 3.26 |
Xinjiang | 2.99 | 1618.20 | 3.28 | 465.51 | 28.77 | 5.00 |
Inner Mongolia | 5.80 | 2385.04 | 4.84 | 556.47 | 23.33 | 5.97 |
Ningxia | 0.73 | 284.72 | 0.58 | 99.90 | 35.08 | 1.07 |
Qinghai | 0.32 | 113.63 | 0.23 | 36.18 | 31.84 | 0.39 |
Tibet | 0.09 | 30.99 | 0.06 | 13.94 | 44.97 | 0.15 |
Jiangsu | 3.58 | 1908.20 | 3.87 | 303.91 | 15.93 | 3.26 |
Anhui | 6.18 | 3316.31 | 6.73 | 519.71 | 15.67 | 5.58 |
Hubei | 3.60 | 1871.25 | 3.80 | 379.66 | 20.29 | 4.07 |
Hunan | 2.85 | 1543.79 | 3.13 | 250.27 | 16.21 | 2.69 |
Jiangxi | 1.90 | 1029.40 | 2.09 | 171.48 | 16.66 | 1.84 |
Zhejiang | 1.66 | 849.77 | 1.72 | 230.50 | 27.12 | 2.47 |
Shanghai | 0.35 | 168.73 | 0.34 | 42.25 | 25.04 | 0.45 |
Guangdong | 2.14 | 1287.21 | 2.61 | 367.70 | 28.57 | 3.95 |
Guangxi | 2.91 | 1694.63 | 3.44 | 382.28 | 22.56 | 4.10 |
Fujian | 0.71 | 408.86 | 0.83 | 118.86 | 29.07 | 1.28 |
Hainan | 0.62 | 445.10 | 0.90 | 139.98 | 31.45 | 1.50 |
Taiwan | 0.44 | 292.91 | 0.59 | 92.02 | 31.42 | 0.99 |
Sichuan | 7.30 | 3655.76 | 7.42 | 603.26 | 16.50 | 6.47 |
Yunnan | 2.29 | 1430.87 | 2.90 | 390.90 | 27.32 | 4.19 |
Chongqing | 1.88 | 969.52 | 1.97 | 162.34 | 16.74 | 1.74 |
Guizhou | 1.78 | 865.09 | 1.76 | 130.82 | 15.12 | 1.40 |
[1] | Agricultural Natural Resources and Agricultural Regional Planning Institute of Chinese Academy of Agricultural Sciences, National Soil and Fertilizer Station, 1992. Chinese Arable Land Resources and Its Exploitation. Beijing: Surveying and Mapping Press. (in Chinese) |
[2] |
Albrizio R, Steduto P, 2003. Photosynthesis, respiration and conservative carbon use efficiency of four field grown crops. Agricultural and Forest Meteorology, 116(1): 19-36.
doi: 10.1016/S0168-1923(02)00252-6 |
[3] |
Ball J T, 1996. Sensitivity of leaf photosynthesis to CO2 concentration is an invariant function for C3 plants: A test with experimental data and global applications. Global Biogeochemical Cycles, 10(2): 209-222.
doi: 10.1029/96GB00438 |
[4] |
Cheng W X, Sims D A, Luo Yet al., 2000. Photosynthesis, respiration, and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations. Global Change Biology, 6(8): 931-941.
doi: 10.1590/S1678-77572009000100008 |
[5] |
Foley J A, DeFries R, Asner G Pet al., 2005. Global consequences of land use. Science, 309(5734): 570-574.
doi: 10.1126/science.1111772 pmid: 20 |
[6] |
Foley J A, Ramankutty N, Brauman K Aet al., 2011. Solutions for a cultivated planet. Nature, 478(7369): 337-342.
doi: 10.1038/nature10452 pmid: 21993620 |
[7] |
Gifford R M, 1995. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: Long-term vs. short-term distinctions for modelling. Global Change Biology, 1(6): 385-396.
doi: 10.1111/j.1365-2486.1995.tb00037.x |
[8] | Huang M, Ji J J, Peng L L, 2008. The response of vegetation net primary productivity to climate change during 1981-2000 in the Tibetan Plateau. Climatic and Environmental Research, 13(5): 608-617. (in Chinese) |
[9] |
Kalfas J L, Xiao X, Vanegas D Xet al., 2011. Modeling gross primary production of irrigated and rain-fed maize using MODIS imagery and CO2 flux tower data. Agricultural and Forest Meteorology, 151(12): 1514-1528.
doi: 10.1016/j.agrformet.2011.06.007 |
[10] | Li F L, Li B X, Cao W X, 2005. Status and prospect of crop-yield assess by remote sensing. Journal of Yunnan Agricultural University, 5(20): 680-684. (in Chinese) |
[11] | Lin P S, 2008. Study on the distribution and possible production increase of medium and low-yield farmland in China. Beijing: Chinese Academy of Agricultural Sciences. (in Chinese) |
[12] | Liu X H, Yang Q k, Tang G A, 2001. Extraction and application of relief of China based on DEM and GIS method. Bulletin of Soil and Water Conservation, 21(1): 57-62. |
[13] | Shi Q H, Wang H, Chen Fet al., 2010. The spatial-temporal distribution characteristics and yield potential of medium-low yielded farmland in China. Chinese Agricultural Science Bulletin, 26(19): 369-373. (in Chinese) |
[14] |
Tilman D, Balzer C, Hill Jet al., 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50): 20260-20264.
doi: 10.1073/pnas.1116437108 pmid: 22106295 |
[15] |
Wang Y, Huang M, Wang X G, 2010. Impacts of land use and climate change on agricultural productivity in Shanghai. Acta Scientiae Circumstantiae, 30(3): 641-648. (in Chinese)
doi: 10.1631/jzus.A1000244 |
[16] |
Wang Z, Xiao X M, Yan X D, 2010. Modeling gross primary production of maize cropland and degraded grassland in northeastern China. Agricultural and Forest Meteorology, 150(9): 1160-1167.
doi: 10.1016/j.agrformet.2010.04.015 |
[17] | Wu B F, Du X, Meng J Het al., 2009. A remote sensing method to classify high, medium and low yield cropland and its application in Huang-Huai-Hai Basin. Modern Agricultural Development and National Food Security & Huang-Huai-Hai Modern Agricultural Development Strategy Forum Proceedings, 104-108. (in Chinese) |
[18] |
Xiao X M, Hollinger D, Aber Jet al., 2004. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89(4): 519-534.
doi: 10.1016/j.rse.2003.11.008 |
[19] |
Yan H M, Fu Y L, Xiao X Met al., 2009. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture, Ecosystems & Environment, 129(4): 391-400.
doi: 10.1016/j.agee.2008.10.017 |
[20] | Yan H M, Liu J Y, Huang H Q et al., 2012. Impacts of cropland transformation on agricultural production under urbanization and Grain for Green Project in China. Acta Geographica Sinica, 2012, 67(5): 579-588. (in Chinese) |
[21] | Zhang L, Zhang F G, Jiang G Het al., 2005. Potential improvement of medium low yielded farmland and guarantee of food safety in China. Research of Agricultural Modernization, 26(1): 22-25. (in Chinese) |
[22] |
Zhang W, Li A N, 2012. Study on the optimal scale for calculating the relief amplitude in China based on DEM. Geography and Geo-Information Science, 28(4): 8-12. (in Chinese)
doi: 10.1007/s11783-011-0280-z |
[1] | CAI Jianming, MA Enpu, LIN Jing, LIAO Liuwen, HAN Yan. Exploring global food security pattern from the perspective of spatio-temporal evolution [J]. Journal of Geographical Sciences, 2020, 30(2): 179-196. |
[2] | Xuegang CUI, Chuanglin FANG, Zhenbo WANG, Chao BAO. Spatial relationship of high-speed transportation construction and land-use efficiency and its mechanism: Case study of Shandong Peninsula urban agglomeration [J]. Journal of Geographical Sciences, 2019, 29(4): 549-562. |
[3] | JIANG Min, LI Xiubin, XIN Liangjie, TAN Minghong. Paddy rice multiple cropping index changes in Southern China: Impacts on national grain production capacity and policy implications [J]. Journal of Geographical Sciences, 2019, 29(11): 1773-1787. |
[4] | Xiaobo WANG, Shaoqiang WANG, Jinghua CHEN, Huijuan CUI, Yijin WU, H Ravindranath N, Rahman Atiq. Simulating potential yields of Chinese superhybrid rice in Bangladesh, India and Myanmar with EPIC model [J]. Journal of Geographical Sciences, 2018, 28(7): 1020-1036. |
[5] | Suocheng DONG, Yang YANG, Fujia LI, Hao CHENG, Jingnan LI, Alexey BILGAEV, Zehong LI, Yu LI. An evaluation of the economic, social, and ecological risks of China-Mongolia-Russia high-speed railway construction and policy suggestions [J]. Journal of Geographical Sciences, 2018, 28(7): 900-918. |
[6] | Lin HUANG, Yuhan ZHENG, Tong XIAO. Regional differentiation of ecological conservation and its zonal suitability at the county level in China [J]. Journal of Geographical Sciences, 2018, 28(1): 46-58. |
[7] | Degen WANG, Yu NIU, Feng SUN, Kaiyong WANG, Jia QIAN, Feng LI. Evolution and spatial characteristics of tourism field strength of cities linked by high-speed rail (HSR) network in China [J]. Journal of Geographical Sciences, 2017, 27(7): 835-856. |
[8] | Fengjun JIN, Fengjun JIN, Yuanjing QI, Yu YANG. Evolution and geographic effects of high-speed rail in East Asia: An accessibility approach [J]. Journal of Geographical Sciences, 2017, 27(5): 515-532. |
[9] | Mingxing CHEN, Hualou LONG, Chengjin WANG, Jinchuan HUANG, Fangqu NIU. Review of and prospects for China’s human and economic geography [J]. Journal of Geographical Sciences, 2017, 27(12): 1556-1576. |
[10] | Quansheng GE, Jingyun *ZHENG, Zhixin HAO, Yang LIU, Mingqi LI. Recent advances on reconstruction of climate and extreme events in China for the past 2000 years [J]. Journal of Geographical Sciences, 2016, 26(7): 827-854. |
[11] | Xu ZHOU, Shengtian YANG, Xiaoyan LIU, Changming LIU, Changsen ZHAO, Haigen ZHAO, Qiuwen ZHOU, Zhiwei WANG. Comprehensive analysis of changes to catchment slope properties in the high-sediment region of the Loess Plateau, 1978-2010 [J]. Journal of Geographical Sciences, 2015, 25(4): 437-450. |
[12] | Ya LUO, Shengtian YANG, Changsen ZHAO, Xiaoyan LIU, Changming LIU, Linna WU, Haigen ZHAO, Yichi ZHANG. The effect of environmental factors on spatial variability in land use change in the high-sediment region of China’s Loess Plateau [J]. Journal of Geographical Sciences, 2014, 24(5): 802-814. |
[13] | WU Wenbin, TANG Huajun, YANG Peng, YOU Liangzhi, ZHOU Qingbo, CHEN Zhongxin, SHIBASAKI Ryosuke. Scenario-based assessment of future food security [J]. Journal of Geographical Sciences, 2011, 21(1): 3-17. |
[14] | YIN Peihong, FANG Xiuqi, YUN Yaru. Regional differences of vulnerability of food security in China [J]. Journal of Geographical Sciences, 2009, 19(5): 532-544. |
[15] | LAN Yongchao, DING Yongjiang, KANG Ersi, MA Quanjie, ZHANG Jishi. The relationship between ENSO cycle and high and low-flow in the upper Yellow River [J]. Journal of Geographical Sciences, 2003, 13(1): 105-111. |
|