Journal of Geographical Sciences ›› 2016, Vol. 26 ›› Issue (2): 131-152.doi: 10.1007/s11442-016-1259-2
• Orginal Article • Next Articles
Yansui LIU1,2,3(), Bin YAN1,2,4, Yang *ZHOU1,2,3(
)
Received:
2015-08-20
Accepted:
2015-09-30
Online:
2016-02-25
Published:
2016-08-08
About author:
Author: Liu Yansui (1965-), Professor, specialized in land sciences, sustainable agriculture and rural development. E-mail:
*Corresponding author: Zhou Yang (1984-), PhD and Assistant Professor, E-mail:
Supported by:
Yansui LIU, Bin YAN, Yang *ZHOU. Urbanization, economic growth, and carbon dioxide emissions in China: A panel cointegration and causality analysis[J].Journal of Geographical Sciences, 2016, 26(2): 131-152.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Data description and sources"
Indicators | Unit | Abbreviation | Meaning of indicators | Sources |
---|---|---|---|---|
Built-up area | km2 | BA | Land urbanization | CCSY |
Urban population | persons | UP | Demographic urbanization | CSY |
GDP per capita | yuan RMB | pGDP | Economic growth | CSY |
CO2 emissions | million tons | CO2 | Pollutant emissions | Guan et al., 2012 |
Table 2
Panel unit root test results"
Levels | |||||
---|---|---|---|---|---|
Variable | LLC | IPS | Fisher-ADF | Fisher-PP | |
Intercept | BA | -2.75*** | 4.04 | 18.88 | 26.12 |
UP | -4.68*** | 1.19 | 61.71 | 112.52*** | |
pGDP | 5.863 | 12.1 | 9.23 | 4.24 | |
CO2 | 1.65 | 7.18 | 8.4 | 6.45 | |
Intercept and trend | BA | -1.50* | -1.47* | 47.28 | 52.87 |
UP | -9.11*** | -0.27 | 67.02 | 27.63 | |
pGDP | -10.31*** | -1.68** | 91.47*** | 68.99 | |
CO2 | -6.39*** | -2.32** | 89.47** | 74.63 | |
First differences | |||||
Variable | LLC | IPS | Fisher-ADF | Fisher-PP | |
Intercept | BA | -6.39*** | -4.65*** | 115.01*** | 224.74*** |
UP | -11.32*** | -6.40*** | 149.70*** | 220.52*** | |
pGDP | -4.51*** | -0.29 | 55.29** | 52.95*** | |
CO2 | -6.12*** | -4.11*** | 106.59*** | 195.71*** | |
Intercept and trend | BA | -5.54*** | -1.65*** | 75.35*** | 202.62*** |
UP | -18.90*** | -9.45*** | 203.53*** | 309.78*** | |
pGDP | -2.16*** | 0.42 | 59.99** | 105.29*** | |
CO2 | -2.59*** | 0.10** | 53.40** | 158.00*** |
Table 3
Panel cointegration test results"
Statistics | Panel A | Panel B | Panel C | Panel D | Panel E |
---|---|---|---|---|---|
Panel v | 1.51* | 1.23 | 3.22*** | -0.03 | 3.70*** |
Panel rho | -1.75** | 0.10 | -3.25*** | 0.71 | -1.93** |
Panel PP | -2.40*** | -1.17 | -7.18*** | 0.24 | -5.31*** |
Panel ADF | -2.98*** | -1.29* | -8.12*** | -1.19 | -8.10*** |
Group rho | 1.48 | 2.77 | -0.35 | 2.67 | 0.13 |
Group PP | -0.36* | 0.97 | -5.74*** | 0.96 | -5.63*** |
Group ADF | -2.04** | -1.06* | -7.61*** | -1.26 | -8.80*** |
Table 4
Panel cointegration coefficients by FMOLS and DOLS for China and its eastern, central and western regions"
Whole China | |||||||
---|---|---|---|---|---|---|---|
Variable | Dependent variable: pGDP | Variable | Dependent variable: BA | ||||
DOLS (1,1) | DOLS (2,2) | FMOLS | DOLS (1,1) | DOLS (2,2) | FMOLS | ||
BA | 0.90*** (-27.29) | 0.81*** (-21.66) | 0.94*** (-27.58) | pGDP | 0.66*** (-9.64) | 0.22 (-0.47) | 0.93*** (-43.33) |
Variable | Dependent variable: CO2 | Variable | Dependent variable: CO2 | ||||
DOLS (1,1) | DOLS (2,2) | FMOLS | DOLS (1,1) | DOLS (2,2) | FMOLS | ||
pGDP | 0.83*** (-16.22) | 0.60*** (-2.12) | 0.94*** (-61.07) | BA | 1.19*** (-36.78) | 1.16*** (-29.56) | 1.15*** (-34.88) |
Obs | 341 | 279 | 403 | Obs | 341 | 279 | 403 |
Eastern region | |||||||
Variable | Dependent variable: pGDP | Variable | Dependent variable: BA | ||||
DOLS (1,1) | DOLS (2,2) | FMOLS | DOLS (1,1) | DOLS (2,2) | FMOLS | ||
BA | 1.02*** (-50.73) | 0.99*** (-6.63) | 1.03*** (-38.21) | pGDP | 0.66*** (-9.64) | 0.43 (-0.51) | 1.06*** (-26.07) |
Variable | Dependent variable: CO2 | Variable | Dependent variable: CO2 | ||||
DOLS (1,1) | DOLS (2,2) | FMOLS | DOLS (1,1) | DOLS (2,2) | FMOLS | ||
pGDP | 0.90*** (-20.11) | 0.57 (-0.77) | 0.96*** (-42.37) | BA | 0.98*** (-75.43) | 0.99*** (-10.35) | 0.95*** (-45.29) |
Obs | 121 | 99 | 143 | Obs | 121 | 99 | 143 |
Central region | |||||||
Variable | Dependent variable: pGDP | Variable | Dependent variable: BA | ||||
DOLS (1,1) | DOLS (2,2) | FMOLS | DOLS (1,1) | DOLS (2,2) | FMOLS | ||
BA | 1.17*** (-26.27 | 1.91*** (-52.62) | 1.21*** (-26.97) | pGDP | 0.90*** (-8.34) | 0.30 (-1.4) | 0.83*** (-25.16) |
Variable | Dependent variable: CO2 | Variable | Dependent variable: CO2 | ||||
DOLS (1,1) | DOLS (2,2) | FMOLS | DOLS (1,1) | DOLS (2,2) | FMOLS | ||
pGDP | 0.64*** (-10.6) | 0.40*** (-4.28) | 0.84*** (-28.26) | BA | 0.99*** (-38.35) | 1.03*** (-28.1) | 0.98*** (-24.42) |
Obs | 88 | 72 | 104 | Obs | 88 | 72 | 104 |
Western region | |||||||
Variable | Dependent variable: pGDP | Variable | Dependent variable: BA | ||||
DOLS (1,1) | DOLS (2,2) | FMOLS | DOLS (1,1) | DOLS (2,2) | FMOLS | ||
BA | 1.24*** (-32.66) | 1.35*** (-49.14) | 1.29*** (-28.75) | pGDP | 0.53*** (-5.90) | 0.25 (-1.92) | 0.79*** (-24.24) |
Variable | Dependent variable: CO2 | Variable | Dependent variable: CO2 | ||||
DOLS (1,1) | DOLS (2,2) | FMOLS | DOLS (1,1) | DOLS (2,2) | FMOLS | ||
pGDP | 0.64*** (-7.24) | 0.63*** (-1.36) | 0.97*** (-29.77) | BA | 1.27*** (-43.92) | 1.29*** (-41.09) | 1.24*** (-27.96) |
Obs | 88 | 72 | 104 | Obs | 88 | 72 | 104 |
Table 5
Panel cointegration coefficients by FMOLS and DOLS for China based on the growth rate of all variables"
Variable | Dependent variable: pGDP growth | Variable | Dependent variable: BA growth | ||||
---|---|---|---|---|---|---|---|
DOLS (1,1) | DOLS (2,2) | FMOLS | DOLS (1,1) | DOLS (2,2) | FMOLS | ||
BA growth | 0.07 (1.29) | 0.04 (0.46) | 0.06 (3.16) | pGDP growth | -0.06 (-0.09) | 2.52 (1.13) | 0.62 (2.30) |
Variable | Dependent variable: CO2 growth | Variable | Dependent variable: CO2 growth | ||||
DOLS (1,1) | DOLS (2,2) | FMOLS | DOLS (1,1) | DOLS (2,2) | FMOLS | ||
pGDP growth | 2.58*** (5.47) | 3.22** (2.00) | 1.76*** (7.01) | BA growth | 0.53*** (3.99) | 0.80*** (2.25) | 0.30*** (4.97) |
Obs | 310 | 248 | 372 | Obs | 310 | 248 | 372 |
Table 6
Wald F-test statistics based on panel-based vector error corrected models for the whole China and its eastern, central and western regions"
Panel | Causal | Result | F-statistic value | |||
---|---|---|---|---|---|---|
Short-run causality | Long-run causality | |||||
Whole China | A | pGDP | BA | 15.237 (0.00) | 192.31 (0.00) | |
BA | pGDP | 7.204 (0.12) | 6421.924 (0.00) | |||
B | BA | CO2 | 18.446 (0.00) | 313.338 (0.00) | ||
CO2 | BA | 17.518 (0.10) | 194.408 (0.00) | |||
C | pGDP | CO2 | 9.019 (0.05) | 6331.291 (0.00) | ||
CO2 | pGDP | 4.444 (0.34) | 305.076 (0.00) | |||
Eastern region | D | pGDP | BA | 0.635 (0.73) | 14.571 (0.01) | |
BA | pGDP | 3.562 (0.17) | 28.332 (0.00) | |||
E | BA | CO2 | 5.004 (0.05) | 8.156 (0.00) | ||
CO2 | BA | 6.806 (0.16) | 19.042 (0.15) | |||
F | pGDP | CO2 | 3.373 (0.04) | 10.885 (0.02) | ||
CO2 | pGDP | 2.385 (0.30) | 59.190 (0.10) | |||
Central region | G | pGDP | BA | 0.708 (0.70) | 12.490 (0.01) | |
BA | pGDP | 3.116 (0.21) | 110.951 (0.00) | |||
H | BA | CO2 | 10.981 (0.00) | 19.285 (0.00) | ||
CO2 | BA | 3.562 (0.16) | 10.308 (0.12) | |||
I | pGDP | CO2 | 2.640 (0.05) | 13.521 (0.00) | ||
CO2 | pGDP | 12.367 (0.14) | 133.69 (0.10) | |||
Western region | J | pGDP | BA | 0.231 (0.89) | 2.928 (0.71) | |
BA | pGDP | 3.988 (0.13) | 53.577 (0.10) | |||
K | BA | CO2 | 2.112 (0.35) | 6.898 (0.22) | ||
CO2 | BA | 3.018 (0.22) | 6.749 (0.15) | |||
L | pGDP | CO2 | 1.749 (0.42) | 4.501 (0.34) | ||
CO2 | pGDP | 1.086 (0.58) | 169.38 (0.34) |
Table 7
Heterogeneous panel Granger causality test results for the China and its eastern and western regions"
Panel | Causal | Result | Wald-static | Zbar-static | Probability | |
---|---|---|---|---|---|---|
Whole China | A | pGDP | BA | Lag 1: 2.052 | Lag 1: 2.063 | 0.04 |
Lag 2: 5.458 | Lag 2: 3.460 | 0.00 | ||||
BA | pGDP | Lag 1: 3.743 | Lag 1: 6.411 | 0.10 | ||
Lag 2: 3.207 | Lag 2: 0.530 | 0.60 | ||||
B | BA | CO2 | Lag 1: 10.190 | Lag 1: 22.990 | 0.00 | |
Lag 2: 10.792 | Lag 2: 10.403 | 0.00 | ||||
CO2 | BA | Lag 1: 1.537 | Lag 1: 0.739 | 0.46 | ||
Lag 2: 3.742 | Lag 2: 1.226 | 0.22 | ||||
C | pGDP | CO2 | Lag 1: 7.138 | Lag 1: 15.143 | 0.00 | |
Lag 2: 12.426 | Lag 2: 12.531 | 0.00 | ||||
CO2 | pGDP | Lag 1: 1.789 | Lag 1: 1.386 | 0.17 | ||
Lag 2: 4.363 | Lag 2: 2.035 | 0.04 | ||||
Eastern region | Panel | Causal | Result | W-static | Zbar-stat | Porb. |
D | pGDP | BA | Lag 1: 1.729 | Lag 1: 0.735 | 0.46 | |
Lag 2:3.052 | Lag 2: 0.196 | 0.84 | ||||
BA | pGDP | Lag 1: 3.643 | Lag 1: 3.665 | 0.00 | ||
Lag 2: 7.598 | Lag 2: 3.721 | 0.00 | ||||
E | BA | CO2 | Lag 1: 9.610 | Lag 1: 12.806 | 0.00 | |
Lag 2: 7.604 | Lag 2: 3.725 | 0.00 | ||||
CO2 | BA | Lag 1: 1.514 | Lag 1: 0.404 | 0.69 | ||
Lag 2: 3.502 | Lag 2: 0.554 | 0.59 | ||||
F | CO2 | pGDP | Lag 1: 0.953 | Lag 1: -0.454 | 0.65 | |
Lag 2: 3.680 | Lag 2: 0.683 | 0.49 | ||||
pGDP | CO2 | Lag 1: 6.039 | Lag 1: 7.336 | 0.00 | ||
Lag 2: 15.939 | Lag 2: 10.189 | 0.00 | ||||
Western region | Panel | Causal | Result | W-static | Zbar-stat | Porb. |
J | pGDP | BA | Lag 1: 2.006 | Lag 1: 0.987 | 0.32 | |
Lag 2: 5.319 | Lag 2: 1.666 | 0.10 | ||||
BA | pGDP | Lag 1: 4.519 | Lag 1: 4.271 | 0.10 | ||
Lag 2: 5.262 | Lag 2: 1.628 | 0.10 | ||||
K | BA | CO2 | Lag 1: 7.959 | Lag 1: 8.765 | 0.09 | |
Lag 2: 11.269 | Lag 2: 5.601 | 0.25 | ||||
CO2 | BA | Lag 1: 1.566 | Lag 1: 0.412 | 0.68 | ||
Lag 2: 1.266 | Lag 2: -0.014 | 0.31 | ||||
L | CO2 | pGDP | Lag 1: 1.643 | Lag 1:0.513 | 0.61 | |
Lag 2: 4.694 | Lag 2: 1.252 | 0.21 | ||||
pGDP | CO2 | Lag 1: 8.808 | Lag 1: 9.873 | 0.35 | ||
Lag 2: 13.559 | Lag 2: 7.114 | 0.68 |
Table 9
Estimation results in pGDP and CO2 emissions based on the panel OLS estimator"
Dependent variable [ln (CO2)] | Quadratic model | Cubic model | ||||
---|---|---|---|---|---|---|
Coefficient | t-statistic | Prob. | Coefficient | t-statistic | Prob. | |
ln(pGDP) | 0.674 | 3.054 | 0.000 | -6.336 | -2.402 | 0.017 |
ln(pGDP)2 | -0.003 | -0.184 | 0.854 | 0.997 | 2.657 | 0.008 |
ln(pGDP)3 | - | -0.047 | -2.666 | 0.008 | ||
ln(BA) | 0.293 | 8.239 | 0.000 | 0.286 | 8.089 | 0.000 |
Constant | -1.717 | -2.247 | 0.025 | 14.589 | 2.368 | 0.018 |
Turning point | - | (127.41, 10201.29) | ||||
F-statistic | 597.542 | 0.000 | 589.035 | 0.000 | ||
Adjusted R2 | 0.980 | 0.980 | ||||
Wald test | H0: the quadratic model; H1:the cubic curve | |||||
Wald statistic | 7.110*** |
Table 10
Comparison with the other studies"
Source | Data type | Method | Result |
---|---|---|---|
Jalil and Mahmud, 2009 | China; Time series (1975-2005) | ARDL, quadratic model; VECM; EKC hypothesis | Inverted U-shaped, GDP→CO2 |
Wang et al., 2011 | China’s 28 provinces; panel data (1995-2007) | Pedroni cointegration; Panel VECM; EKC hypothesis | U-shaped curve; GDP→CO2 (long-run) |
Du et al., 2012 | China’s 28 provinces; panel data (1995-2009) | Quadratic and cubic models; EKC hypothesis; GMM estimator | Inverted U-shaped is not strongly supported |
Wang et al., 2012a | Beijing; Time series (1997-2010) | STIRPAT; OLS | Not support for EKC |
This study | China’s 31 provinces; panel data (1997-2010) | Pedroni cointegration; Panel VECM; EKC hypothesis; OLS; cubic model | Long-run: BA?GDP; BA?CO2; GDP?CO2; short-run: GDP→BA; BA→CO2; GDP→CO2; inverted N-shaped curve |
1 |
Bai Xuemei, Chen Jin, Shi Peijun, 2012. Landscape urbanization and economic growth in China: Positive feed backs and sustainability dilemmas.Environmental Science and Technology, 46(1): 132-139.
doi: 10.1021/es202329f pmid: 22103244 |
2 | Bai Xuemei, Shi Peijun, Liu Yansui, 2014. Realizing China’s urban dream.Nature, 509: 158-160. |
3 |
Bloom D E, Canning D, Fink G, 2008. Urbanization and the wealth of nations.Science, 319(5864): 772-775.
doi: 10.1126/science.1153057 pmid: 18258907 |
4 |
Chen Jie, 2007. Rapid urbanization in China: A real challenge to soil protection and food security.Catena, 69(1): 1-15.
doi: 10.1016/j.catena.2006.04.019 |
5 |
Chen Mingxing, Huang Yongbin, Tang Zhipenget al., 2014. The provincial pattern of the relationship between urbanization and economic development in China.Journal of Geographical Sciences, 24(1): 33-45.
doi: 10.1007/s11442-014-1071-9 |
6 |
Chen Mingxing, Liu Weidong, Tao Xiaoli, 2013. Evolution and assessment on China’s urbanization 1960-2010: Under-urbanization or over-urbanization?Habitat International, 38: 25-33.
doi: 10.1016/j.habitatint.2012.09.007 |
7 |
Cheng Yeqing, Wang Zheye, Zhang Shuozhiet al., 2013. Spatial econometric analysis of carbon emission intensity and its driving factors from energy consumption in China.Acta Geographica Sinica, 68(1): 1418-1431. (in Chinese)
doi: 10.11821/dlxb201310011 |
8 | Choi I, 2001. Unit root tests for panel data.Journal of International Money and Finance, 20: 249-272. |
9 |
Cole M A, Neumayer E, 2004. Examining the impact of demographic factors on air pollution.Population and Environment, 26(1): 5-21.
doi: 10.1023/B:POEN.0000039950.85422.eb |
10 |
Du Limin, Chu Wei, Cai Shenghua, 2012. Economic development and carbon dioxide emissions in China: Provincial panel data analysis.China Economic Review, 23(2): 371-384.
doi: 10.1016/j.chieco.2012.02.004 |
11 | Dumitrescu E I, Hurlin C, 2012. Testing for Granger non-causality in heterogeneous panels.Ecological Modeling, 29(4): 1450-1460. |
12 | Feng Kuishuang, Davis S J, Sun Laixianget al., 2013. Outsourcing CO2 within China.Proceedings of the National Academy of Sciences of the United States of America, 110(28): 11654-11659. |
13 |
Feng Kuishuang, Siu Y L, Guan Daboet al., 2012. Analyzing drivers of regional carbon dioxide emissions for China.Journal of Industrial Ecology, 16(4): 600-611.
doi: 10.1111/j.1530-9290.2012.00494.x |
14 |
Gao Jay, Liu Yansui, Chen Yifu, 2006. Land cover changes during agrarian restructuring in Northeast China.Applied Geography, 26(3): 312-322.
doi: 10.1016/j.apgeog.2006.09.001 |
15 |
Glaeser E, 2011. Cities, productivity, and quality of life.Science, 333(6042): 592-594.
doi: 10.1126/science.1209264 pmid: 21798941 |
16 |
Gong Peng, Liang Song, Carlton E Jet al., 2012. Urbanisation and health in China.The Lancet, 379(9818): 843-852.
doi: 10.1016/S0140-6736(11)61878-3 pmid: 3733467 |
17 |
Grossman G M, Krueger A B, 1995. Economic growth and the environment.Quarterly Journal of Economics, 110: 353-377.
doi: 10.1007/978-1-349-24172-9_2 |
18 | Guan Dabo, Liu Zhu, Geng Yonget al., 2012. The gigatonne gap in China’s carbon dioxide inventories.Nature Climate Change, 2(9): 672-675. |
19 |
Im K S, Pesaran M H, Shin Y, 2003. Testing for unit roots in heterogeneous panels.Journal of Econometrics, 109: 53-74.
doi: 10.1016/S0304-4076(03)00092-7 |
20 | International Energy Agency (IEA), 2012. Key world energy statistics international energy agency. Statistics Division, Paris. |
21 |
Jalil A, Mahmud S F, 2009. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China.Energy Policy, 37(12): 5167-5172.
doi: 10.1016/j.enpol.2009.07.044 |
22 |
Levin A, Lin C, Chu C, 2002. Unit root tests in panel data: Asymptotic and finite-sample properties.Journal of Econometrics, 108: 1-24.
doi: 10.1016/S0304-4076(01)00098-7 |
23 |
Li Fei, Dong Suocheng, Xue Liet al., 2011. Energy consumption-economic growth relationship and carbon dioxide emissions in China.Energy Policy, 39(2): 568-574.
doi: 10.1016/j.enpol.2010.10.025 |
24 | Lin Boqiang, Liu Xiying, 2010. China’s carbon dioxide emissions under the urbanization process: Influence factors and abatement policies.Economic Research Journal, 8: 66-78. (in Chinese) |
25 |
Liu Jiyuan, Kuang Wenhui, Zhang Zengxianget al., 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s.Journal of Geographical Sciences, 24(2): 195-210.
doi: 10.1007/s11442-014-1082-6 |
26 | Liu Jianguo, Diamond J, 2005. China’s environment in a globalizing world.Nature, 435: 1179-1186. |
27 |
Liu Yansui, Fang Fang, Li Yuheng, 2014. Key issues of land use in China and implications for policy making.Land Use Policy, 40: 6-12.
doi: 10.1016/j.landusepol.2013.03.013 |
28 |
Liu Yansui, Lu Shasha, Chen Yufu, 2013. Spatio-temporal change of urban-rural equalized development patterns in China and its driving factors.Journal of Rural Studies, 32: 320-330.
doi: 10.1016/j.jrurstud.2013.08.004 |
29 |
Liu Yansui, Wang Lijuan, Long Hualou, 2008. Spatio-temporal analysis of land-use conversion in the eastern coastal China during 1996-2005.Journal of Geographical Sciences, 18(3): 274-282.
doi: 10.1007/s11442-008-0274-3 |
30 |
Liu Yansui, Yang Ren, 2012. The spatial characteristics and formation mechanism of the county urbanization in China.Acta Geographica Sincia, 67(8): 1011-1020. (in Chinese)
doi: 10.11821/xb201208001 |
31 |
Liu Yansui, Zhou Yang, Wu Wenxiang, 2015. Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China.Applied Energy, 155: 904-917.
doi: 10.1016/j.apenergy.2015.06.051 |
32 |
Long Hualou, Zou Jian, Liu Yansui, 2011. Analysis of rural transformation development in China since the turn of the new millennium.Applied Geography, 31(3): 1094-1105.
doi: 10.1016/j.apgeog.2011.02.006 |
33 |
Maddala G S, Wu Shaowen, 1999. Comparative study of unit root tests with panel data and a new simple test.Oxford Bulletin of Economics and Statistics, 61: 631-652.
doi: 10.1111/1468-0084.61.s1.13 |
34 |
Mahadevan R, Asafu-Adjaye J, 2007. Energy consumption, economic growth and prices: A reassessment using panel VECM for developed and developing countries.Energy Policy, 35(4): 2481-2490.
doi: 10.1016/j.enpol.2006.08.019 |
35 | McCoskey S, Kao C, 1999. Comparing panel data cointegration tests with an application of the twin deficits problem. Mimeo. |
36 | Minx J C, Baiocchi G, Peters G Pet al., 2011. A “carbonizing dragon”: China’s fast growing CO2 emissions revisited.Environmental Science and Technology, 45(21): 9144-9153. |
37 | National Bureau of Statistics of China (NBSC), 2011. China Statistical Yearbook 2011. Beijing: China Statistics Press. |
38 |
Pedroni P, 2000. Fully modified OLS for heterogeneous cointegrated panels.Advances in Econometrics, 15: 93-130.
doi: 10.1016/S0731-9053(00)15004-2 |
39 | Pedroni P, 2004. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis.Econometric Theory, 20: 597-625. |
40 | Peters G P, Weber C L, Guan Daboet al., 2007. China’s growing CO2 emissions: A race between increasing consumption and efficiency gains.Environmental Science and Technology, 41(17): 5939-5944. |
41 |
Ponce de Leon Barido D, Marshall J D, 2014. Relationship between urbanization and CO2 emissions depends on income level and policy.Environmental Science and Technology, 48(7): 3632-3639.
doi: 10.1021/es405117n pmid: 24422489 |
42 |
Poumanyvong P, Kaneko S, 2010. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis.Ecological Economics, 70(2): 434-444.
doi: 10.1016/j.ecolecon.2010.09.029 |
43 | Raupach M R, Marland G, Ciais Pet al., 2007. Global and regional drivers of accelerating CO2 emissions.Proceedings of the National Academy of the Sciences of the United States of America, 104(24): 10288-10293. |
44 |
Song Tao, Zheng Tingguo, Tong Lianjun, 2008. An empirical test of the environmental Kuznets curve in China: A panel cointegration approach.China Economic Review, 19(3): 381-392.
doi: 10.1016/j.chieco.2007.10.001 |
45 | Sun Changlong, Jin Nuo, Zhang Xiaoleiet al., 2013. The impact of urbanization on the CO2 emission in the various development states.Scientia Geographica Sincia, 33(3): 266-272. (in Chinese) |
46 |
Wang Jing, Chen Yongqi, Shao Xiaomeiet al., 2012b. Land-use changes and policy dimension driving forces in China: Present, trend and future.Land Use Policy, 29(4): 737-749.
doi: 10.1016/j.landusepol.2011.11.010 |
47 |
Wang S, Zhou D, Zhou Pet al., 2011. CO2 emissions, energy consumption and economic growth in China: A panel data analysis.Energy Policy, 39(9): 4870-4875.
doi: 10.1016/j.enpol.2011.06.032 |
48 | Wang Shaojian, Fang Chuanglin, Guan Xinglianget al., 2014. Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces.Applied Energy, 136: 738-749. |
49 |
Wang Zhaohua, Yin Fangchao, Zhang Yixianget al., 2012a. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China.Applied Energy, 100: 277-284.
doi: 10.1016/j.apenergy.2012.05.038 |
50 |
Wang Zheng, Zhu Yongbin, Liu Changxinet al., 2010. Integrated projection of carbon emission for China under the optimal economic growth path.Acta Geographica Sinica, 65(2): 1559-1568. (in Chinese)
doi: 10.3724/SP.J.1142.2010.40466 |
51 | Xinhua News Agency (XNA), 2011. The left-behind elderly reached more than 40 million. Xinhua News Agency Available from: [Accessed on 7 August 2014] |
52 | Yang Xiaojin, 2013. China’s rapid urbanization.Science, 342: 310. |
53 |
Yang Xuchao, Hou Yiling, Chen Baode, 2011. Observed surface warming induced by urbanization in east China. Journal of Geophysical Research: Atmospheres, 116: D14.
doi: 10.1029/2010JD015452 |
54 |
Zhang Chuanguo, Lin Yan, 2012. Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China.Energy Policy, 49: 488-498.
doi: 10.1016/j.enpol.2012.06.048 |
55 | Zhang Ming, Mu Hailin, Ning Yadonget al., 2009. Decomposition of energy-related CO2 emission over the 1991-2006 in China.Ecological Economics, 68: 2122-2128. |
56 | Zhong Wei, Yuan Wei, Li Susan Xet al., 2011. The performance evaluation of regional R&D investments in China: An application of DEA based on the first official China economic census data.Omega, 39(4): 447-455. |
57 | Zhou Liming, Dickinson R E, Tian Yuhonget al., 2004. Evidence for a significant urbanization effect on climate in China.Proceedings of the National Academy of the Sciences of the United States of America, 101(26): 9540-9544. |
58 | Zhou Yang, Liu Yansui, Wu Wenxianget al., 2015. Effects of rural-urban development transformation on energy consumption and CO2 emissions.Renewable and Sustainable Energy Reviews, 52: 863-875. |
[1] | Liying GUO, Liping DI, Qing TIAN. Detecting spatio-temporal changes of arable land and construction land in the Beijing-Tianjin corridor during 2000-2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 702-718. |
[2] | Gui JIN, Xiangzheng DENG, Xiaodong ZHAO, Baishu GUO, Jun YANG. Spatiotemporal patterns in urbanization efficiency within the Yangtze River Economic Belt between 2005 and 2014 [J]. Journal of Geographical Sciences, 2018, 28(8): 1113-1126. |
[3] | Jiaxiu LI, Yaning CHEN, Zhi LI, Zhihui LIU. Quantitative analysis of the impact factors of conventional energy carbon emissions in Kazakhstan based on LMDI decomposition and STIRPAT model [J]. Journal of Geographical Sciences, 2018, 28(7): 1001-1019. |
[4] | Haimeng LIU, Chuanglin FANG, Yi MIAO, Haitao MA, Qiang ZHANG, Qiang ZHOU. Spatio-temporal evolution of population and urbanization in the countries along the Belt and Road 1950-2050 [J]. Journal of Geographical Sciences, 2018, 28(7): 919-936. |
[5] | Yingnan ZHANG, Hualou LONG, Li MA, Dazhuan GE, Shuangshuang TU, Yi QU. Farmland function evolution in the Huang-Huai-Hai Plain: Processes, patterns and mechanisms [J]. Journal of Geographical Sciences, 2018, 28(6): 759-777. |
[6] | Jiaming LI, Yu YANG, Jie FAN, Fengjun JIN, Wenzhong ZHANG, Shenghe LIU, Bojie FU. Comparative research on regional differences in urbanization and spatial evolution of urban systems between China and India [J]. Journal of Geographical Sciences, 2018, 28(12): 1860-1876. |
[7] | Lina LIU, Jiansheng QU, Zhiqiang ZHANG, Jingjing ZENG, Jinping WANG, Liping DONG, Huijuan PEI, Qin LIAO. Assessment and determinants of per capita household CO2 emissions (PHCEs) based on capital city level in China [J]. Journal of Geographical Sciences, 2018, 28(10): 1467-1484. |
[8] | Zhiming FENG, Fangzhou LI, Yanzhao YANG, Peng LI. The past, present, and future of population geography in China:Progress, challenges and opportunities [J]. Journal of Geographical Sciences, 2017, 27(8): 925-942. |
[9] | Dongqi SUN, Liang ZHOU, Yu LI, Haimeng LIU, Xiaoyan SHEN, Zedong WANG, Xixi WANG. New-type urbanization in China: Predicted trends and investment demand for 2015-2030 [J]. Journal of Geographical Sciences, 2017, 27(8): 943-966. |
[10] | Chuanglin FANG, Chenghu ZHOU, Chaolin GU, Liding CHEN, Shuangcheng LI. A proposal for the theoretical analysis of the interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations [J]. Journal of Geographical Sciences, 2017, 27(12): 1431-1449. |
[11] | Chao BAO, Xiaojie CHEN. Spatial econometric analysis on influencing factors of water consumption efficiency in urbanizing China [J]. Journal of Geographical Sciences, 2017, 27(12): 1450-1462. |
[12] | HAN Longfei,LEI Chaogui,YANG Liu,DENG Xiaojun,HU Chunsheng,XU Guanglai. Degrading river network due to urbanization in Yangtze River Delta [J]. Journal of Geographical Sciences, 2016, 26(6): 694-706. |
[13] | ZHAO Min,*CHENG Weiming,LIU Qiangyi,WANG Nan. Spatiotemporal measurement of urbanization levels based on multiscale units: A case study of the Bohai Rim Region in China [J]. Journal of Geographical Sciences, 2016, 26(5): 531-548. |
[14] | LIU Shiwei,*ZHANG Pingyu,WANG Zheye,LIU Wenxin,TAN Juntao. Measuring the sustainable urbanization potential of cities in Northeast China [J]. Journal of Geographical Sciences, 2016, 26(5): 549-567. |
[15] | GEORG Isabel,BLASCHKE Thomas,TAUBENB?CK Hannes. New spatial dimensions of global cityscapes: From reviewing existing concepts to a conceptual spatial approach [J]. Journal of Geographical Sciences, 2016, 26(3): 355-380. |
|