1 |
Aho K, Derryberry D, Peterson T, 2014. Model selection for ecologists: The worldviews of AIC and BIC.Ecology, 95: 631-636.
doi: 10.1890/13-1452.1
pmid: 24804445
|
2 |
Andersen K M, Endara M J, Turner B Let al., 2012. Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest.Oecologia, 168: 519-531.
doi: 10.1007/s00442-011-2112-z
pmid: 21894517
|
3 |
Chapin F S, Autumn K, Pugnaire F, 1993. Evolution of suites of traits in response to environmental-stress.American Naturalist, 142: S78-S92.
doi: 10.1086/285524
|
4 |
Chapin F S, Matson P A, Mooney H A, 2002. Principles of Terrestrial Ecosystem Ecology. New York: Springer, 123-155.
doi: 10.1007/978-1-4419-9504-9
|
5 |
Cornelissen J H C, Lavorel S, Garnier Eet al., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51: 335-380.
|
6 |
Cornwell W K, Ackerly D D, 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California.Ecological Monographs, 79: 109-126.
doi: 10.1890/07-1134.1
|
7 |
Domínguez M T, Aponte C, Perez-Ramos I Met al., 2012. Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities.Plant and Soil, 357: 407-424.
|
8 |
Freschet G T, Dias A T C, Ackerly D Det al., 2011. Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages.Global Ecology and Biogeography, 20: 755-765.
doi: 10.1111/j.1466-8238.2011.00651.x
|
9 |
Garnier E, Cortez J, Billes Get al., 2004. Plant functional markers capture ecosystem properties during secondary succession.Ecology, 85: 2630-2637.
doi: 10.1890/03-0799
|
10 |
Garnier E, Navas M L, 2012. A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology: A review.Agronomy for Sustainable Development, 32: 365-399.
doi: 10.1007/s13593-011-0036-y
|
11 |
He H L, Liu M, Xiao X Met al., 2014. Large-scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands.Journal of Geophysical Research-Biogeosciences, 119: 466-486.
|
12 |
Hodgson J G, Montserrat-Marti G, Charles Met al., 2011. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?Annals of Botany, 108: 1337-1345.
doi: 10.1093/aob/mcr225
pmid: 3197453
|
13 |
Kazakou E, Violle C, Roumet Cet al., 2014. Are trait-based species rankings consistent across data sets and spatial scales? Journal of Vegetation Science, 25: 235-247.
doi: 10.1111/jvs.12066
|
14 |
Klumpp K, Soussana J F, 2009. Using functional traits to predict grassland ecosystem change: A mathematical test of the response-and-effect trait approach.Global Change Biology, 15: 2921-2934.
doi: 10.1111/j.1365-2486.2009.01905.x
|
15 |
Liu G F, Freschet G T, Pan Xet al., 2010. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems.New Phytologist, 188: 543-553.
doi: 10.1111/j.1469-8137.2010.03388.x
pmid: 20649915
|
16 |
Moles A T, Perkins S E, Laffan S Wet al., 2014. Which is a better predictor of plant traits: Temperature or precipitation?Journal of Vegetation Science, 25: 1167-1180.
doi: 10.1111/jvs.12190
|
17 |
Niinemets U, 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs.Ecology, 82: 453-469.
doi: 10.2307/2679872
|
18 |
Onoda Y, Westoby M, Adler P Bet al., 2011. Global patterns of leaf mechanical properties.Ecology Letters, 14: 301-312.
doi: 10.1111/j.1461-0248.2010.01582.x
pmid: 21265976
|
19 |
Ordonez J C, van Bodegom P M, Witte J P Met al., 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18: 137-149.
doi: 10.1111/j.1466-8238.2008.00441.x
|
20 |
Ordonez J C, van Bodegom P M, Witte J P Met al., 2010. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.Ecology, 91: 3218-3228.
doi: 10.1890/09-1509
pmid: 21141183
|
21 |
Poorter H, Niinemets U, Poorter Let al., 2009. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis.New Phytologist, 182: 565-588.
doi: 10.1111/j.1469-8137.2009.02830.x
pmid: 19434804
|
22 |
Reich P B, Wright I J, Lusk C H, 2007. Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis.Ecological Applications, 17: 1982-1988.
doi: 10.1890/06-1803.1
pmid: 17974336
|
23 |
Vile D, Shipley B, Garnier E, 2006. Ecosystem productivity can be predicted from potential relative growth rate and species abundance.Ecology Letters, 9: 1061-1067.
doi: 10.1111/j.1461-0248.2006.00958.x
pmid: 16925655
|
24 |
Wang R L, Yu G R, He N Pet al., 2015. Latitudinal variation of leaf stomatal traits from species to community level in forests: Linkage with ecosystem productivity.Scientific Reports, 5: 14454. doi: 10.1038/srep14454.
doi: 10.1038/srep14454
|
25 |
Wright I J, Reich P B, Westoby Met al., 2004. The worldwide leaf economics spectrum.Nature, 428: 821-827.
|
26 |
Yu G R, Wen X F, Sun X Met al., 2006. Overview of ChinaFLUX and evaluation of its eddy covariance measurement.Agricultural and Forest Meteorology, 137: 125-137.
doi: 10.1016/j.agrformet.2006.02.011
|
27 |
Zhang X S, Yang D A, 1995. Allocation and study on global change transects in China.Quaternary Sciences, (1): 43-52. (in Chinese)
|