Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
 
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
Journal of Geographical Sciences    2015, Vol. 25 Issue (12) : 1479-1506     DOI: 10.1007/s11442-015-1247-y
Research Articles |
Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data
M USMAN1,R LIEDL1,M A SHAHID2,A ABBAS3,2
1. Institute for Groundwater Management, TU Dresden, 01069 Dresden, Germany
2. University of Agriculture, Faisalabad, Pakistan
3. Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany;
Download: PDF(2804 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in complex irrigated basins provides complete profile for better water resource management and planning. Using remote sensing data, this study provides detailed land use maps of the Lower Chenab Canal irrigated region of Pakistan from 2005 to 2012 for LULC change detection. Major crop types are demarcated by identifying temporal profiles of NDVI using MODIS 250 m × 250 m spatial resolution data. Wheat and rice are found to be major crops in rabi and kharif seasons, respectively. Accuracy assessment of prepared maps is performed using three different techniques: error matrix approach, comparison with ancillary data and with previous study. Producer and user accuracies for each class are calculated along with kappa coefficients (K). The average overall accuracies for rabi and kharif are 82.83% and 78.21%, respectively. Producer and user accuracies for individual class range respectively between 72.5% to 77% and 70.1% to 84.3% for rabi and 76.6% to 90.2% and 72% to 84.7% for kharif. The K values range between 0.66 to 0.77 for rabi with average of 0.73, and from 0.69 to 0.74 with average of 0.71 for kharif. LULC change detection indicates that wheat and rice have less volatility of change in comparison with both rabi and kharif fodders. Transformation between cotton and rice is less common due to their completely different cropping conditions. Results of spatial and temporal LULC distributions and their seasonal variations provide useful insights for establishing realistic LULC scenarios for hydrological studies.

Keywords land use/land cover      remote sensing      normalized difference vegetation index      accuracy assessment      change detection      hydrological modeling     
Issue Date: 05 January 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M USMAN
R LIEDL
M A SHAHID
A ABBAS
Cite this article:   
M USMAN,R LIEDL,M A SHAHID, et al. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data[J]. Journal of Geographical Sciences, 2015, 25(12): 1479-1506.
URL:  
http://www.geogsci.com/EN/10.1007/s11442-015-1247-y     OR     http://www.geogsci.com/EN/Y2015/V25/I12/1479
Sr. No Name of the dataset Data description Source Coverage/
Spatial scale
1 FAOSTAT Agricultural lands http://faostat3.fao.org/home/E Country level
2 FORIS Inland waters, forest and woodland http://www.fao.org/forestry/site/fra/en Country level
3 GLCC Built-up areas, water resources, barren or sparsely vegetated areas, grasslands, open shrub lands, forests http://edc2.usgs.gov/glcc/glcc.php 1 km × I km
4 GLCC-2000 Forests, cultivated and managed areas, bare areas, water bodies, urban and built-up areas http://forobs.jrc.ec.europa.eu/ 1 km × 1 km
5 MOD12Q1 Land Cover and Land Cover Dynamics products Land cover change vectors http://modis.gsfc.nasa.gov/about/ 500 m × 500 m
6 GISS Forests, cultivated land and grasslands http://data.giss.nasa.gov/landuse/ 1o (≈ 111 km)
7 GLCF Land tree cover, forest cover change, Geo cover http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp 500 m × 500 m
8 PELCOM Coniferous, deciduous and mixed forests, grassland,
rainfed and irrigated arable land, perennial crops, shrub, barren land, ice and snow cover, wetlands, inland waters, sea and urban area
www.geo-informatie.nl/projects/pelcom/public/index.htm 1 km × 1 km
(Covers only European countries)
9 Global land cover map Cultivated areas, built-up lands, forests, barren lands, etc. Yu et al. (2013); Gong et al. (2013) 30 m × 30 m
Table 1  Summary of selected regional to country level Land Use/Land Cover datasets
Figure 1  Map of LCC (East), Rechna Doab, Punjab, Pakistan and ground truthing points
Figure 2  Crop calendar adopted in LCC
Figure 3  Flow diagram showing methodological and analytical steps
Figure 4  Highlights of the field visit in the study area
Figure 5  Mean NDVI temporal trends for major crops: rabi 2005-06 to rabi 2011-12
Year &
Accuracy
Season & Class
Producer’s accuracy (%) User’s accuracy (%)
2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 2011-12 Avg. 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 2011-12 Avg.
Rabi 1 75 83.3 77.8 71.4 81.8 75 75 77.0 64.3 62.5 77.8 62.5 81.8 66.7 75.0 70.1
2 81.3 86.4 85.8 90.5 90.4 91.3 89.5 87.9 77.4 82.1 83.7 83.5 91.2 84.1 88.0 84.3
3 70.8 71.1 81.3 82.5 71.7 76.0 86.2 77.1 75.6 76.2 77.6 81.3 73.3 80.9 82.4 78.2
4 71.4 70.8 73.1 72.0 78.2 69.6 72.3 72.5 76.4 78.0 80.3 84.4 75.4 80.0 78.3 79.0
Kharif 5 88.0 94.7 90.0 86.4 88.2 94.1 90.2 68.8 66.7 69.2 76.0 71.4 80.0 72.0
6 75.6 93.0 74.5 74.5 71.4 74.0 77.2 70.8 72.7 74.5 76.1 83.3 72.5 75.0
7 72.2 72.7 83.3 84.9 84.8 75.7 79.0 76.5 78.4 74.1 71.4 77.8 77.9 76.0
8 76.7 74.5 75.2 73.1 75.0 86.0 76.8 81.2 90.5 86.4 82.9 80.5 87.1 84.7
9 73.7 78.1 77.8 73.0 81.3 75.8 76.6 77.8 73.5 75.7 75.0 74.3 78.1 75.7
Table 2  Summary of producer’s and user’s accuracies for different classes of rabi and kharif seasons

Sr. No.

Year
Rabi Season Kharif Season
Avg. Prod. Accur. Avg. User Accur. Overall accuracy K Avg. Prod. Accur. Avg. User Accur. Overall accuracy K
1 2005-06 74.7 73.4 87.4 0.77
2 2006-07 77.9 74.7 79.5 0.66 77.2 75.0 76.2 0.69
3 2007-08 80.6 80.4 83.6 0.74 82.6 76.4 79.3 0.73
4 2008-09 78.0 77.9 81.9 0.71 80.2 76.0 78.1 0.71
5 2009-10 79.5 79.9 81.2 0.71 78.4 76.3 77.0 0.70
6 2010-11 80.8 80.9 83.8 0.75 80.2 77.5 78.6 0.72
7 2011-12 79.0 77.9 82.5 0.74 81.1 79.1 80.1 0.74
Average 78.6 77.9 82.8 0.73 79.9 76.7 78.2 0.71
Table 3  Summary of seasonal accuracies and K (Kappa coefficient)
Sr. No. Classification
accuracy
K Type of data Reference
1 91.5 0.89 RADARSAT Shao et al., 2001
2 77.2 0.736 MODIS Giri et al., 2005
3 84.4-87.1 82.3-83.6 Landsat MSS. ETM+ Reis, 2008
4 77 0.73 SPOT Cheema et al., 2010
5 94 0.93 SPOT Thi et al., 2012
6 78-99 - Landsat Ding et al., 2013
7 84-93 0.78-0.92 Landsat Lu et al., 2013
8 78.2-82.8 0.71-0.73 MODIS Present study
Table 4  Comparison of accuracy values and K from earlier studies with present study
Figure 6  Relationship between reported cropped-area fraction and remotely-sensed cropped-areas fraction for wheat, cotton, sugarcane and rice crops (1:1 Plot)
Figure 7  Comparison of crop area estimates with Cheema and Bastiannssen (2010)
Class Name Texture Class Texture Elevation (m) Slope (%)
Wheat Moderately fine/ Moderately-coarse Sandy-clay-loam, clay-loam, silty-clay-loam/sandy-loam,
fine sandy-loam
187 1.98
Rice Moderately-fine Sandy-clay-loam, clay-loam, silty-clay-loam 192 2.40
Cotton Moderately-coarse Sandy-loam, fine sandy-loam 176 1.14
Sugarcane Moderately fine/Moderately-coarse Sandy-clay-loam, clay-loam, silty-clay-loam/sandy-loam,
fine sandy-loam
169 2.00
Rabi fodder Moderately-coarse Sandy-loam, fine sandy-loam 175 1.41
Kharif fodder Moderately-coarse Sandy-loam, fine sandy-loam 179 1.91
Table 5  Summary of soil texture, elevation and slope for each LULC
Figure 8  Relationship of NDVI to temperature and precipitation for wheat, cotton, sugarcane and rice
Table 6  Areal distribution of LULC classes during rabi seasons in LCC
Table 7  Areal distribution of LULC classes during kharif seasons in LCC
Table 8  Pixel-by-pixel LULC change detection between maximum and minimum cropped areas for rabi seasons
Crop class Change matrix for area (ha) Spatial change detection
Rice 2008
2009 Fallow* Cotton S. cane K. fodder Rice Total
Fallow* 18388 0 0 16913 1118
Cotton 0 75533 8266 32982 184
S. cane 0 23966 61450 928 821
K. fodder 3937 17799 672 275465 25388
Rice 131 13726 35831 88378 224125 362218
Total 251654
Cotton 2007
2011 Fallow Cotton S. cane K. fodder Rice Total
Fallow 12566 0 0 4395 190
Cotton 12 8623 81034 143959 25881 259529
S. cane 0 23407 102895 7993 3485
K. fodder 8480 59 1701 154152 5156
Rice 1392 44662 12435 65239 218285
Total 76758
Kharif fodder 2011
2008 Fallow Cotton S. cane K. fodder Rice Total
Fallow 14088 0 0 7826 541
Cotton 0 83704 40660 1290 4775
S. cane 0 13006 81129 36 12049
K. fodder 2866 154378 10104 152249 95069 414699
Rice 196 8421 5888 7553 229578
Total 169562
Table 9  Pixel-by-pixel LULC change detection between maximum and minimum cropped areas for kharif seasons
LULC Sagar Chuharkana Paccadala Mohlan Buchiana Tandla Tarkhani Kanya Bhagat Sultanpur
Cotton Evapotranspiration 563.4 537.9 550.9 557.4 579.3 545.1 525.0 520.6 518.4 539.8
% area 1.1 2.9 5.8 11.8 15.4 21.9 13.7 14.1 9.6 3.6
Sugarcane Evapotranspiration 602.1 578.4 576.1 587.5 595.0 595.1 571.9 560.8 583.5 595.3
% area 0.03 0.10 0.61 7.35 7.44 19.17 19.26 16.40 8.16 21.48
Kharif fodder Evapotranspiration 529.3 525.6 513.1 534.3 544.7 516.5 482.9 505.1 460.7 530.5
% area 4.1 4.6 16.7 9.9 16.6 10.2 11.7 6.9 17.8 1.6
Rice Evapotranspiration 589.9 581.4 576.9 604.4 619.4 604.6 555.6 553.1 565.6 600.1
% area 30.5 24.4 9.6 16.2 0.6 2.0 2.0 1.9 7.5 5.4
Table 10  Irrigation-subdivision wise seasonal average evapotranspiration (mm) and percent of total cultivated area for each LULC class in the study area
Sr. No. Scenario Type Sagar Chuharkana Paccadala Mohlan Buchiana Tandla Tarkhani Kanya Bhagat Sultanpur CWU*
1 25% decrease in Rice area by replacing it with K.fodder & S.cane Type-I 100% Rice to K.fodder 50% each to K.fodder & S.cane (600.7) 100% Rice to K.fodder (37.5) 100% Rice to S.cane
(15.9)
50% Rice each to K.fodder & S.cane 4452.4
1579.6 1163.8 524.3 47.1 32.7 280.2 170.5
2 25% decrease in Rice area by its major conversion to K.fodder 100% Rice to K.fodder 100% to S.cane
(15.9)
100% Rice to K.fodder 4402.7
1579.6 1163.8 524.3 484.2 37.5 60.7 39.1 337.8 159.7
3 25% decrease in Rice area by replacing it with S.cane 100% Rice to K.fodder 100% to S.cane
(116.4)
100% to K.fodder
(37.5)
100% to S.cane
(15.9)
100% Rice to S.cane 3370.8
1579.6 1163.8 524.3 -13.6 -6.4 -57.6 10.8
4 50% decrease in Cotton area by its conversion to S.cane & K.fodder 100% Cotton to S.cane 50% Cotton each to K.fodder and S.cane 100% to K.fodder
(722.8)
100% to S.cane
(-263.0)
-139.7
-56.4 -151.7 47.9 -53.8 189.0 -305.1 -43.5 -225.9
5 50% decrease in Cotton area by its major conversion to S.cane Type II 100% Cotton to S.cane 100% to K.fodder
(722.8)
100% to S.cane
(-263.0)
-1729.7
-56.4 -151.7 -94.9 -230.9 -157.6 -711.6 -418.2 -368.3
6 50% decrease in Cotton area by its major conversion to K.fodder Type-I 100% to S.cane 100% Cotton to K.fodder 100% to S.cane
(-263.0)
1841.8
-56.4 -151.7 142.8 177.1 346.6 406.4 374.7 142.4 722.8
7 50% increase in K.fodder by replacing Rice, Cotton and S.cane 100% K.fodder from Rice 50% each from Rice and Cotton
(718.3)
50% K.fodder each from S.cane and Cotton 50% each from Cotton & Rice
(1225.7)
50% K.fodder each from Cotton and Rice
55.2
4662.4
208.3 217.5 320.6 595.1 462.1 650.5 209.2
8 50% increase in K.fodder by major replacement of S.cane & Cotton 100% K.fodder from Rice 100% K.fodder from S.cane 100% from K. fodder Cotton 2838.6
208.3 217.5 450.9 223.6 352.7 338.9 441.7 163.6 435.0 6.5
9 50% increase in K.fodder area by major replacement of Cotton & Rice 100% K.fodder from Rice 100% K.fodder from Cotton 100% from Rice
(790.7)
100% from Rice
(48.6)
2249.6
208.3 217.5 267.4 97.0 242.4 123.2 208.7 45.6
Table 11  LULC change scenarios and water utilization (ha-m)
1 Agricultural Outlook Forum, 2012. The world and United States cotton outlook. United States Department of Agriculture.http://www.researchgate.net/publication/23519694_THE_UNITED_STATES_AND_WORLD_COTTON_OUTLOOK
2 Anderson J R, 1977. Land use and land cover changes: A framework for monitoring.Journal of Research by the Geological Survey, 5: 143-153.
3 Barraza V, Grings F, Salvia Met al., 2013. Monitoring and modelling land surface dynamics in Bermejo River Basin, Argentina: Time series analysis of MODIS NDVI data.International Journal of Remote Sensing, 34(15): 5429-5451. doi: 10.1080/01431161.2013.791759.http://dl.acm.org/citation.cfm?id=2484679
doi: 10.1080/01431161.2013.791759
4 Bastiannssen W G M, 1998a. Remote sensing in water resources management: The state of the art. International Water Management Institute, Colombo, Sri Lanka.http://www.cabdirect.org/abstracts/19981913182.html
5 Bastiaanssen W G M, Menenti M, Feddes R Aet al., 1998b. A remote sensing surface energy balance algorithm for land (SEBAL) formulation.J. Hydrol., 212/213: 198-212.http://www.sciencedirect.com/science/article/pii/S0022169498002546
doi: 10.1016/S0022-1694(98)00253-4
6 Black A, Stephen H, 2014. GIScience & remote sensing relating temperature trends to the normalized difference vegetation index in Las Vegas.GIScience and Remote Sensing, 51(4): 468-482.http://www.researchgate.net/publication/275866304_GI_science_not_GIScience
doi: 10.5311/JOSIS.2014.9.204
7 Campbell J B, 2002. Introduction to Remote Sensing. New York: The Guilford Press.
8 Cheema M J M, Bastiaanssen W G M, 2010. Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis.Agricultural Water Management, 97(10): 1541-1552. doi: 10.1016/j.agwat.2010.05.009.http://www.sciencedirect.com/science/article/pii/S037837741000171X
doi: 10.1016/j.agwat.2010.05.009
9 Congalton R, Green K, 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton: CRC/Lewis Press, FL. 137 p./s?wd=paperuri%3A%28f37f6968c54d898f521e41f00bde069e%29&filter=sc_long_sign&sc_ks_para=q%3DAssessing%20the%20Accuracy%20of%20Remotely%20Sensed%20Data&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
10 Congalton R G, 1996. Accuracy assessment: A critical component of land cover mapping in gap analysis: A landscape approach to biodiversity planning. A Peer-Reviewed Proceedings of the ASPRS/GAP Symposium, February 27 - March 2, 1995, Charlotte, N.C. 119-131./s?wd=paperuri%3A%281a6eab068a568f67c9b2165656f17dfe%29&filter=sc_long_sign&sc_ks_para=q%3DGap%20analysis%3A%20a%20landscape%20approach%20to%20biodiversity%20planning&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
11 Dappen Patti R, Ratcliffe I C, Robbins C R et al., 2008. Mapping agricultural land cover for hydrologic modeling in the Platte River Watershed of Nebraska. Great Plains Research: A Journal of Natural and Social Sciences, Paper 926, .http://digitalcommons.unl.edu/greatplainsresearch/926
12 Ding H, Shi W, 2013. Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City.International Journal of Remote Sensing, 34(15): 5503-5517. doi: 10.1080/01431161.2013.792966.http://www.tandfonline.com/doi/abs/10.1080/01431161.2013.792966
doi: 10.1080/01431161.2013.792966
13 Douglas K B, Mark A F, 2013. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics.Agricultural and Forest Meteorology, 173: 74-84.http://www.sciencedirect.com/science/article/pii/S0168192313000129
doi: 10.1016/j.agrformet.2013.01.007
14 Fang W, Chen J, Shi P, 2005. Variability of the phenological stages of winter wheat in the North China Plain with NOAA/AVHRR NDVI data (1982-2000).IEEE International Geoscience and Remote Sensing Symposium Proceedings, 5: 3124-3127.http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1526499
doi: 10.1109/IGARSS.2005.1526499
15 Fisher P F, 2010. Remote sensing of land cover classes as type 2 fuzzy sets.Remote Sensing of Environment, 114: 309-321.
16 Foody G M, 2002. Status of land cover classification accuracy assessment.Remote Sensing of Environment, 80: 185-201.http://www.sciencedirect.com/science/article/pii/S0034425701002954
doi: 10.1016/S0034-4257(01)00295-4
17 Gao X, Huete A R, Ni Wet al., 2000. Optical-biophysical relationships of vegetation spectra without back-ground contamination.Remote Sensing of Environment, 74: 609-620.
18 Giri, Chandra, Jenkins C, 2005. Land cover mapping of greater Mesoamerica using MODIS data. Remote Sensing, 31(4): 274-282. Retrieved at .http://thepimmgroup.org/wp-content/uploads/2007/11/remotesensing2.pdf
19 Gong P, Wang J, Yu Let al., 2013. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data.International Journal of Remote Sensing, 34(7): 2607-2654. doi: 10.1080/01431161.2012.748992./s?wd=paperuri%3A%28dd26c4a4f0dedbff7d37fc6a3ec762ad%29&filter=sc_long_sign&sc_ks_para=q%3DFiner%20resolution%20observation%20and%20monitoring%20of%20global%20land%20cover%3A%20First%20mapping%20results%20with%20Landsat%20TM%20and%20ETM%2B%20data&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
20 Gumma M K, Nelson A, Thenkabail P Set al., 2011. Mapping rice areas of South Asia using MODIS multitemporal data.J. Applied Remote Sensing, 5(1): 53547. doi: 10.1117/1.3619838.http://spie.org/Publications/Journal/10.1117/1.3619838
doi: 10.1117/1.3619838
21 Jensen J R, 1996. Introductory Digital Image Processing: A Remote Sensing Perspective. 2nd ed. New Jersey: Prentice-Hall, 316p.http://www.cabdirect.org/abstracts/20001911540.html
doi: 10.1080/10106048709354084
22 Jeong S, Jang K, Hong Set al., 2011. Detection of irrigation timing and the mapping of paddy cover in Korea using MODIS images data.Korean Journal of Agricultural and Forest Meteorology, 13: 69-78.
23 Julien Y, Sobrino J A, 2009. Global land surface phenology trends from GIMMS database.International Journal of Remote Sensing, 30: 3495-3513.http://www.cabdirect.org/abstracts/20093216923.html
doi: 10.1080/01431160802562255
24 Kim Y.2013. Drought and elevation effects on MODIS vegetation indices in northern Arizona ecosystems.International Journal of Remote Sensing, 34(14): 4889-4899. doi: 10.1080/2150704X.2013.781700.http://www.tandfonline.com/doi/pdf/10.1080/2150704X.2013.781700
doi: 10.1080/2150704X.2013.781700
25 Kimaro T A, Tachikawa Y, Takara K, 2005. Distributed hydrologic simulations to analyze the impacts of land use changes on flood characteristics in the Yasu River Basin in Japan.Journal of Natural Disaster Sciences, 27(2): 85-94.http://ci.nii.ac.jp/naid/110006248954
26 Latifovic R, Olthof I, 2004. Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data.Remote Sensing of Environment, 90: 153-165.http://www.sciencedirect.com/science/article/pii/S0034425703003729
doi: 10.1016/j.rse.2003.11.016
27 Leff B, Ramankutty N, Foley J A, 2004. Geographic distribution of major crops across the world. Global Biogeochem. Cycles, 18, GB 1009. doi: 10.1029/203GB002108.http://onlinelibrary.wiley.com/doi/10.1029/2003GB002108/suppinfo
doi: 10.1029/2003GB002108
28 Liang L, Gong P, 2013. Evaluation of global land cover maps for cropland area estimation in the conterminous United States.International Journal of Digital Earth: 1-16. doi: 10.1080/17538947.2013.854414.http://www.tandfonline.com/doi/ref/10.1080/17538947.2013.854414
doi: 10.1080/17538947.2013.854414
29 Lorencov′ A E, Fr′ Elichov′ A J, Nelson Eet al., 2013. Past and future impacts of land use and climate change on agricultural ecosystem services in the Czech Republic.Land Use Policy, 33: 183-194.http://www.sciencedirect.com/science/article/pii/S0264837712002578
doi: 10.1016/j.landusepol.2012.12.012
30 Lu D, Li G, Moran Eet al., 2013. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon.International Journal of Remote Sensing, 34(16): 5953-5978. doi:10.1080/01431161.2013.802825.http://www.tandfonline.com/doi/abs/10.1080/01431161.2013.802825
doi: 10.1080/01431161.2013.802825 pmid: 24127130
31 Matthews E, 1983. Global vegetation and landuse: New high resolution data bases for climate studies.Journal of Climate and Applied Meteorology, 22: 474-487.http://ci.nii.ac.jp/naid/10013252397
doi: 10.1175/1520-0450(1983)0222.0.CO;2
32 Mitrakis N E, Mallinis G, Koutsias Net al., 2011. Burned area mapping in Mediterranean environment using medium-resolution multi-spectral data and a neuro-fuzzy classifier.International Journal of Image and Data Fusion, 1-20.http://www.tandfonline.com/doi/abs/10.1080/19479832.2011.635604
doi: 10.1080/19479832.2011.635604
33 Molden D, 1997. Accounting for water use and productivity. SWIM paper 1. Colombo, Srilanka./s?wd=paperuri%3A%28f58ba211945cf98274b126d5e23221ad%29&filter=sc_long_sign&sc_ks_para=q%3DAccounting%20for%20water%20use%20and%20productivity.%20SWIM%20Paper%201&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
34 Morton D C, DeFries R S, Shimabukuro Y Eet al., 2006. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon.Proceedings of the National Academy of Sciences of the United States of America, 103(39): 14637-14641.http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM16973742
doi: 10.1073/pnas.0606377103 pmid: 16973742
35 Niu Z, Zhang H, Wang Xet al., 2012. Mapping wetland changes in China between 1978 and 2008.Chinese Science Bulletin, 57(22): 2813-2823. doi: 10.1007/s11434-012-5093-3.http://www.cnki.com.cn/Article/CJFDTotal-JXTW201222003.htm
doi: 10.1007/s11434-012-5093-3
36 Osborne P, Alonso J, Bryant R, 2001. Modelling landscape-scale habitat use using GIS and remote sensing: A case study with great bustards.Journal of Applied Ecology, 38: 458-471.http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2664.2001.00604.x/pdf
doi: 10.1046/j.1365-2664.2001.00604.x
37 Oslon J S, 1994. Global ecosystem framework definitions. USGS EROS Data Center Internal Report, Sioux Falls, SD, 37p.http://www.researchgate.net/publication/200033351_Global_Ecosystem_Framework-Definitions
38 Peng D, Huete A R, Huang Jet al., 2011. Detection and estimation of mixed paddy rice cropping patterns with MODIS data.International Journal of Applied Earth Observation and Geoinformation, 13: 13-23.http://www.sciencedirect.com/science/article/pii/S0303243410000656
doi: 10.1016/j.jag.2010.06.001
39 Pettorelli N, 2013. The Normalized Difference Vegetation Index. Oxford: Oxford University Press./s?wd=paperuri%3A%28a4818eaa0e43c37780a7d4c40a012af3%29&filter=sc_long_sign&sc_ks_para=q%3DThe%20Normalized%20Difference%20Vegetation%20Index&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
40 Portmann F T, Siebert S, D?ll P, 2010. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24: GB1011.
41 Prakasam C, 2010. Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal taluk, Tamil nadu.International Journal of Geomatics and Geosciences, 1(2): 150-158.http://www.cabdirect.org/abstracts/20113059611.html
42 Reed B C, Brown J F, VanderZee Det al., 1994. Measuring phenological variability from satellite imagery.Journal of Vegetation Science, 5: 703-714.http://onlinelibrary.wiley.com/doi/10.2307/3235884/full
doi: 10.2307/3235884
43 Reis S, 2008. Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey.Sensors, 8(10): 6188-6202. doi: 10.3390/s8106188.http://europepmc.org/abstract/PMC/PMC3707445
doi: 10.3390/s8106188
44 Schilling K E, Jha M K, Zhang Y et al., 2008. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resources Research, 44(7): 1-12. Available at: [Accessed October 8, 2014].http://doi.wiley.com/10.1029/2007WR006644
45 Shao Y, Fan X, Liu Het al., 2001. Rice monitoring and production estimation using multitemporal RADARSAT.Remote Sensing of Environment, 76(3): 310-325. doi: 10.1016/S0034-4257(00)00212-1.http://www.sciencedirect.com/science/article/pii/S0034425700002121
doi: 10.1016/S0034-4257(00)00212-1
46 Shi J, Huang J, Zhang F, 2013. Multi-year monitoring of paddy rice planting area in Northeast China using MODIS time series data. Journal of Zhejiang University (Science B), 14(10) (October): 934-946. doi: 10.1631/jzus.B1200352.http://d.wanfangdata.com.cn/Periodical_zjdxxbb-e201310008.aspx
doi: 10.1631/jzus.B1200352 pmid: 24101210
47 Thi T, Nguyen H, De-Bie C A J Met al., 2012. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis.International Journal of Remote Sensing, 33(2): 415-434.http://www.tandfonline.com/doi/pdf/10.1080/01431161.2010.532826
doi: 10.1080/01431161.2010.532826
48 Tou J T, Gonzalez R C, 1974. Pattern Recognition Principles. London: Addison-Wesley, 1974.
49 Tucker C J, 1979. Red and photographic infrared linear combinations for monitoring vegetation.Remote Sensing of Environment, 8: 127-150.http://www.sciencedirect.com/science/article/pii/0034425779900130
doi: 10.1016/0034-4257(79)90013-0
50 Tucker C J, Vanpraet C L, Sharman M Jet al., 1985. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980-1984.Remote Sensing of Environment, 17: 233-249.http://www.sciencedirect.com/science/article/pii/0034425785900975
doi: 10.1016/0034-4257(85)90097-5
51 Usman M, Liedl R, Awan U K, 2015a. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan.J. Hydrol. doi: 10.1016/j.jhydrol.2015.03.031.
52 Usman M, Liedl R, Kavousi A, 2015b. Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan.Environ. Earth Sciences. doi: 10.1007/s12665-015-4139-7.http://link.springer.com/10.1007/s12665-015-4139-7
doi: 10.1007/s12665-015-4139-7
53 Usman M, Liedl R, Shahid M A M, 2014. Managing irrigation water by yield and water productivity assessment of a rice-wheat system using remote sensing.Journal of Irrigation and Drainage Engineering. doi: 10.1061/(ASCE)IR.1943-4774.0000732.http://www.researchgate.net/publication/261324408_Managing_Irrigation_Water_by_Yield_and_Water_Productivity_Assessment_of_a_Rice-Wheat_System_Using_Remote_Sensing
doi: 10.1061/(ASCE)IR.1943-4774.0000732
54 Wajid A, Ahmad A, Khaliq Tet al., 2010. Quantification of growth, yield and radiation use efficiency of promising cotton cultivars at varying nitrogen levels.Pakistan Journal of Botany, 42(3): 1703-1711.http://www.cabdirect.org/abstracts/20103262719.html
doi: 10.3417/2008072
55 Wajid A, Hussain K, Maqsood Met al., 2007. Simulation modeling of growth, development and grain yield of wheat under semi arid conditions of Pakistan.Pakistan Journal of Agricultural Sciences, 44(2): 194-199.
56 Wardlow B D, Egbert S L, Kastens J H, .http://digitalcommons.unl.edu/droughtfacpub/2
57 Wegehenkel M, 2009. Modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge.Adv. Geosci., 21: 109-115. doi: 10.5194/adgeo-21-109-2009.http://www.oalib.com/paper/1367879
doi: 10.5194/adgeo-21-109-2009
58 Wilson M, Henderson-Sellers A, 1985. A global archive of land cover and soils data for use in general circulation models.Journal of Climatology, 5: 119-143.http://citeseer.ist.psu.edu/showciting?cid=1698521
59 Xiao X, Boles S, Frolking S et al., 2006. Mapping paddy rice agriculture in South and South-east Asia using multi-temporal MODIS images. Remote Sensing of Environment, 100: 95-113 ..http://dx.doi.org/10.1016/ j.rse.2005.10.004
60 Yu L, Wang J, Gong P, 2013. Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: A segmentation-based approach.International Journal of Remote Sensing, 34(16): 5851-5867. doi: 10.1080/01431161.2013.798055.http://dl.acm.org/citation.cfm?id=2492467
doi: 10.1080/01431161.2013.798055
61 Zhao L, Xia J, Xu Cet al., 2013. Evapotranspiration estimation methods in hydrological models.J. Geogr. Sciences, 23(2): 359-369. doi: 10.1007/s11442-013-1015-9.http://d.wanfangdata.com.cn/Periodical_dlxb-e201302013.aspx
doi: 10.1007/s11442-013-1015-9
62 Zheng P Q, Baetz B W, 1999. GIS-based analysis of development options from a hydrology perspective.Journal of Urban Planning and Development, 125: 164-180.http://www.researchgate.net/publication/238179735_GIS-Based_Analysis_of_Development_Options_from_a_Hydrology_Perspective
doi: 10.1061/(ASCE)0733-9488(1999)125:4(164)
[1] LIU Wenchao,LIU Jiyuan,KUANG Wenhui,NING Jia. Examining the influence of the implementation of Major Function-oriented Zones on built-up area expansion in China[J]. Journal of Geographical Sciences, 2017, 27(6): 643-660.
[2] TANG Qiuhong,ZHANG Xuejun,DUAN Qingyun,HUANG Shifeng,YUAN Xing,CUI Huijuan,LI Zhe,LIU Xingcai. Hydrological monitoring and seasonal forecasting:Progress and perspectives[J]. Journal of Geographical Sciences, 2016, 26(7): 904-920.
[3] Nyamtseren MANDAKH,Jamsran TSOGTBAATAR,Doljin DASH,Sodov KHUDULMUR. Spatial assessment of soil wind erosion using WEQ approach in Mongolia[J]. Journal of Geographical Sciences, 2016, 26(4): 473-483.
[4] Dehua MAO,Ling LUO,Zongming WANG,Chunhua ZHANG,Chunying REN. Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau[J]. Journal of Geographical Sciences, 2015, 25(8): 967-977.
[5] Zhilong ZHAO,Yili ZHANG,Linshan LIU,Fenggui LIU,Haifeng ZHANG. Recent changes in wetlands on the Tibetan Plateau: A review[J]. Journal of Geographical Sciences, 2015, 25(7): 879-896.
[6] Guosong ZHAO,Jiyuan LIU,Wenhui KUANG,Zhiyun OUYANG,Zhenglei XIE. Disturbance impacts of land use change on biodiversity conservation priority areas across China: 1990-2010[J]. Journal of Geographical Sciences, 2015, 25(5): 515-529.
[7] Wenfeng CHI,Wenjiao SHI,Wenhui KUANG. Spatio-temporal characteristics of intra-urban land cover in the cities of China and USA from 1978 to 2010[J]. Journal of Geographical Sciences, 2015, 25(1): 3-18.
[8] Baojuan HUAI,Zhongqin LI,Shengjie WANG,Meiping SUN,Ping ZHOU,Yan XIAO. RS analysis of glaciers change in the Heihe River Basin, Northwest China, during the recent decades[J]. Journal of Geographical Sciences, 2014, 24(6): 993-1008.
[9] PRAVALIE Remus,SÎRODOEV Igor,PEPTENATU Daniel. Detecting climate change effects on forest ecosystems in Southwestern Romania using Landsat TM NDVI data[J]. Journal of Geographical Sciences, 2014, 24(5): 815-832.
[10] LIU Jiyuan, KUANG Wenhui, ZHANG Zengxiang, XU Xinliang, QIN Yuanwei, NING Jia, ZHOU Wancun, ZHANG Shuwen, LI Rendong, YAN Changzhen, WU Shixin, SHI Xuezheng, JIANG Nan, YU Dongsheng, PAN Xianzhang, CHI Wenfeng. Spatiotemporal characteristics, patterns, and caus-es of land-use changes in China since the late 1980s[J]. , 2014, 24(2): 195-210.
[11] XU Jinyong, ZHANG Zengxiang, ZHAO Xiaoli, WEN Qingke, ZUO Lijun, WANG Xiao, YI Ling. Spatial and temporal variations of coastlines in northern China (2000-2012)[J]. , 2014, 24(1): 18-32.
[12] LI Fapeng, ZHAN Chesheng, XU Zongxue, JIANG Shanshan, XIONG Jun. Remote sensing monitoring on regional crop water productivity in the Haihe River Basin[J]. , 2013, 23(6): 1080-1090.
[13] Watinee THAVORNTAM, Netnapid TANTEMSAPYA. Vegetation greenness modeling in response to climate change for Northeast Thailand[J]. , 2013, 23(6): 1052-1068.
[14] KANG Yanyan, XIA Fei, DING Xianrong, ZHANG Changkuan, CHENG Ligang, GE Xiaoping, Jennifer GLASS. Coastal evolution of Yancheng, northern Jiangsu, China since the mid-Holocene based on the Landsat MSS imagery[J]. , 2013, 23(5): 915-931.
[15] YAN Huimin, YAO Zhijun, HUANG Heqing, JIANG Dong, DONG Xiaohui, DUAN Rui, ZHANG Yili. Water quality and light absorption attributes of glacial lakes in Mount Qomolangma region[J]. , 2013, 23(5): 860-870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd