Journal of Geographical Sciences ›› 2015, Vol. 25 ›› Issue (12): 1411-1422.doi: 10.1007/s11442-015-1242-3
• Research Articles • Next Articles
Yonghui YAO1, Mei XU2,*, Baiping ZHANG1,3()
Received:
2015-04-30
Accepted:
2015-05-27
Online:
2015-12-31
Published:
2016-01-05
About author:
Author: Ren Huiru (1983-), PhD Candidate, specialized in coastal environment and modeling. E-mail:
Supported by:
Yonghui YAO, Mei XU, Baiping ZHANG. The implication of mass elevation effect of the Tibetan Plateau for altitudinal belts[J].Journal of Geographical Sciences, 2015, 25(12): 1411-1422.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Temperatures and the adjusted temperatures in January and in July near the locations of MABs along the three W-E profiles"
Profiles | MAB sites | Longi- tude | Lati- tude | Altit- ude (m) | Air tem- perature in Jan. (°C) | Air tem- perature in July (°C) | Adjusted height (m) | Adjusted air tem- perature in Jan. (°C) | Adjusted air tem- perature in Jul. (°C) |
---|---|---|---|---|---|---|---|---|---|
Mt.Erlang- Nyainqentanglha | Langkazi-Yangzhuoyong | 90.50 | 29.70 | 5292 | -10.23 | 6.58 | 5292 | -10.2 | 6.6 |
Bomi-Yigong | 94.62 | 30.17 | 5096 | -10.08 | 8.12 | -11.1 | 7.0 | ||
Zhuka-Dongdala shady slope | 98.64 | 29.70 | 4496 | -5.64 | 10.12 | -9.7 | 5.7 | ||
Zhuka-Dongdala sunny slope | 98.56 | 29.75 | 4050 | -4.23 | 11.36 | -10.6 | 4.5 | ||
East slope of Mt. Ningjing | 99.00 | 29.83 | 3455 | 0.46 | 14.98 | -8.9 | 4.9 | ||
South range of Shaluli | 99.73 | 29.75 | 4483 | -4.75 | 10.35 | -8.9 | 5.9 | ||
Mt. Gaoshi | 101.00 | 30.03 | 3226 | -1.91 | 13.37 | -12.5 | 2.0 | ||
Mt. Zheduo | 101.80 | 30.10 | 4218 | -7.37 | 9.46 | -12.5 | 3.6 | ||
South slope of Mt.Gongga | 102.07 | 29.39 | 2077 | -2.45 | 15.90 | -12.8 | -1.8 | ||
West slope of Mt. Erlang | 102.56 | 30.12 | 3199 | -5.07 | 13.12 | -18.8 | 1.6 | ||
East slope of Mt. Emei | 103.45 | 29.58 | 473 | 4.96 | 26.65 | -21.5 | 0.1 | ||
Mt.Guang- guang- Tuoba Beishan | Southern Qiangtang Plateau | 90.00 | 31.33 | 4943 | -12.24 | 8.44 | 4943 | -12.24 | 8.44 |
Naqu-Nierong | 92.17 | 31.63 | 4636 | -10.18 | 9.96 | -11.75 | 8.28 | ||
Shady slope of Biru-Baqing | 94.59 | 31.50 | 4417 | -8.79 | 9.85 | -11.48 | 6.95 | ||
Lancang River: Angqu-Shangka | 96.84 | 31.45 | 3605 | -3.47 | 13.73 | -10.29 | 6.37 | ||
Lancang River: Changdu | 97.17 | 31.45 | 3533 | -5.84 | 12.78 | -13.03 | 5.03 | ||
Lancang River: Zhaqu-Weng Dagang | 97.21 | 31.52 | 3675 | -2.31 | 13.89 | -8.78 | 6.92 | ||
East slope of Beishanin Tuoba | 97.97 | 31.53 | 4321 | -9.02 | 9.22 | -12.19 | 5.80 | ||
Xinlong of Mt. Daxueshan | 100.31 | 30.94 | 3189 | -4.21 | 12.62 | -13.15 | 2.98 | ||
Songlinkou-Daofu of Mt. Daxue | 101.12 | 30.98 | 2934 | -2.18 | 15.82 | -12.42 | 4.77 | ||
Big/small Jinchuan | 102.06 | 31.48 | 2540 | -0.02 | 17.60 | -12.28 | 4.38 | ||
Mt. Siguliang | 102.90 | 31.10 | 3950 | -10.54 | 11.90 | -15.60 | 6.44 | ||
Mt. Balang | 103.17 | 31.07 | 4047 | -7.63 | 7.89 | -12.20 | 2.96 | ||
South slope of Dabanzhao | 103.05 | 31.67 | 3794 | -11.93 | 11.16 | -17.79 | 4.84 | ||
Mt. Guangguang | 103.61 | 31.01 | 745 | 5.61 | 25.53 | -15.80 | 2.44 | ||
Small Zhaizigou | 103.80 | 31.35 | 3392 | -5.10 | 13.64 | -13.01 | 5.11 | ||
Mt.Wutai- Amugang | Shady slope of Memar Tso Xishan | 81.83 | 34.45 | 5090 | -14.31 | 8.30 | 5742 | -17.64 | 4.71 |
Sunny slope of Memar Tso Xishan | 82.38 | 34.28 | 5282 | -14.24 | 7.62 | -16.59 | 5.09 | ||
East slope of Amugang | 85.50 | 33.50 | 5742 | -17.99 | 5.15 | -17.99 | 5.15 | ||
Tanggula Mts. | 89.92 | 33.20 | 5018 | -13.86 | 8.50 | -17.55 | 4.52 | ||
Qumalai County | 95.78 | 34.13 | 4149 | -11.30 | 11.10 | -19.42 | 2.34 | ||
Shady slope of Hutou Shan | 103.22 | 34.07 | 2471 | -9.23 | 17.00 | -25.92 | -0.99 | ||
Xuebaoding | 103.62 | 32.88 | 3723 | -9.32 | 10.22 | -19.62 | -0.88 | ||
Shady slope of Mt. Tutai | 103.70 | 33.07 | 3622 | -11.47 | 11.16 | -22.28 | -0.50 |
Table 3
Temperature and temperature differences of typical observation stations between the main plateau and surrounding areas (°C)"
Stations | Lat. | Long. | Elev.(m) | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lhasa | 29.7 | 91.1 | 3648.9 | 0.6 | 3.0 | 6.3 | 8.7 | 12.7 | 16.1 | 16.5 | 16.1 | 14.2 | 9.7 | 4.0 | 0.8 |
Zuogong | 29.7 | 97.8 | 3780 | -3.9 | -1.9 | 1.5 | 5.0 | 8.7 | 13.0 | 13.3 | 12.8 | 10.9 | 6.2 | 0.0 | -3.4 |
Leshan | 29.6 | 103.8 | 424.2 | 7.4 | 10.7 | 14.3 | 19.0 | 22.4 | 24.4 | 26.9 | 26.0 | 22.8 | 18.3 | 14.2 | 8.7 |
TLhasa-Leshan | 3648.9 | 9.7 | 9.4 | 10.1 | 8.2 | 9.6 | 11.0 | 7.3 | 8.2 | 8.9 | 8.4 | 7.5 | 7.8 | ||
TZuogong-Leshan | 3780 | 5.9 | 5.2 | 6.0 | 5.1 | 6.4 | 8.8 | 4.8 | 5.6 | 6.2 | 5.6 | 4.2 | 4.3 | ||
Anduo | 32.4 | 91.1 | 4800 | -12.3 | -10.4 | -6.4 | -2.1 | 2.0 | 6.0 | 8.4 | 8.2 | 5.3 | -1.2 | -8.5 | -11.3 |
Seda | 32.3 | 100.3 | 3893.9 | -9.6 | -6.7 | -3.0 | 1.6 | 4.9 | 8.7 | 10.7 | 10.1 | 7.3 | 1.7 | -5.2 | -8.4 |
Pingwu | 32.4 | 104.5 | 893.2 | 4.7 | 7.9 | 11.7 | 16.2 | 19.8 | 22.7 | 24.8 | 23.3 | 19.6 | 15.4 | 10.9 | 5.5 |
TAnduo-Pingwu | 4800 | 2.9 | 2.4 | 3.8 | 4.0 | 5.6 | 6.8 | 5.1 | 6.7 | 6.8 | 4.1 | 2.0 | 2.4 | ||
TSeda-Pingwu | 3893.9 | 0.9 | 1.3 | 2.1 | 2.5 | 3.1 | 4.0 | 2.4 | 3.6 | 3.9 | 2.2 | 0.5 | 0.8 | ||
Wudaoliang | 35.2 | 93.1 | 4612.2 | -15.3 | -13.0 | -9.6 | -4.5 | -0.8 | 3.1 | 6.7 | 6.2 | 2.7 | -4.3 | -11.0 | -14.1 |
Lintao | 35.4 | 103.9 | 1893.8 | -5.7 | -0.7 | 4.2 | 9.5 | 13.7 | 17.1 | 19.3 | 18.7 | 13.8 | 8.3 | 1.7 | -4.5 |
TWudaoliang-Lintao | 4612.2 | 4.2 | 2.1 | 1.5 | 1.5 | 1.8 | 2.3 | 2.3 | 2.7 | 3.5 | 1.8 | 2.2 | 3.7 |
Table 4
Monthly temperatures and temperature differences (ΔT) between the main plateau and the surrounding/adjacent lowland areas at an altitude of 4500 m (°C)"
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Plateau | -10.19 | -8.16 | -4.73 | -0.1 | 3.77 | 7.83 | 9.94 | 9.59 | 6.9 | 0.13 | -6.3 | -9.14 |
Hengduan Mts. | -7.07 | -5.28 | -2.27 | 0.83 | 5.21 | 8.2 | 10.08 | 9.93 | 7.2 | 2.12 | -3.84 | -6.52 |
Southern main TP | -7.55 | -6.08 | -2.85 | 0.83 | 4.42 | 8.5 | 10.22 | 9.89 | 7.5 | 2 | -3.6 | -6.4 |
Central main TP | -10.8 | -8.26 | -4.41 | 0.21 | 4.02 | 8.45 | 10.56 | 10.11 | 7.39 | 0.49 | -6.22 | -9.56 |
Northern main TP | -13.48 | -11.17 | -7.58 | -1.37 | 3.01 | 6.95 | 9.44 | 9.00 | 6.16 | -2.41 | -9.55 | -12.31 |
Qilian Mts. | -17.41 | -15.58 | -12.08 | -4.19 | 2.11 | 6.13 | 8.94 | 7.93 | 4.4 | -5.44 | -13.08 | -17.16 |
Sichuan Basin | -12.8 | -10.29 | -7.16 | -2.75 | -0.41 | 1.87 | 5.36 | 4.15 | 1.54 | -2.23 | -7.63 | -10.94 |
ΔTHengduan-Sichuan | 5.73 | 5.01 | 4.89 | 3.58 | 5.62 | 6.33 | 4.72 | 5.78 | 5.66 | 4.35 | 3.79 | 4.42 |
ΔTSouthern TP-Sichuan | 5.25 | 4.21 | 4.31 | 3.58 | 4.83 | 6.63 | 4.86 | 5.74 | 5.96 | 4.23 | 4.03 | 4.54 |
ΔTCentral TP-Qilian | 6.61 | 7.32 | 7.67 | 4.4 | 1.91 | 2.32 | 1.62 | 2.18 | 2.99 | 5.93 | 6.86 | 7.60 |
ΔTNorthern TP-Qilian | 3.93 | 4.41 | 4.5 | 2.82 | 0.9 | 0.82 | 0.5 | 1.07 | 1.76 | 3.03 | 3.53 | 4.85 |
1 |
Barry R G, 2008. Mountain Weather and Climate. Boulder, USA: Cambridge University Press.
doi: 10.2307/633166 |
2 |
Chen Longxun, Reiter E R, Feng Zhiqiang, 1985. The atmospheric heat-source over the Tibetan Plateau: May-August 1979.Monthly Weather Review, 113: 1771-1790.
doi: 10.1175/1520-0493(1985)113<1771:TAHSOT>2.0.CO;2 |
3 | De Quervain A, 1904. Die Hebung der atmosphärischen Isothermen in den Schweizer Alpen und ihre Beziehung zu den Höhengrenzen.Gerlands Beiträge zur Geophysik, 6: 481-533 |
4 |
Flenley J R, 1995. Cloud forest, the Massenerhebung effect, and ultraviolet insolation.Ecological Studies, 110: 150-155.
doi: 10.1007/978-1-4612-2500-3_9 |
5 |
Flohn H, 1951. Some remarks on the annual trend of weather in the Scottish highlands.Quarterly Journal of the Royal Meteorological Society, 77(334): 674-675.
doi: 10.1002/qj.49707733413 |
6 | Flohn H, 1957. Large-scale aspects of the “summer monsoon” in South and East Asia.Journal of the Meteorological Society of Japan, 75: 180-186. |
7 |
Grubb P J, 1971. Interpretation of Massenerhebung effect on tropical mountains.Nature, 229(5279): 44-45.
doi: 10.1038/229044a0 pmid: 16059069 |
8 |
Han Fang, Yao Yonghui, Dai Shibaoet al., 2012. Mass elevation effect and its forcing on timberline altitude.Journal of Geographical Sciences, 22(4): 609-616.
doi: 10.1007/s11442-012-0950-1 |
9 | Hastenrath S, 1968. Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of Central America and southern Mexico.Colloquium Geography, 9: 122-130. |
10 |
Hoch G, Körner C, 2005. Growth, demography and carbon relations of Polylepis trees at the world's highest treeline.Function of Ecology, 19(6): 941-951.
doi: 10.1111/j.1365-2435.2005.01040.x |
11 | Holtmeier F K, 2003. Mountain Timberlines: Ecology, Patchiness, and Dynamics. Dordrecht, Boston: Kluwer Academic Publishers. |
12 | Hou Xueyu, 1982. China Vegetation Geography and Dominant Plant Composition. Beijing: Science Press. (in Chinese) |
13 | Li Qiaoyuan, Xie Zichu, 2006. Analyses on the characteristics of the vertical lapse rates of temperature: Take Tibetan Plateau and its adjacent area as an example. Journal of Shihezi University (Natural Science), 24(6): 719-723. (in Chinese) |
14 | Liao Ke, 1990. The Atlas of the Tibetan Plateau. Beijing: Science Press. (in Chinese) |
15 | Liu Dongshen, Sun Honglie, Zheng Du, 2003. The Tibet Plateau research’s scientific paradigm, effect and its spiritual connotation. http: www2.cas.cn/html/Dir/2003/10/14/2458.htm. (in Chinese) |
16 | Liu Kaifa, 1992. Climate of the Emei Shan.Journal of Mianyang Agricultural College, 9(3): 44-48. (in Chinese) |
17 |
Miehe G, Miehe S, Vogel Jet al., 2007. Highest treeline in the Northern Hemisphere found in southern Tibet.Mountain Research and Development, 27(2): 169-173.
doi: 10.1659/mrd.0792 |
18 |
Ohsawa M, 1990. An interpretation of latitudinal patterns of forest limits in South and East Asian mountains.Journal of Ecology, 78(2): 326-339.
doi: 10.2307/2261115 |
19 | Shi Yafeng, Zheng Benxing, Li Shijie, 1992. Last Glaciation and Maximum Glaciation in the Qinghai-Xizang (Tibet) Plateau: A controversy to M. Kuhle's ice sheet hypothesis.Chinese Geographical Science, 2(4): 293-311. |
20 | Sun Ranhao, Zhang Baiping, 2008. Exploring the method of digital identification of mountain altitudinal belts.Geo-information Science, 10(6): 690-696. (in Chinese) |
21 |
Sun Ranhao, Zhang Baiping, Tan Jing, 2008. A multivariate regression model for predicting precipitation in the Daqing Mountains.Mountain Research and Development, 28(3): 318-325.
doi: 10.1659/mrd.0944 |
22 | Tollner H, 1949. Der Einfluß großer Massenerhebungen auf die Lufttemperatur und die Ursachen der Hebung der Vegetationsgrenzen in den inneren Ostalpen.Theoretical and Applied Climatology, 1(3): 347-372. |
23 | Troll C, 1973. The upper timberlines in different climatic zones.Arctic and Alpine Research, 5(3): 3-18. |
24 |
Wang Chuanhui, Zhou Shunwu, Tang Xiaopinget al., 2011. Temporal and spatial distribution of heavy precipitation over Tibetan Plateau in recent 48 years.Scientia Geographica Sinica, 31(4): 470-477. (in Chinese)
doi: 10.3724/SP.J.1146.2006.01085 |
25 |
Wu Guoxiong, Liu Yiming, Liu Xinet al., 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer.Chinese Journal of Atmospheric Sciences, 29(1): 47-57. (in Chinese)
doi: 10.3878/j.issn.1006-9895.2005.01.06 |
26 | Wu Zhangwen, 1996. Local climate measurement of Qingcheng Shan.Journal of Sichuan Forestry Science and Technology, 17(1): 74-76. (in Chinese) |
27 |
Yao Yonghui, Zhang Baiping, 2013a. A preliminary study of the heating effect of the Tibetan Plateau.PLOS One. doi: 10.1371/journal.pone.0068750.
doi: 10.1371/journal.pone.0068750 pmid: 23935886 |
28 |
Yao Yonghui, Zhang Baiping, 2013b. MODIS-based estimation of air temperature of the Tibetan Plateau.Journal of Geographical Sciences, 23(4): 627-640.
doi: 10.1007/s11442-013-1033-7 |
29 |
Yao Yonghui, Zhang Baiping, 2013c. MODIS-based estimation of air temperature and heating effect of the Tibetan Plateau.Acta Geographica Sinica, 68(1): 93-104. (in Chinese)
doi: 10.11821/xb201301011 |
30 |
Yao Yonghui, Zhang Baiping, 2014. The mass elevation effect of the Tibetan Plateau and its implications for Alpine treelines.International Journal of Climatology. doi: 10.1002/joc.4123.
doi: 10.1002/joc.4123 |
31 |
Ye Duzheng, 1982. Some aspects of the thermal influences of Qinghai-Tibetan Plateau on the atmospheric circulation.Archives for Meteorology, Geophysics, and Bioclimatology, 31(3): 205-225.
doi: 10.1007/BF02258032 |
32 | Ye Duzheng, Luo Siwei, Zhu Baozhen, 1957. The flow pattern and heat budget in the troposphere over the Tibetan Plateau and surrounding area.Acta Meteorologica Sinica, 28(2): 108-121. (in Chinese) |
33 | Zhang Baiping, 2008. Progress in the study on digital mountain altitudinal belts.Journal of Mountain Science, 26(1): 12-14. (in Chinese) |
34 |
Zhang Baiping, Chen Xiaodong, Li Baolinet al., 2002. Biodiversity and conservation in the Tibetan Plateau.Journal of Geographical Sciences, 12(2): 135-143.
doi: 10.1007/BF02837467 |
35 | Zhang Baiping, Tan Jing, Yao Yonghui, 2009. Digital Information and Patterns of Mountain Altitudinal Belts. Beijing: China Environmental Sciences Press. (in Chinese) |
36 |
Zhao Fang, Zhang Baiping, Tan Jinget al., 2011. Structure and function of the digital integrated system for the Eurasian mountain altitudinal belt.Journal of Geo-information Science, 13(3): 346-355. (in Chinese)
doi: 10.3724/SP.J.1047.2011.00346 |
37 |
Zhao Y, Li H J, Huang A Net al., 2013. Relationship between thermal anomalies in Tibetan Plateau and summer dust storm frequency over Tarim Basin, China.Journal of Arid Land, 5(1): 25-31.
doi: 10.1007/s40333-013-0138-2 |
38 | Zheng Du, Li Bingyuan, 1990. Evolution and differentiation of the natural environment of the Qinghai-Tibet Plateau.Geographical Research, 9(2): 1-10. (in Chinese) |
39 | Zheng Yuanchang, Gao Shenghuai, Chai Zongxin, 1986. A preliminary study on the vertical natural zones in the Hengduan Mountainous region.Mountain Research, 4(1): 75-83. (in Chinese) |
[1] | Xiaojun YAO, Meiping SUN, Peng GONG, Baokang LIU, Xiaofeng LI, Lina AN, Luxia YAN. Overflow probability of the Salt Lake in Hoh Xil Region [J]. Journal of Geographical Sciences, 2018, 28(5): 647-655. |
[2] | Yanhong WU, Xin ZHANG, Hongxing ZHENG, Junsheng *LI, Zhiying WANG. Investigating changes in lake systems in the south-central Tibetan Plateau with multi-source remote sensing [J]. Journal of Geographical Sciences, 2017, 27(3): 337-347. |
[3] | Xianyan WANG, VANDENBERGHE Jef, Huayu LU, VAN BALEN Ronald. Climatic and tectonic controls on the fluvial morphology of the Northeastern Tibetan Plateau (China) [J]. Journal of Geographical Sciences, 2017, 27(11): 1325-1340. |
[4] | Xiaomeng HU, Tianhang ZHOU, Shun CAI. The episodic geomorphological-sedimentary evolution of different basins in the Fenwei Graben and its tectonic implication [J]. Journal of Geographical Sciences, 2017, 27(11): 1359-1375. |
[5] | Baiping ZHANG, Yonghui *YAO. Implications of mass elevation effect for the altitudinal patterns of global ecology [J]. Journal of Geographical Sciences, 2016, 26(7): 871-877. |
[6] | Yue FANG, Weiming Cheng, Yichi Zhang, Nan WANG, Shangmin ZHAO, Chenghu ZHOU, Xi CHEN, Anming BAO. Changes in inland lakes on the Tibetan Plateau over the past 40 years [J]. Journal of Geographical Sciences, 2016, 26(4): 415-438. |
[7] | Yili ZHANG, Zhongjun HU, Wei *QI, Xue WU, Wanqi BAI, Lanhui LI, Mingjun DING, Linshan LIU, Zhaofeng WANG, Du ZHENG. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method [J]. Journal of Geographical Sciences, 2016, 26(1): 27-44. |
[8] | Xiaojun YAO, Long LI, Jun ZHAO, Meiping SUN, Jing LI, Peng GONG, Lina AN. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011 [J]. Journal of Geographical Sciences, 2016, 26(1): 70-82. |
[9] | Dehua MAO,Ling LUO,Zongming WANG,Chunhua ZHANG,Chunying REN. Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau [J]. Journal of Geographical Sciences, 2015, 25(8): 967-977. |
[10] | Zhilong ZHAO,Yili ZHANG,Linshan LIU,Fenggui LIU,Haifeng ZHANG. Recent changes in wetlands on the Tibetan Plateau: A review [J]. Journal of Geographical Sciences, 2015, 25(7): 879-896. |
[11] | Zhijun YAO,Rui WANG,Zhaofei LIU,Shanshan WU,Liguang JIANG. Spatial-temporal patterns of major ion chemistry and its controlling factors in the Manasarovar Basin, Tibet [J]. Journal of Geographical Sciences, 2015, 25(6): 687-700. |
[12] | Mingjun DING,Lanhui LI,Yili ZHANG,Xiaomin SUN,Linshan LIU,Jungang GAO,Zhaofeng WANG,Yingnian LI. Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data [J]. Journal of Geographical Sciences, 2015, 25(2): 131-148. |
[13] | Xiaojun YAO,Shiyin LIU,Long LI,Meiping SUN,Jing LUO. Spatial-temporal characteristics of lake area variations in Hoh Xil region from 1970 to 2011 [J]. Journal of Geographical Sciences, 2014, 24(4): 689-702. |
[14] | ZHAO Fang, ZHANG Baiping, PANG Yu, YAO Yonghui. A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere [J]. , 2014, 24(2): 226-236. |
[15] | ZHANG Yili, QI Wei, ZHOU Caiping, DING Mingjun, LIU Linshan, GAO Jungang, BAI Wanqi, WANG Zhaofeng, ZHENG Du. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982 [J]. , 2014, 24(2): 269-287. |
|