Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
 
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
Journal of Geographical Sciences    2015, Vol. 25 Issue (12) : 1411-1422     DOI: 10.1007/s11442-015-1242-3
Research Articles |
The implication of mass elevation effect of the Tibetan Plateau for altitudinal belts
YAO Yonghui1,XU Mei2,*,ZHANG Baiping1,3()
1. State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. China Institute of Water Resources and Hydropower Research, Beijing 100044, China
3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Download: PDF(1621 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The heating effect (or mass elevation effect, MEE) of the Tibetan Plateau (TP) is intense due to its massive body. Some studies have been undertaken on its role as the heat source in summer and its implications for Asian climate, but little has been known of the implications of its MEE for the distribution of mountain altitudinal belts (MABs). Using air temperature data observed and remotely sensed data, MAB/treeline data, and ASTER GDEM data, this paper compares the height of MABs and alpine treelines in the main TP and the surrounding mountains/lowland and explains the difference from the point of view of MEE. The results demonstrate: 1) at same elevation, air temperature and the length of growing season gradually increase from the eastern edge to the interior TP, e.g., at 4500 m (corresponding to the mean altitude of the TP), the monthly mean temperature is 3.58°C higher (April) to 6.63°C higher (June) in the interior plateau than in the Sichuan Basin; the 10°C isotherm for the warmest month goes upward from the edge to the interior of the plateau, at 4000 m in the Qilian Mts. and the eastern edges of the plateau, and up to 4600-5000 m in Lhasa and Zuogong; the warmth index at an altitude of 4500 m can be up to 15°C·month in the interior TP, but much lower at the eastern edges. 2) MABs and treeline follow a similar trend of rising inwards: dark-coniferous forest is 1000-1500 m higher and alpine steppe is about 700-900 m higher in the interior TP than at the eastern edges.

Keywords Tibetan Plateau      mass elevation effect      mountain altitudinal belt      treeline      the warmth index      the 10℃ isotherm in the warmest month     
Fund:National Natural Science Foundation of China, No.41571099.No.41001278
Issue Date: 05 January 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAO Yonghui
XU Mei
ZHANG Baiping
Cite this article:   
YAO Yonghui,XU Mei,ZHANG Baiping. The implication of mass elevation effect of the Tibetan Plateau for altitudinal belts[J]. Journal of Geographical Sciences, 2015, 25(12): 1411-1422.
URL:  
http://www.geogsci.com/EN/10.1007/s11442-015-1242-3     OR     http://www.geogsci.com/EN/Y2015/V25/I12/1411
Figure 1  Sketch map of the Tibetan Plateau and treeline and mountain altitudinal belt sites
Figure 2  Mountain altitudinal belts along three profiles (a. the Mt. Erlang-Nyainqentanglha profile; b. the Mt. Guangguang-Tuoba Beishan profile; c. the Mt. Wutai-Amugang profile)
Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Lapse rate 0.51 0.53 0.56 0.57 0.60 0.60 0.55 0.56 0.54 0.53 0.55 0.49
Table 1  Reported lapse rates of the Mt. Emei (°C/100 m)
Profiles MAB sites Longi-
tude
Lati-
tude
Altit-
ude
(m)
Air tem-
perature
in Jan.
(°C)
Air tem-
perature
in July
(°C)
Adjusted
height
(m)
Adjusted
air tem-
perature
in Jan.
(°C)
Adjusted
air tem-
perature
in Jul.
(°C)
Mt.Erlang-
Nyainqentanglha
Langkazi-Yangzhuoyong 90.50 29.70 5292 -10.23 6.58 5292 -10.2 6.6
Bomi-Yigong 94.62 30.17 5096 -10.08 8.12 -11.1 7.0
Zhuka-Dongdala shady slope 98.64 29.70 4496 -5.64 10.12 -9.7 5.7
Zhuka-Dongdala sunny slope 98.56 29.75 4050 -4.23 11.36 -10.6 4.5
East slope of Mt. Ningjing 99.00 29.83 3455 0.46 14.98 -8.9 4.9
South range of Shaluli 99.73 29.75 4483 -4.75 10.35 -8.9 5.9
Mt. Gaoshi 101.00 30.03 3226 -1.91 13.37 -12.5 2.0
Mt. Zheduo 101.80 30.10 4218 -7.37 9.46 -12.5 3.6
South slope of Mt.Gongga 102.07 29.39 2077 -2.45 15.90 -12.8 -1.8
West slope of Mt. Erlang 102.56 30.12 3199 -5.07 13.12 -18.8 1.6
East slope of Mt. Emei 103.45 29.58 473 4.96 26.65 -21.5 0.1
Mt.Guang-
guang-
Tuoba
Beishan
Southern Qiangtang Plateau 90.00 31.33 4943 -12.24 8.44 4943 -12.24 8.44
Naqu-Nierong 92.17 31.63 4636 -10.18 9.96 -11.75 8.28
Shady slope of Biru-Baqing 94.59 31.50 4417 -8.79 9.85 -11.48 6.95
Lancang River: Angqu-Shangka 96.84 31.45 3605 -3.47 13.73 -10.29 6.37
Lancang River: Changdu 97.17 31.45 3533 -5.84 12.78 -13.03 5.03
Lancang River: Zhaqu-Weng
Dagang
97.21 31.52 3675 -2.31 13.89 -8.78 6.92
East slope of Beishanin Tuoba 97.97 31.53 4321 -9.02 9.22 -12.19 5.80
Xinlong of Mt. Daxueshan 100.31 30.94 3189 -4.21 12.62 -13.15 2.98
Songlinkou-Daofu of Mt. Daxue 101.12 30.98 2934 -2.18 15.82 -12.42 4.77
Big/small Jinchuan 102.06 31.48 2540 -0.02 17.60 -12.28 4.38
Mt. Siguliang 102.90 31.10 3950 -10.54 11.90 -15.60 6.44
Mt. Balang 103.17 31.07 4047 -7.63 7.89 -12.20 2.96
South slope of Dabanzhao 103.05 31.67 3794 -11.93 11.16 -17.79 4.84
Mt. Guangguang 103.61 31.01 745 5.61 25.53 -15.80 2.44
Small Zhaizigou 103.80 31.35 3392 -5.10 13.64 -13.01 5.11
Mt.Wutai- Amugang Shady slope of Memar
Tso Xishan
81.83 34.45 5090 -14.31 8.30 5742 -17.64 4.71
Sunny slope of Memar
Tso Xishan
82.38 34.28 5282 -14.24 7.62 -16.59 5.09
East slope of Amugang 85.50 33.50 5742 -17.99 5.15 -17.99 5.15
Tanggula Mts. 89.92 33.20 5018 -13.86 8.50 -17.55 4.52
Qumalai County 95.78 34.13 4149 -11.30 11.10 -19.42 2.34
Shady slope of Hutou Shan 103.22 34.07 2471 -9.23 17.00 -25.92 -0.99
Xuebaoding 103.62 32.88 3723 -9.32 10.22 -19.62 -0.88
Shady slope of Mt. Tutai 103.70 33.07 3622 -11.47 11.16 -22.28 -0.50
Table 2  Temperatures and the adjusted temperatures in January and in July near the locations of MABs along the three W-E profiles
Stations Lat. Long. Elev.(m) Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Lhasa 29.7 91.1 3648.9 0.6 3.0 6.3 8.7 12.7 16.1 16.5 16.1 14.2 9.7 4.0 0.8
Zuogong 29.7 97.8 3780 -3.9 -1.9 1.5 5.0 8.7 13.0 13.3 12.8 10.9 6.2 0.0 -3.4
Leshan 29.6 103.8 424.2 7.4 10.7 14.3 19.0 22.4 24.4 26.9 26.0 22.8 18.3 14.2 8.7
TLhasa-Leshan 3648.9 9.7 9.4 10.1 8.2 9.6 11.0 7.3 8.2 8.9 8.4 7.5 7.8
TZuogong-Leshan 3780 5.9 5.2 6.0 5.1 6.4 8.8 4.8 5.6 6.2 5.6 4.2 4.3
Anduo 32.4 91.1 4800 -12.3 -10.4 -6.4 -2.1 2.0 6.0 8.4 8.2 5.3 -1.2 -8.5 -11.3
Seda 32.3 100.3 3893.9 -9.6 -6.7 -3.0 1.6 4.9 8.7 10.7 10.1 7.3 1.7 -5.2 -8.4
Pingwu 32.4 104.5 893.2 4.7 7.9 11.7 16.2 19.8 22.7 24.8 23.3 19.6 15.4 10.9 5.5
TAnduo-Pingwu 4800 2.9 2.4 3.8 4.0 5.6 6.8 5.1 6.7 6.8 4.1 2.0 2.4
TSeda-Pingwu 3893.9 0.9 1.3 2.1 2.5 3.1 4.0 2.4 3.6 3.9 2.2 0.5 0.8
Wudaoliang 35.2 93.1 4612.2 -15.3 -13.0 -9.6 -4.5 -0.8 3.1 6.7 6.2 2.7 -4.3 -11.0 -14.1
Lintao 35.4 103.9 1893.8 -5.7 -0.7 4.2 9.5 13.7 17.1 19.3 18.7 13.8 8.3 1.7 -4.5
TWudaoliang-Lintao 4612.2 4.2 2.1 1.5 1.5 1.8 2.3 2.3 2.7 3.5 1.8 2.2 3.7
Table 3  Temperature and temperature differences of typical observation stations between the main plateau and surrounding areas (°C)
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Main Plateau -10.19 -8.16 -4.73 -0.1 3.77 7.83 9.94 9.59 6.9 0.13 -6.3 -9.14
Hengduan Mts. -7.07 -5.28 -2.27 0.83 5.21 8.2 10.08 9.93 7.2 2.12 -3.84 -6.52
Southern main TP -7.55 -6.08 -2.85 0.83 4.42 8.5 10.22 9.89 7.5 2 -3.6 -6.4
Central main TP -10.8 -8.26 -4.41 0.21 4.02 8.45 10.56 10.11 7.39 0.49 -6.22 -9.56
Northern main TP -13.48 -11.17 -7.58 -1.37 3.01 6.95 9.44 9.00 6.16 -2.41 -9.55 -12.31
Qilian Mts. -17.41 -15.58 -12.08 -4.19 2.11 6.13 8.94 7.93 4.4 -5.44 -13.08 -17.16
Sichuan Basin -12.8 -10.29 -7.16 -2.75 -0.41 1.87 5.36 4.15 1.54 -2.23 -7.63 -10.94
ΔTHengduan-Sichuan 5.73 5.01 4.89 3.58 5.62 6.33 4.72 5.78 5.66 4.35 3.79 4.42
ΔTSouthern TP-Sichuan 5.25 4.21 4.31 3.58 4.83 6.63 4.86 5.74 5.96 4.23 4.03 4.54
ΔTCentral TP-Qilian 6.61 7.32 7.67 4.4 1.91 2.32 1.62 2.18 2.99 5.93 6.86 7.60
ΔTNorthern TP-Qilian 3.93 4.41 4.5 2.82 0.9 0.82 0.5 1.07 1.76 3.03 3.53 4.85
Table 4  Monthly temperatures and temperature differences (ΔT) between the main plateau and the surrounding/adjacent lowland areas at an altitude of 4500 m (°C)
Figure 3  Spatial distribution of the 10°C isotherm for the warmest month on the Tibetan Plateau
1 Barry R G, 2008. Mountain Weather and Climate. Boulder, USA: Cambridge University Press.http://www.researchgate.net/publication/260847950_Mountain_weather_and_climate
doi: 10.2307/633166
2 Chen Longxun, Reiter E R, Feng Zhiqiang, 1985. The atmospheric heat-source over the Tibetan Plateau: May-August 1979.Monthly Weather Review, 113: 1771-1790.http://www.researchgate.net/publication/23603629_The_atmospheric_heat_source_over_the_Tibetan_plateau_May-August_1979?ev=sim_pub
doi: 10.1175/1520-0493(1985)113<1771:TAHSOT>2.0.CO;2
3 De Quervain A, 1904. Die Hebung der atmosph?rischen Isothermen in den Schweizer Alpen und ihre Beziehung zu den H?hengrenzen.Gerlands Beitr?ge zur Geophysik, 6: 481-533
4 Flenley J R, 1995. Cloud forest, the Massenerhebung effect, and ultraviolet insolation.Ecological Studies, 110: 150-155.http://link.springer.com/chapter/10.1007/978-1-4612-2500-3_9
doi: 10.1007/978-1-4612-2500-3_9
5 Flohn H, 1951. Some remarks on the annual trend of weather in the Scottish highlands.Quarterly Journal of the Royal Meteorological Society, 77(334): 674-675.http://onlinelibrary.wiley.com/doi/10.1002/qj.49707733413/abstract
doi: 10.1002/qj.49707733413
6 Flohn H, 1957. Large-scale aspects of the “summer monsoon” in South and East Asia.Journal of the Meteorological Society of Japan, 75: 180-186.
7 Grubb P J, 1971. Interpretation of Massenerhebung effect on tropical mountains.Nature, 229(5279): 44-45.http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM16059069
doi: 10.1038/229044a0 pmid: 16059069
8 Han Fang, Yao Yonghui, Dai Shibaoet al., 2012. Mass elevation effect and its forcing on timberline altitude.Journal of Geographical Sciences, 22(4): 609-616.
doi: 10.1007/s11442-012-0950-1
9 Hastenrath S, 1968. Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of Central America and southern Mexico.Colloquium Geography, 9: 122-130.
10 Hoch G, K?rner C, 2005. Growth, demography and carbon relations of Polylepis trees at the world's highest treeline.Function of Ecology, 19(6): 941-951.http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2435.2005.01040.x/full
doi: 10.1111/j.1365-2435.2005.01040.x
11 Holtmeier F K, 2003. Mountain Timberlines: Ecology, Patchiness, and Dynamics. Dordrecht, Boston: Kluwer Academic Publishers.http://dialnet.unirioja.es/servlet/articulo?codigo=1139056
12 Hou Xueyu, 1982. China Vegetation Geography and Dominant Plant Composition. Beijing: Science Press. (in Chinese)
13 Li Qiaoyuan, Xie Zichu, 2006. Analyses on the characteristics of the vertical lapse rates of temperature: Take Tibetan Plateau and its adjacent area as an example. Journal of Shihezi University (Natural Science), 24(6): 719-723. (in Chinese)
14 Liao Ke, 1990. The Atlas of the Tibetan Plateau. Beijing: Science Press. (in Chinese)
15 Liu Dongshen, Sun Honglie, Zheng Du, 2003. The Tibet Plateau research’s scientific paradigm, effect and its spiritual connotation. http: www2.cas.cn/html/Dir/2003/10/14/2458.htm. (in Chinese)
16 Liu Kaifa, 1992. Climate of the Emei Shan.Journal of Mianyang Agricultural College, 9(3): 44-48. (in Chinese)
17 Miehe G, Miehe S, Vogel Jet al., 2007. Highest treeline in the Northern Hemisphere found in southern Tibet.Mountain Research and Development, 27(2): 169-173.http://www.jstor.org/stable/25164105
doi: 10.1659/mrd.0792
18 Ohsawa M, 1990. An interpretation of latitudinal patterns of forest limits in South and East Asian mountains.Journal of Ecology, 78(2): 326-339.http://europepmc.org/abstract/AGR/IND90052255
doi: 10.2307/2261115
19 Shi Yafeng, Zheng Benxing, Li Shijie, 1992. Last Glaciation and Maximum Glaciation in the Qinghai-Xizang (Tibet) Plateau: A controversy to M. Kuhle's ice sheet hypothesis.Chinese Geographical Science, 2(4): 293-311.
20 Sun Ranhao, Zhang Baiping, 2008. Exploring the method of digital identification of mountain altitudinal belts.Geo-information Science, 10(6): 690-696. (in Chinese)
21 Sun Ranhao, Zhang Baiping, Tan Jing, 2008. A multivariate regression model for predicting precipitation in the Daqing Mountains.Mountain Research and Development, 28(3): 318-325.http://www.bioone.org/doi/abs/10.1659/mrd.0944
doi: 10.1659/mrd.0944
22 Tollner H, 1949. Der Einflu? gro?er Massenerhebungen auf die Lufttemperatur und die Ursachen der Hebung der Vegetationsgrenzen in den inneren Ostalpen.Theoretical and Applied Climatology, 1(3): 347-372.
23 Troll C, 1973. The upper timberlines in different climatic zones.Arctic and Alpine Research, 5(3): 3-18.http://www.jstor.org/stable/1550148
24 Wang Chuanhui, Zhou Shunwu, Tang Xiaopinget al., 2011. Temporal and spatial distribution of heavy precipitation over Tibetan Plateau in recent 48 years.Scientia Geographica Sinica, 31(4): 470-477. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX201104015.htm
doi: 10.3724/SP.J.1146.2006.01085
25 Wu Guoxiong, Liu Yiming, Liu Xinet al., 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer.Chinese Journal of Atmospheric Sciences, 29(1): 47-57. (in Chinese)
doi: 10.3878/j.issn.1006-9895.2005.01.06
26 Wu Zhangwen, 1996. Local climate measurement of Qingcheng Shan.Journal of Sichuan Forestry Science and Technology, 17(1): 74-76. (in Chinese)
27 Yao Yonghui, Zhang Baiping, 2013a. A preliminary study of the heating effect of the Tibetan Plateau.PLOS One. doi: 10.1371/journal.pone.0068750.http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM23935886
doi: 10.1371/journal.pone.0068750 pmid: 23935886
28 Yao Yonghui, Zhang Baiping, 2013b. MODIS-based estimation of air temperature of the Tibetan Plateau.Journal of Geographical Sciences, 23(4): 627-640.
doi: 10.1007/s11442-013-1033-7
29 Yao Yonghui, Zhang Baiping, 2013c. MODIS-based estimation of air temperature and heating effect of the Tibetan Plateau.Acta Geographica Sinica, 68(1): 93-104. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTotal-DLXB201301014.htm
doi: 10.11821/xb201301011
30 Yao Yonghui, Zhang Baiping, 2014. The mass elevation effect of the Tibetan Plateau and its implications for Alpine treelines.International Journal of Climatology. doi: 10.1002/joc.4123.http://onlinelibrary.wiley.com/doi/10.1002/joc.4123/full
doi: 10.1002/joc.4123
31 Ye Duzheng, 1982. Some aspects of the thermal influences of Qinghai-Tibetan Plateau on the atmospheric circulation.Archives for Meteorology, Geophysics, and Bioclimatology, 31(3): 205-225.http://link.springer.com/10.1007/BF02258032
doi: 10.1007/BF02258032
32 Ye Duzheng, Luo Siwei, Zhu Baozhen, 1957. The flow pattern and heat budget in the troposphere over the Tibetan Plateau and surrounding area.Acta Meteorologica Sinica, 28(2): 108-121. (in Chinese)
33 Zhang Baiping, 2008. Progress in the study on digital mountain altitudinal belts.Journal of Mountain Science, 26(1): 12-14. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA200801005.htm
34 Zhang Baiping, Chen Xiaodong, Li Baolinet al., 2002. Biodiversity and conservation in the Tibetan Plateau.Journal of Geographical Sciences, 12(2): 135-143.
doi: 10.1007/BF02837467
35 Zhang Baiping, Tan Jing, Yao Yonghui, 2009. Digital Information and Patterns of Mountain Altitudinal Belts. Beijing: China Environmental Sciences Press. (in Chinese)
36 Zhao Fang, Zhang Baiping, Tan Jinget al., 2011. Structure and function of the digital integrated system for the Eurasian mountain altitudinal belt.Journal of Geo-information Science, 13(3): 346-355. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXX201103009.htm
doi: 10.3724/SP.J.1047.2011.00346
37 Zhao Y, Li H J, Huang A Net al., 2013. Relationship between thermal anomalies in Tibetan Plateau and summer dust storm frequency over Tarim Basin, China.Journal of Arid Land, 5(1): 25-31.
doi: 10.1007/s40333-013-0138-2
38 Zheng Du, Li Bingyuan, 1990. Evolution and differentiation of the natural environment of the Qinghai-Tibet Plateau.Geographical Research, 9(2): 1-10. (in Chinese)
39 Zheng Yuanchang, Gao Shenghuai, Chai Zongxin, 1986. A preliminary study on the vertical natural zones in the Hengduan Mountainous region.Mountain Research, 4(1): 75-83. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA198601010.htm
[1] HU Xiaomeng,ZHOU Tianhang,CAI Shun. The episodic geomorphological-sedimentary evolution of different basins in the Fenwei Graben and its tectonic implication[J]. Journal of Geographical Sciences, 2017, 27(11): 1359-1375.
[2] WANG Xianyan,Jef VANDENBERGHE,LU Huayu,Ronald VAN BALEN. Climatic and tectonic controls on the fluvial morphology of the Northeastern Tibetan Plateau (China)[J]. Journal of Geographical Sciences, 2017, 27(11): 1325-1340.
[3] ZHANG Baiping,*YAO Yonghui. Implications of mass elevation effect for the altitudinal patterns of global ecology[J]. Journal of Geographical Sciences, 2016, 26(7): 871-877.
[4] FANG Yue,Cheng Weiming,Zhang Yichi,WANG Nan,ZHAO Shangmin,ZHOU Chenghu,CHEN Xi,BAO Anming. Changes in inland lakes on the Tibetan Plateau over the past 40 years[J]. Journal of Geographical Sciences, 2016, 26(4): 415-438.
[5] YAO Xiaojun,LI Long,ZHAO Jun,SUN Meiping,LI Jing,GONG Peng,AN Lina. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011[J]. Journal of Geographical Sciences, 2016, 26(1): 70-82.
[6] ZHANG Yili,HU Zhongjun,*QI Wei,WU Xue,BAI Wanqi,LI Lanhui,DING Mingjun,LIU Linshan,WANG Zhaofeng,ZHENG Du. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method[J]. Journal of Geographical Sciences, 2016, 26(1): 27-44.
[7] Dehua MAO,Ling LUO,Zongming WANG,Chunhua ZHANG,Chunying REN. Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau[J]. Journal of Geographical Sciences, 2015, 25(8): 967-977.
[8] Zhilong ZHAO,Yili ZHANG,Linshan LIU,Fenggui LIU,Haifeng ZHANG. Recent changes in wetlands on the Tibetan Plateau: A review[J]. Journal of Geographical Sciences, 2015, 25(7): 879-896.
[9] Zhijun YAO,Rui WANG,Zhaofei LIU,Shanshan WU,Liguang JIANG. Spatial-temporal patterns of major ion chemistry and its controlling factors in the Manasarovar Basin, Tibet[J]. Journal of Geographical Sciences, 2015, 25(6): 687-700.
[10] Mingjun DING,Lanhui LI,Yili ZHANG,Xiaomin SUN,Linshan LIU,Jungang GAO,Zhaofeng WANG,Yingnian LI. Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data[J]. Journal of Geographical Sciences, 2015, 25(2): 131-148.
[11] Xiaojun YAO,Shiyin LIU,Long LI,Meiping SUN,Jing LUO. Spatial-temporal characteristics of lake area variations in Hoh Xil region from 1970 to 2011[J]. Journal of Geographical Sciences, 2014, 24(4): 689-702.
[12] ZHANG Yili, QI Wei, ZHOU Caiping, DING Mingjun, LIU Linshan, GAO Jungang, BAI Wanqi, WANG Zhaofeng, ZHENG Du. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982[J]. , 2014, 24(2): 269-287.
[13] ZHAO Fang, ZHANG Baiping, PANG Yu, YAO Yonghui. A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere[J]. , 2014, 24(2): 226-236.
[14] YAO Yonghui, ZHANG Baiping. MODIS-based estimation of air temperature of the Tibetan Plateau[J]. , 2013, 23(4): 627-640.
[15] YIN Yunhe, WU Shaohong, ZHAO Dongsheng, ZHENG Du, PAN Tao. Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau[J]. Journal of Geographical Sciences, 2013, 23(2): 195-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd