Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
 
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
Journal of Geographical Sciences    2015, Vol. 25 Issue (2) : 177-195     DOI: 10.1007/s11442-015-1161-3
Orginal Article |
Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China
Haigen ZHAO1,2,3(),Shengtian YANG1,2,*(),Zhiwei WANG1,2,Xu ZHOU1,2,Ya LUO1,2,Linna WU1,2
1. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and the Institute of Remote Sensing Applications of Chinese Academy of Sciences, Beijing 100875, China
2. Research Center for Remote Sensing and GIS, Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, School of Geography, Beijing Normal University, Beijing100875, China
3. South China Institute of Environmental Sciences, MEP, Guangzhou 510655, China
Download: PDF(540 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Distributed Time-Variant Gain Model (DTVGM) to perform hydrological simulations in the semi-humid Weihe River catchment in China. Before the simulations, a comparison with a 10-year (2001-2010) daily rain gauge data set reveals that, at daily time step, TRMM rainfall data are better at capturing rain occurrence and mean values than rainfall extremes. On a monthly time scale, good linear relationships between TRMM and rain gauge rainfall data are found, with determination coefficients R2 varying between 0.78 and 0.89 for the individual stations. Subsequent simulation results of seven years (2001-2007) of data on daily hydrological processes confirm that the DTVGM when calibrated by rain gauge data performs better than when calibrated by TRMM data, but the performance of the simulation driven by TRMM data is better than that driven by gauge data on a monthly time scale. The results thus suggest that TRMM rainfall data are more suitable for monthly streamflow simulation in the study area, and that, when the effects of recalibration and the results for water balance components are also taken into account, the TRMM 3B42-V7 product has the potential to perform well in similar basins.

Keywords rainfall      TRMM      distributed hydrological model      DTVGM      hydrological simulation      Weihe River catchment     
Fund:National Key Technology P&D Program, No.2012BAB02B00;The Fundamental Research Funds for the Central Universities
Corresponding Authors: Shengtian YANG     E-mail: zhaohaigen1983@163.com;yangshengtian@bnu.edu.cn
About author: Zhao Haigen (1983-), PhD Candidate, specialized in hydrological simulation and remote sensing. E-mail: zhaohaigen1983@163.com
Issue Date: 24 June 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haigen ZHAO
Shengtian YANG
Zhiwei WANG
Xu ZHOU
Ya LUO
Linna WU
Cite this article:   
Haigen ZHAO,Shengtian YANG,Zhiwei WANG, et al. Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China[J]. Journal of Geographical Sciences, 2015, 25(2): 177-195.
URL:  
http://www.geogsci.com/EN/10.1007/s11442-015-1161-3     OR     http://www.geogsci.com/EN/Y2015/V25/I2/177
Figure 1  Location of the Weihe River catchment in the Yellow River Basin and the distribution of stations
Figure 2  Map of land use in the study area
Figure 3  Soil types in the study area
Figure 4  Framework of the DTVGM (a) and vertical profile of hydrological processes (b) in a grid cell
Name Min Max Description Initial value
g1 0.20 0.50 Coefficient of time-variant gain factor 0.25
Ra 0.10 0.60 Initial ratio of soil water in the soil layer 0.20
Kr 0.0001 0.001 Storage-outflow coefficient for the soil layer 0.00015
C1 0.001 1.00 Dimensionless fitting parameter for ET 0.40
C2 0.60 0.80 Dimensionless fitting parameter for ET 0.60
C3 5.00 20.00 Dimensionless fitting parameter for ET 15.00
Table 1  Parameters optimized in the DTVGM hydrological simulation
Year Areal average (mm/d) Standard deviation (mm) Maximum daily rainfall (mm/d) Maximum 5-day rainfall (mm/5d) Annual rainfall (mm/y)
Gauge TRMM Gauge TRMM Gauge TRMM Gauge TRMM Gauge TRMM
2001 1.29 1.35 2.99 2.91 23.01 21.77 94.15 87.76 468.91 496.30
2002 1.26 1.24 3.36 2.90 36.12 23.91 105.36 94.05 458.57 456.12
2003 2.15 2.14 4.87 4.34 36.82 31.14 142.07 118.28 782.92 781.17
2004 1.31 1.35 3.19 2.94 23.92 27.73 90.46 86.92 480.03 493.15
2005 1.56 1.73 3.84 3.94 27.04 32.03 120.48 121.09 570.38 631.24
2006 1.52 1.36 3.32 2.68 21.62 18.82 94.00 77.42 555.04 497.86
2007 1.58 1.52 3.54 3.65 25.73 35.32 99.00 121.90 575.02 556.21
2008 1.26 1.44 3.09 3.42 22.67 25.64 88.16 109.00 462.70 525.65
2009 1.40 1.47 3.07 3.25 23.26 24.62 85.92 99.89 512.63 525.22
2010 1.61 1.55 4.27 3.42 44.29 22.65 133.07 95.49 589.15 565.08
Table 2  Comparison of statistical indices between averaged TRMM rainfall and rain gauge rainfall
Figure 5  Distribution of daily rainfall in different rainfall categories and relative contribution to total rainfall, 2001-2010
Figure 6  Scatter plots of monthly rainfall from TRMM and rain gauge data for the seven national meteorological stations and the areal average data
Precipitation
products
Scenario I Scenario II
NSCE WBE (%) CC NSCE WBE (%) CC
Calibration period
Gauge 0.69 18.71 0.84 0.68 14.37 0.83
TRMM 0.59 21.96 0.78 0.60 18.02 0.78
Validation period
Gauge 0.55 -18.85 0.78 0.52 -23.85 0.74
TRMM 0.48 -15.38 0.71 0.50 -19.91 0.72
Table 3  Comparison of daily observed and simulated streamflow under two calibration scenarios
Figure 7  Comparison of observed and simulated hydrographs using daily rain gauge data at Xianyang hydrological station
Figure 8  Comparison of observed and simulated hydrographs using daily TRMM data at Xianyang hydrological station
Precipitation
products
Scenario I Scenario II
NSCE WBE (%) CC NSCE WBE (%) CC
Gauge 0.64 -0.84 0.83 0.64 -5.58 0.82
TRMM 0.67 2.52 0.84 0.68 -1.78 0.84
Table 4  Comparison of monthly observed and simulated streamflow under two calibration scenarios
Figure 9  Comparison of observed and simulated discharge with monthly TRMM and rain gauge data at Xianyang hydrological station
Parameters Gauge TRMM
g1 0.23 0.22
Kr 0.0006 0.0002
C1 0.50 0.52
C2 0.78 0.66
C3 10.00 9.96
Ra 0.15 0.51
Table 5  DTVGM model parameter values calibrated with different rainfall inputs for the calibration period
Figure 10  Relative changes to water balance components in models based on rain gauge and TRMM rainfall data
1 Allen R G, Pereira L S, Raes Det al., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage.
2 Aston A R, 1979. Rainfall interception by eight small trees.Journal of Hydrology, 42: 383-396.
url: http://dx.doi.org/10.1016/0022-1694(79)90057-X
3 Beskow S, Mello C R, Norton L Det al., 2011. Performance of a distributed semi-conceptual hydrological model under tropical watershed conditions.Catena, 86: 160-171.
url: http://dx.doi.org/10.1016/j.catena.2011.03.010
4 Beven K J, Freer J, 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology.Journal of Hydrology, 249(1-4): 11-29.
url: http://dx.doi.org/10.1016/S0022-1694(01)00421-8
5 Bitew M M, Gebremichael M, Gebremichael L Tet al., 2011. Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia.Journal of Hydrometeorology, 13(1): 338-350.
6 Chen Y, Ebert E E, Walsh K J Eet al., 2013. Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN Data.Journal of Geophysical Research - Atmospheres, 118(5): 2184-2196.
url: http://dx.doi.org/10.1002/jgrd.50250
7 Chiu L S, North G R, McConnell Aet al., 1990. Rain estimation from satellites: Effect of finite field of view.J. Geophys. Res., 95: 2177-2186.
url: http://dx.doi.org/10.1029/JD095iD03p02177
8 Eckhardt K, Fohrer N, Frede H, 2005. Automatic model calibration.Hydrological Processes, 19(3): 651-658.
url: http://dx.doi.org/10.1002/hyp.5613
9 Gourley J J, Vieux B E, 2006. A method for identifying sources of model uncertainty in rainfall-runoff simulations.Journal of Hydrology, 327(1/2): 68-80.
url: http://dx.doi.org/10.1016/j.jhydrol.2005.11.036
10 Guillermo Q, Tabios III G Q, Salas J D, 1985. A comparative analysis of techniques for spatial interpolation of precipitation.Journal of the American Water Resources Association, 21: 365-380.
url: http://dx.doi.org/10.1111/j.1752-1688.1985.tb00147.x
11 Huffman G J, Adler R F, Bolvin D Tet al., 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales.Journal of Hydrometeorology, 8: 38-55.
url: http://dx.doi.org/10.1175/JHM560.1
12 Jiang S, Ren L L, Hong Yet al., 2012. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method.Journal of Hydrology, 452/453: 213-225.
url: http://dx.doi.org/10.1016/j.jhydrol.2012.05.055
13 Joyce R J, Janowiak J E, Arkin P Aet al., 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution.Journal of Hydrometeorology, 5(3): 487-503.
url: http://dx.doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
14 Karaseva M O, Prakash S, Gairola R M, 2012. Validation of high-resolution TRMM-3B43 precipitation product using rain gauge measurements over Kyrgyzstan.Theoretical and Applied Climatology, 108: 147-157.
url: http://dx.doi.org/10.1007/s00704-011-0509-6
15 Kidd C, Kniveton D R, Todd M C, 2003. Satellite rainfall estimation using combined passive microwave and infrared algorithms.Journal of Hydrometeorology, 4(6): 1088-1104.
url: http://dx.doi.org/10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2
16 Kirstetter P E, Hong Y, Gourley J Jet al., 2013. Comparison of TRMM 2A25 products, Version 6 and Version 7, with NOAA/NSSL ground radar-based national mosaic QPE.Journal of Hydrometeorology, 14: 661-669.
url: http://dx.doi.org/10.1175/JHM-D-12-030.1
17 Kummerow C, Simpson J, Thiele Oet al., 2000. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit.Journal of Applied Meteorology, 39(1): 1965-1982.
url: http://dx.doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
18 Kurtzman D, Navon S, Morin E, 2009. Improving interpolation of daily precipitation for hydrologic modeling: Spatial patterns of preferred interpolators.Hydrological Processes, 23: 3281-3291.
url: http://dx.doi.org/10.1002/hyp.7442
19 Li L, Xia J, Xu C Yet al., 2010. Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models.Journal of Hydrology, 390: 210-221.
url: http://dx.doi.org/10.1016/j.jhydrol.2010.06.044
20 Li X H, Zhang Q, Xu C X, 2012. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang Lake Basin.Journal of Hydrology, 426/427: 27-28.
21 Liu Y, Hu A Y, 2006. Changes of precipitation characters along Weihe Basin in 50 years and its influence on water resources.Journal of Arid Land Resources and Environment, 20(1): 85-87. (in Chinese)
22 Moriasi D N, Arnold J G, Van Lew M Wet al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.ASABE, 50(3): 885-900.
url: http://dx.doi.org/10.13031/2013.23153
23 Nair S, Srinivasan G, Nemani R, 2009. Evaluation of multi-satellite TRMM derived rainfall estimates over a western state of India.Journal of the Meteorological Society of Japan, 87(6): 927-939.
url: http://dx.doi.org/10.2151/jmsj.87.927
24 Narayanan M S, Shah S, Kishtawal C Met al., 2005. Validation of TRMM merge daily rainfall with IMD rain gauge analysis over Indian land mass. Technical Report, Space Applications Centre, Ahmedabad, India.
25 Nijssen B, Lettenmaier D P, 2004. Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the global precipitation measurement satellites.J. Geophys. Res., 109, D02103, doi:
doi: 10.1029/2003JD003497 url: http://dx.doi.org/10.1029/2003JD003497
26 Nilson T, 1971. A theoretical analysis of the frequency of gaps in plant stands.Journal of Agricultural Meteorology, 8: 25-38.
27 Rahman H, Sengupta D, 2007. Preliminary comparison of daily rainfall from satellites and Indian gauge data. CAOS Technical Report No. 2007AS1, Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore-12.
28 Rozante J R, Moreira D S, Gustavo Let al, 2010. Combining TRMM and surface observations of precipitation: Technique and validation over South America.Weather and Forecasting, 25(3): 885-894.
url: http://dx.doi.org/10.1175/2010WAF2222325.1
29 Shin D B, North G R, 2000. Errors incurred in sampling a cyclostationary field.Journal of Atmospheric and Oceanic Technology, 17: 656-664.
url: http://dx.doi.org/10.1175/1520-0426(2000)017<0656:EIISAC>2.0.CO;2
30 Simon S, Jensen K H, Sandholt Iet al., 2008. A remote sensing driven distributed hydrological model of the Senegal River Basin.Journal of Hydrology, 354: 131-148.
url: http://dx.doi.org/10.1016/j.jhydrol.2008.03.006
31 Song X M, Zhan C S, Xia Jet al., 2012. An efficient global sensitivity analysis approach for distributed hydrological model.Journal of Geographical Sciences, 22(2): 209-222.
url: http://dx.doi.org/10.1007/s11442-012-0922-5
32 Sorooshian S, Hsu K L, Gao X Get al., 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall.Bulletin of the American Meteorological Society, 81(9): 2035-2046.
url: http://dx.doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
33 Stisen S, Sandholt I, 2010. Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modeling.Hydrological Processes, 24(7): 879-891.
url: http://dx.doi.org/10.1002/hyp.7529
34 Su F, Hong Y, Lettenmaier D P, 2008. Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin.Journal of Hydrometeorology, 9(4): 622-640.
url: http://dx.doi.org/10.1175/2007JHM944.1
35 Varikoden H, Samah A A, Babu C A, 2010. Spatial and temporal characteristics of rain intensity in the peninsular Malaysia using TRMM rain rate.Journal of Hydrology, 387: 312-319.
url: http://dx.doi.org/10.1016/j.jhydrol.2010.04.023
36 Vázquez R F, Feyen J, 2003. Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment.Journal of Hydrology, 270: 309-327.
url: http://dx.doi.org/10.1016/S0022-1694(02)00308-6
37 Xia J, 1991. Identification of a constrained nonlinear hydrological system described by Volterra functional series,Water Resources Research, 27(9): 2415-2420.
url: http://dx.doi.org/10.1029/91WR01364
38 Xia J, 2002. A system approach to real time hydrological forecasts in watersheds.Water International, 27(1): 87-97.
url: http://dx.doi.org/10.1080/02508060208686981
39 Xia J, 2005. Development of distributed time-variant gain model for nonlinear hydrological systems. Science in China Series D: Earth Sciences, 48(6): 713-723.
url: http://dx.doi.org/10.1360/03yd0183
40 Xia J, O'Connor K M, Kachroo P Ket al., 1997. A non-linear perturbation model considering catchment wetness and its application in river flow forecasting.Journal of Hydrology, 200: 164-178.
url: http://dx.doi.org/10.1016/S0022-1694(97)00013-9
41 Xu Z X, Zuo D P, 2012. Assessment on blue and green water resources at different scales in the Wei River Basin.Special Issue of National Water Resources Rational Allocation and Optimal Scheduling Technology, 139-158. (in Chinese)
42 Xue X W, Hong Y, Limaye A Set al., 2013. Statistical and hydrological evaluation of TRMM-based multi-satellite precipitation analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal of Hydrology, 499: 91-99.
url: http://dx.doi.org/10.1016/j.jhydrol.2013.06.042
43 Yong B, Hong Y, Ren L Let al., 2012. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin.Journal of Geophysical Research - Atmospheres, 117: D09108.
44 Yu M Y, Chen X, Li L Het al., 2011. Streamflow simulation by SWAT using different precipitation sources in large arid basins with scarce raingauges.Water Resources Management, 25: 2669-2681.
url: http://dx.doi.org/10.1007/s11269-011-9832-z
45 Zak S K, Beven K J, 1999. Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads.Science of the Total Environment, 236(1-3): 191-124.
url: http://dx.doi.org/10.1016/S0048-9697(99)00282-X
46 Zeng H W, Li L J, Hu J M, 2013. Accuracy validation of TRMM multisatellite precipitation analysis daily precipitation products in the Lancang River Basin of China.Theoretical and Applied Climatology, 112: 389-401.
url: http://dx.doi.org/10.1007/s00704-012-0733-8
47 Zeng H W, Li L J, Li J Y, 2012. The evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) in drought monitoring in the Lancang River Basin.Journal of Geographical Sciences, 22(2): 273-282.
url: http://dx.doi.org/10.1007/s11442-012-0926-1
48 Zhan C S, Song X M, Xia Jet al., 2013. An efficient integrated approach for global sensitivity analysis of hydrological model parameters.Environmental Modelling and Software, 41: 39-52.
url: http://dx.doi.org/10.1016/j.envsoft.2012.10.009
49 Zhang Y Q, Chiew F H S, Zhang L, 2009. Use of remotely sensed actual evapotranspiration to improve rainfall-runoff modeling in southeast Australia.Journal of Hydrometeorology, 10: 969-980.
url: http://dx.doi.org/10.1175/2009JHM1061.1
50 Zhang Y Q, Martin W, 2007. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index.Journal of Hydrology, 370: 155-162.
51 Zuo D P, Xu Z X, Yang Het al., 2012. Spatiotemporal variations and abrupt changes of potential evapotranspiration and its sensitivity to key meteorological variables in the Wei River Basin, China.Hydrological Processes, 26: 1149-1160.
url: http://dx.doi.org/10.1002/hyp.8206
[1] Jun LI,Changming LIU,Zhonggen WANG,Kang LIANG. Two universal runoff yield models: SCS vs. LCM[J]. Journal of Geographical Sciences, 2015, 25(3): 311-318.
[2] ROSI Ascanio, SEGONI Samuele, CATANI Filippo, CASAGLI Nicola. Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy)[J]. Journal of Geographical Sciences, 2012, 22(4): 617-629.
[3] LI Zijun, LI Xiubin, XU Zhimei. Impacts of water conservancy and soil conservation measures on annual runoff in the Chaohe River Basin during 1961–2005[J]. Journal of Geographical Sciences, 2010, 20(6): 947-960.
[4] XU Jing-Ji, YANG Cong, LIU Chang-Meng, SONG Xian-Fang, HU Shan-Shan, LI Fa-Dong, TANG Chang-Yuan. Slope runoff study in situ using rainfall simulator in mountainous area of North China[J]. Journal of Geographical Sciences, 2009, 19(4): 461-470.
[5] ZHANG Zi-Yin, GONG Dao-Yi, HU Miao, GUO Dong, HE Hua-Zhao, LEI Yang-Na. Anomalous winter temperature and precipitation events in southern China[J]. Journal of Geographical Sciences, 2009, 19(4): 471-488.
[6] LI Daofeng, TIAN Ying, LIU Changming, HAO Fanghua. Impact of land-cover and climate changes on runoff of the source regions of the Yellow River[J]. Journal of Geographical Sciences, 2004, 14(3): 330-338.
[7] BAI Jingyu, XU Xiangde. Atmospheric hydrological budget with its effects over Tibetan Plateau[J]. Journal of Geographical Sciences, 2004, 14(1): 81-86.
[8] SUN Rui, LIU Chang-ming, ZHU Qi-jiang. Dynamic change of net primary productivity and fractional vegetation cover in the Yellow River Basin using multi-temporal AVHRR NDVI Data[J]. Journal of Geographical Sciences, 2002, 12(1): 29-34.
[9] GONG Dao-yi, ZHU Jin-hong, WANG Shao-wu. Flooding 1990s along the Yangtze River, has it concern of global warming?[J]. Journal of Geographical Sciences, 2001, 11(1): 43-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd