Journal of Geographical Sciences ›› 2014, Vol. 24 ›› Issue (4): 612-630.doi: 10.1007/s11442-014-1109-z
• Research Articles • Previous Articles Next Articles
Shaojian WANG1,2(), Chuanglin FANG1,*(
), Haitao MA1, Yang WANG3, Jing QIN1,2
Received:
2013-05-07
Accepted:
2013-11-18
Online:
2014-04-20
Published:
2014-04-20
Contact:
Chuanglin FANG
E-mail:1987wangshaojian@163.com;fangcl@igsnrr.ac.cn
About author:
Author: Wang Shaojian (1986-), PhD Candidate, specialized in land use and resources & urban geography. E-mail:
Supported by:
Shaojian WANG, Chuanglin FANG, Haitao MA, Yang WANG, Jing QIN. Spatial differences and multi-mechanism of carbon footprint based on GWR model in provincial China[J].Journal of Geographical Sciences, 2014, 24(4): 612-630.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Total carbon footprint and per capita carbon footprint in provincial China in 2010"
Provincial region | Carbon footprint (108 t) | Per capita carbon footprint (t) | Provincial region | Carbon footprint (108 t) | Per capita carbon footprint (t) | ||
---|---|---|---|---|---|---|---|
Beijing | 2.16 | 11.01 | Henan | 5.54 | 5.89 | ||
Tianjin | 1.46 | 10.28 | Hubei | 3.47 | 6.06 | ||
Hebei | 6.35 | 8.84 | Hunan | 3.80 | 5.79 | ||
Shanxi | 4.84 | 13.55 | Guangdong | 5.28 | 5.06 | ||
Inner Mongolia | 4.77 | 19.31 | Guangxi | 2.62 | 5.69 | ||
Liaoning | 4.59 | 8.49 | Hainan | 0.78 | 8.99 | ||
Jilin | 4.38 | 15.95 | Chongqing | 1.55 | 5.37 | ||
Heilongjiang | 3.25 | 8.48 | Sichuan | 3.46 | 4.30 | ||
Shanghai | 2.36 | 10.25 | Guizhou | 2.56 | 7.37 | ||
Jiangsu | 5.81 | 7.39 | Yunnan | 2.30 | 5.00 | ||
Zhejiang | 3.83 | 7.04 | Shaanxi | 2.95 | 7.90 | ||
Anhui | 3.06 | 5.14 | Gansu | 1.36 | 5.32 | ||
Fujian | 2.03 | 5.50 | Qinghai | 0.43 | 7.64 | ||
Jiangxi | 2.57 | 5.77 | Ningxia | 1.03 | 16.35 | ||
Shandong | 6.55 | 6.84 | Xinjiang | 2.04 | 9.35 |
Figure 3
The spatial distribution of five potential determinants in 2010 Notes: energy structure (dominant energy share of total energy consumption), energy efficiency (per unit GDP energy consumption, t/104 yuan), urbanization (urban population/total population), economy factor (per capita GDP, yuan) and population factor (population size, 104 persons)"
Table 2
Descriptive statistics of five factors in 2010"
Sstructure (%) | Fefficiency (t/104 yuan) | Uurbanization (%) | Reconomy (104 yuan) | Ppopulation (104 persons) | |
---|---|---|---|---|---|
Minimum | 43.48 | 0.29 | 29.9 | 13119.00 | 562.67 |
Mean | 77.57 | 0.95 | 49.82 | 33964.10 | 4432.58 |
Maximum | 95.03 | 2.62 | 88.6 | 76074.00 | 10430.31 |
Standard deviation | 14.75 | 0.57 | 14.29 | 17343.43 | 2707.25 |
Table 3
Global regression analyses (OLS model) in 2010"
OLS model | ||||
---|---|---|---|---|
Coefficient | Standard error | t/z-value | Pr(>|t|) | |
CONSTANT | 0.04598533 | 0.07577884 | -0.606836 | 0.5490287 |
Sstructure | 0.1226138 | 0.2005283 | -0.6114537 | 0.1460138 |
Fefficiency | -0.4224572 | 0.1843807 | 2.29122313 | 0.0299797 |
Uurbanization | 0.0091527 | 0.1504661 | -0.0608201 | 0.0519423 |
Reconomy | 0.8650346 | 0.0990884 | 2.67472845 | 0.0125450 |
Ppopulation | 0.4778324 | 0.1223842 | 7.17277265 | 0.0000001 |
Adjusted R-squared: 0.775289, F-statistic: 23.081 on 2 and 27DF, p-value: 5.67195e-009 |
Table 4
Global regression analyses (spatial error model) in 2010"
Spatial error model | ||||
---|---|---|---|---|
Coefficient | Standard error | t/z-value | Pr(>|t|) | |
CONSTANT | 0.0153703 | 0.0589723 | -0.2606363 | 0.1943731 |
Sstructure | 0.0038843 | 0.1456612 | 0.02666697 | 0.0787253 |
Fefficiency | -0.2229032 | 0.1366329 | 1.63140212 | 0.0028055 |
Uurbanization | 0.0069441 | 0.1119279 | 0.06204101 | 0.1505300 |
Reconomy | 0.8142238 | 0.0931959 | 1.22563354 | 0.0000000 |
Ppopulation | 0.4292908 | 0.0918455 | 9.02919169 | 0.0000001 |
Lambda: 0.787422 LR test value: 8.502896, p-value: 0.0035458, Log likelihood: 27.077155 for error model, AIC: 67.543 (AIC for OLS: 79.231), Robust Lagrange Multiplier test: 2.5314, on 1 DF, p-value: 0.0367 |
Table 5
Global regression analyses (spatial lag model) in 2010"
Spatial lag model | ||||
---|---|---|---|---|
Coefficient | Standard error | t/z-value | Pr(>|t|) | |
CONSTANT | 0.06978879 | 0.0646215 | -1.079962 | 0.2801591 |
Sstructure | 0.2301915 | 0.1820049 | -1.264755 | 0.2059594 |
Fefficiency | -0.4195918 | 0.1568021 | 2.675932 | 0.0074523 |
Uurbanization | 0.0692413 | 0.1309372 | 0.528814 | 0.0969344 |
Reconomy | 0.8338999 | 0.0913506 | 1.465779 | 0.0000086 |
Ppopulation | 0.5362292 | 0.1035332 | 8.076922 | 0.0000000 |
Rho: 0.287546 LR test value: 4.866677, p-value: 0.0273802, Log likelihood: 25.259 for lag model, AIC: 56.5181 (AIC for OLS: 79.231) Robust Lagrange multiplier test:24.328, on 1 DF, p-value: 0.000002354 |
Table 7
Summary of mixed GWR models for different variables in 2010"
The mixed GWR model | ||||
---|---|---|---|---|
Coefficient | Standard error | t/z-value | Pr(>|t|) | |
CONSTANT | 0.0956437 | 0.0446845 | 1.255213 | 0.214675 |
Sstructure | 0.2541348 | 0.0820820 | -1.112547 | 0.064572 |
Fefficiency | -0.6278633 | 0.2568357 | 2.364672 | 0.036743 |
Uurbanization | 0.1859435 | 0.1409965 | 0.867456 | 0.043675 |
Recomomy | 0.5726534 | 0.0613432 | 0.472894 | 0.002672 |
Ppopulation | 0.7435687 | 0.0035566 | 2.047683 | 0.000000 |
Table 8
Comparison of results with other authors"
Author | Carbon footprint (109 tons) | Year | Reference |
---|---|---|---|
Wei Baoren | 1.282 | 2005 | Wei, 2007 |
Liu Qiang | 1.51 | 2005 | Liu et al., 2008 |
Xu Guangyue | 1.66 | 2006 | Xu, 2010 |
Zhao Rongqin | 1.647 | 2007 | Zhao et al., 2011 |
Shi Minjun | 6.01 | 2007 | Shi et al., 2012 |
Chuai Xiaowei | 2.05 | 2008 | Chuai et al., 2012 |
This paper | 9.72 | 2010 |
1 | Brunsdon C, Fotheringham A S, Charlton M, 1996. Geographically weighted regression: A method for exploring spatial nonstationarity.Geographical Analysis, 28(4): 281-298. |
2 | Brunsdon C, Fotheringham A S, Charlton M, 1998. Spatial nonstationarity and autoregressive models.Environment and Planning A, 30(6): 957-973. |
3 | Brunsdon C, Fotheringham A S, Charlton M, 2002. Geographically weighted summary statistics: A framework for localized exploratory data analysis. Computers,Environment and Urban Systems, 26(6): 501-524. |
4 | Casler S D, Rose A, 1998. Carbon dioxide emissions in the U.S. economy: A structural decomposition analysis.Environmental and Resource Economics, 11(4): 349-363. |
5 | Chang Y F, Lin S J, 1998. Structural decomposition of industrial CO2 emission in Taiwan: An input-output approach.Energy Policy, 26(1): 5-12. |
6 | Chen Lin, 2013. A study on the factors affecting carbon emissions in China: Based on input-output model.Sino-Global Energy, 18(1): 17-22. (in Chinese) |
7 | Chuai X W, Lai L, Huang X Jet al., 2012. Temporospatial changes of carbon footprint based on energy consumption in China.Journal of Geographical Sciences, 22(1): 110-124. |
8 | Druckman A, Jackson T, 2009. The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model.Ecological Economics, 68(7): 2066-2077. |
9 | Du Tingting, Mao Feng, Luo Rui, 2007. The analysis between China’s economic growth and the evolution of the carbon emission.China Population, Resources and Environment, 17(2): 94-99. (in Chinese) |
10 | Duro J A, Padilla E, 2006. International Inequalities in per capita CO2 emissions: A decomposition methodology by Kaya factors.Energy Economics, 28(2): 170-187. |
11 | Fan Jie, Li Pingxing, Liang Yutian, 2010. Framework of final consumption oriented research on carbon footprints.Advances in Earth Science, 25(1): 62-70. (in Chinese) |
12 | Fotheringham A S, Brunsdon C, Charlton M, 2002. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Chichester, UK: John Wiley and Sons. |
13 | Gilbert A, Chakraborty J, 2010. Using geographically weighted regression for environmental justice analysis: Cumulative cancer risks from air toxics in Florida.Social Science Research, 40(1): 273-286. |
14 | Hong X, 2011. The calculation of carbon emissions of Shandong Province and the comparison with the national average.Energy Procedia, 5: 1514-1518. |
15 | Hu M G, Li Z J, Wang J Fet al., 2012. Determinants of the incidence of hand, foot, and mouth disease in China using geographically weighted regression models.PLoS ONE, 7(6): e38978. |
16 | IPCC, 2008. Summary for Policymakers of Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. |
17 | Janssens I A, Freibauer A, Ciais Pet al., 2003. Europe’s terrestrial bio-sphere absorbs 7 to 12% of European anthropogenic CO2 emission. Science, 300: 1538-1542. |
18 | Jeffrey Q, Chambers, Jeremy Iet al., 2007. Hurricane Katrina’s carbon footprint on U.S. gulf coast forest.Science, 318(16): 1107. |
19 | Jiao Wenxian, Chen Xingpeng, Jia Zhao, 2012. Carbon footprint change of energy consumption in Gansu Province and its influencing factors.Resources Sciences, 34(3): 559-565. (in Chinese) |
20 | Kees V, Kornelis B, 1995. The direct and indirect energy requirements of households in the Nether lands.Energy Policy, 23: 893-910. |
21 | Kenny T, Gray N F, 2009. Comparative performance of six carbon footprint models for use in Ireland.Environmental Impact Assessment Review, 29(1): 1-6. |
22 | Lee K H, 2011. Integrating carbon footprint into supply chain management: The case of Hyundai Motor Company (HMC) in the automobile industry.Journal of Cleaner Production, 19(11): 1216-1223. |
23 | Lin Boqiang, Jiang Zhujun, 2009. The prediction and influencing factors analysis of environmental Kuznets curve for CO2 emissions in China.Management World, 4: 27-36. (in Chinese) |
24 | Liu Hongguang, Liu Weidong, 2009. Decomposition of energy-induced CO2 emissions in industry of China.Progress in Geography, 28(2): 285-292. (in Chinese) |
25 | Liu Hui, Cheng Shengkui, Zhang Lei, 2002. The international latest research of the impacts of human activities on carbon emissions.Progress in Geography, 21(5): 420-429. (in Chinese) |
26 | Liu Qiang, Zhuang X, Jiang K Jet al., 2008. Energy and carbon embodied in main exporting goods of China.China Industrial Economy, (8): 46-55. (in Chinese) |
27 | Liu Yanhua, Ge Quansheng, He Fanneng, 2008. Countermeasures against international pressure of reducing CO2 emissions and analysis on China’s potential of CO2 emission reduction.Acta Geographica Sinica, 63(7): 675-682. (in Chinese) |
28 | MacMinn C W, Juanes R, 2009. A mathematical model of the footprint of the CO2 plume during and after injection in deep saline aquifer systems.Energy Procedia, 1(1): 3429-3436. |
29 | Munoz P, Steininger K W, 2010. Austria’s CO2 responsibility and the carbon content of its international trade.Ecological Economics, 69(10): 2003-2019. |
30 | Padgett J P, Steinemann A C, Clarke J H, 2008. A comparison of carbon calculators. Environmental Impact Assessment Review, 28(2/3): 106-115. |
31 | Peng Junming, Wu Renhai, 2012. Decomposition of Pearl River Delta’s carbon emissions based on LMDI method.China Population, Resources and Environment, 22(2): 69-74. (in Chinese) |
32 | Piao S L, Fang J Y, Ciais Pet al., 2009. The carbon balance of terrestrial ecosystems in China. Nature, 458: 1099-1014. |
33 | Piecyk M I, McKinnon A C, 2010. Forecasting the carbon footprint of road freight transport in 2020.Production Economics, 128(1): 31-42. |
34 | Pierucci S, 2009. PRES 2007: Carbon footprint and emission minimization, integration and management of energy sources, industrial application and case studies.Energy, 33: 1477-1479. |
35 | Rawski T G, 2001. What is happening to China’s GDP statistics?China Economic Review, 12(4): 347-354. |
36 | Shi Minjun, Wang Yan, Zhang Zhuoyinget al., 2012. Regional carbon footprint and interregional transfer of carbon emissions in China.Acta Geographica Sinica, 67(10): 1327-1338. (in Chinese) |
37 | Shimada K, Tanaka Y, Gomi Ket al., 2007. Developing a long-term local society design methodology towards a low-carbon economy: An application to Shiga Prefecture in Japan. Energy Policy, 35(6): 4688-4703. |
38 | Soytasa U, Sari R, Ewing B T, 2007. Energy consumption, income, and carbon emissions in the United States.Ecological Economics, 62(3/4): 482-489. |
39 | Tobler W R, 1970. A computer movie simulating urban growth in the Detroit Region.Economic Geography, 46: 234-240. |
40 | Wackernagel M, Rees W, 1996. Our Ecological Footprint Reducing Human Impact on the Earth. Gabriola Island, BC:New Society Publishers. |
41 | Wang J, Liu X, Christakos Get al., 2010. Assessing local determinants of neural tube defects in the Heshun Region, Shanxi Province, China.BMC Public Health, 10: 52. |
42 | Wei Baoren, 2007. Energy Demand and Scenario Analysis of CO2 Emission in China. Beijing: China Environmental Science Press, 75. (in Chinese) |
43 | Wei Y H D, Yu D L, Cheng X J, 2011. Scale, agglomeration, and regional inequality in provincial China.Tijdschrift voor Economische en Social Geografie, 102(4): 406-425. |
44 | Wei Yiming, Liu Lancui, Fan Ying et al., 2008. China Energy Report (2008): CO2 Emissions Research. Beijing: Science Press, 31. (in Chinese) |
45 | Wiedmann T, 2009. A first empirical comparison of energy eootprints embodied in trade -MRIO versus PLUM.Ecological Economics, 68(7): 1975-1990. |
46 | Wright L, Kemp S, Williams I, 2011. ‘Carbon footprinting’: Towards a universally accepted definition.Carbon Management, 2(1): 61-72. |
47 | Xu Guangyue, 2010. The research on the relationship for energy consumption, carbon emissions and economic growth in China [D]. Wuhan: Huazhong University of Science and Technology, 64. (in Chinese) |
48 | Xu Guoquan, Liu Zeyuan, Jiang Zhaohua, 2006. Decomposition model and empirical study of carbon emission for China, 1995-2004.China Population, Resources and Environment, 16(6): 158-161. (in Chinese) |
49 | Zhang Lei, 2006. A changing pattern of regional CO2 emissions in China.Geographical Research, 25(1): 1-9. (in Chinese) |
50 | Zhang Zhuoying, Shi Minjun, 2011. Intra-industrial trade and interregional structural isomorphism of manufacturing industry based on China-IRIO 2002.Acta Geographica Sinica, 66(6): 732-740. (in Chinese) |
51 | Zhao Rongqin, Huang Xianjin, Zhong Taiyang, 2010. Research on carbon emission intensity and carbon footprint of different industrial spaces in China.Acta Geographica Sinica, 65(9): 1048-1057. (in Chinese) |
52 | Zhao Rongqin, Huang Xianjin, Zhong Taiyanget al., 2011. Carbon footprint of different industrial spaces based on energy consumption in China.Journal of Geographical Sciences, 21(2): 285-300. |
53 | Zhu Qin, Peng Xizhe, Lu Zhiminget al., 2009. Factors decomposition and empirical analysis of variations in energy carbon emission in China.Resources Science, 31(12): 2072-2079. (in Chinese) |
54 | Zou Xiuping, Song Dunjiang, 2013. Analysis on the regional gaps of the carbon emissions and its impact factors in China.Green Economy, (1): 52-55. (in Chinese) |
[1] | WEI Wei, GUO Zecheng, SHI Peiji, ZHOU Liang, WANG Xufeng, LI Zhenya, PANG Sufei, XIE Binbin. Spatiotemporal changes of land desertification sensitivity in northwest China from 2000 to 2017 [J]. Journal of Geographical Sciences, 2021, 31(1): 46-68. |
[2] | MA Bin, ZHANG Bo, JIA Lige. Spatio-temporal variation in China’s climatic seasons from 1951 to 2017 [J]. Journal of Geographical Sciences, 2020, 30(9): 1387-1400. |
[3] | LIU Xiaojing, LIU Dianfeng, ZHAO Hongzhuo, HE Jianhua, LIU Yaolin. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China [J]. Journal of Geographical Sciences, 2020, 30(9): 1419-1435. |
[4] | WU Li, SUN Xiaoling, SUN Wei, ZHU Cheng, ZHU Tongxin, LU Shuguang, ZHOU Hui, GUO Qingchun, GUAN Houchun, XIE Wei, KE Rui, LIN Guiping. Evolution of Neolithic site distribution (9.0-4.0 ka BP) in Anhui, East China [J]. Journal of Geographical Sciences, 2020, 30(9): 1451-1466. |
[5] | YE Chao, LI Simeng, ZHANG Zhao, ZHU Xiaodan. A comparison and case analysis between domestic and overseas industrial parks of China since the Belt and Road Initiative [J]. Journal of Geographical Sciences, 2020, 30(8): 1266-1282. |
[6] | WANG Xueqin, LIU Shenghe, QI Wei. Mega-towns in China: Their spatial distribution features and growth mechanisms [J]. Journal of Geographical Sciences, 2020, 30(7): 1060-1082. |
[7] | YANG Fan, HE Fanneng, LI Meijiao, LI Shicheng. Evaluating the reliability of global historical land use scenarios for forest data in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1083-1094. |
[8] | LIU Ruiqing, XU Hao, LI Jialin, PU Ruiliang, SUN Chao, CAO Luodan, JIANG Yimei, TIAN Peng, WANG Lijia, GONG Hongbo. Ecosystem service valuation of bays in East China Sea and its response to sea reclamation activities [J]. Journal of Geographical Sciences, 2020, 30(7): 1095-1116. |
[9] | FANG Chuanglin, WANG Zhenbo, LIU Haimeng. Beautiful China Initiative: Human-nature harmony theory, evaluation index system and application [J]. Journal of Geographical Sciences, 2020, 30(5): 691-704. |
[10] | CHEN Mingxing, LIANG Longwu, WANG Zhenbo, ZHANG Wenzhong, YU Jianhui, LIANG Yi. Geographical thoughts on the relationship between ‘Beautiful China’ and land spatial planning [J]. Journal of Geographical Sciences, 2020, 30(5): 705-723. |
[11] | TANG Zhipeng, MEI Ziao, LIU Weidong, XIA Yan. Identification of the key factors affecting Chinese carbon intensity and their historical trends using random forest algorithm [J]. Journal of Geographical Sciences, 2020, 30(5): 743-756. |
[12] | WANG Shaojian, GAO Shuang, HUANG Yongyuan, SHI Chenyi. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends [J]. Journal of Geographical Sciences, 2020, 30(5): 757-774. |
[13] | SONG Zhouying, ZHU Qiaoling. Spatio-temporal pattern and driving forces of urbanization in China’s border areas [J]. Journal of Geographical Sciences, 2020, 30(5): 775-793. |
[14] | ZHAO Ting, BAI Hongying, YUAN Yuan, DENG Chenhui, QI Guizeng, ZHAI Danping. Spatio-temporal differentiation of climate warming (1959-2016) in the middle Qinling Mountains of China [J]. Journal of Geographical Sciences, 2020, 30(4): 657-668. |
[15] | WANG Jiayue, XIN Liangjie, WANG Yahui. How farmers’ non-agricultural employment affects rural land circulation in China? [J]. Journal of Geographical Sciences, 2020, 30(3): 378-400. |
|