Andres T H, 1997. Sampling methods and sensitivity analysis for large parameter sets. Journal of Statistical Computation and Simulation, 57(1-4): 77-110.
Ascough II J C, Green T R, Ma L et al., 2005. Key criteria and selection of sensitivity analysis methods applied to natural resource models. In: International Congress on Modeling and Simulation Proceedings. Salt Lake City, UT, November 6-11, 2005: 2463-2469.
Bahremand A, De Smedt F, 2008. Distributed hydrological and sensitivity analysis in Torysa watershed, Slovakia. Water Resources Management, 22: 393-408.
Brockmann D, Morgenroth E, 2007. Comparing global sensitivity analysis for a biofilm model for two-step nitrification using the qualitative screening method of Morris or the quantitative variance-based Fourier Amplitude Sensitivity Test (FAST). Water Science & Technology, 56(8): 85-93.
Campolongo F, Cariboni J, Saltelli A, 2007. An effective screening design for sensitivity analysis of large models. Environmental Modelling and Software, 22: 1509-1518.
Cui Q A, He Z, Che J G, 2006. SVM-based nonparametric dual response surface methodology. Journal of Tianjin University, 39(8): 1008-1014. (in Chinese)
Engeland K, Xu C Y, Gottschalk L, 2005. Assessing uncertainties in a conceptual water balance model using Bayesian methodology. Hydrological Sciences Journal, 50(1): 45-63.
Fieberg J, Jenkins K J, 2005. Assessing uncertainty in ecological systems using global sensitivity analyses: A case example of simulated wolf reintroduction effects on elk. Ecological Modeling, 187: 259-280.
Frey H C, Patil S R, 2002. Identification and review of sensitivity analysis methods. Risk Analysis, 22(3): 553-578.
Fu Xiang, Chu Xuefeng, Tan Guangming, 2010. Sensitivity analysis for an infiltration-runoff model with parameter uncertainty. Journal of Hydrologic Engineering, 15(9): 243-251.
Ginot V, Gaba S, Beaudouin R et al., 2006. Combined use of local and ANOVA-based global sensitivity analyses for the investigation of a stochastic dynamic model: Application to the case study of an individual-based model of a fish population. Ecological Modeling, 193: 479-491.
Hamby D M, 1994. A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment, 32(2): 135-154.
He Z, Cui Q A, 2006. A study on the small sample response surface methodology based on SVM. Industrial Engineering Journal, 9(5): 6-10, 27. (in Chinese)
Helton J C, Johnson J D, Sallaberry C J et al., 2006. Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering and System Safety, 91: 1175-1209.
Jakeman A J, Letcher R A, Norton J P, 2006. Ten iterative steps in development and evaluation of environmental models. Environmental Modelling & Software, 21(5): 602-614.
Lenhart T, Eckhardt K, Fohrer N et al., 2002. Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, 27: 645-654.
Liu Y, Sun F, 2010. Sensitivity analysis and automatic calibration of a rainfall-runoff model using multi- objectives. Ecological Informatics, 5: 304-310.
McKay M D, 1995. Evaluating prediction uncertainty. Los Alamos National Laboratory Technical Report NUREG/CR-6311, LA-12915-MS.
Myers R H, Montgomery D C, Vining G G et al., 2004. Response surface methodology: A retrospective and literature review. Journal of Quality Technology, 36(1): 53-77.
Pappenberger F, Beven K J, Ratto M et al., 2008. Multi-method global sensitivity of flood inundation models. Advances in Water Resources, 31: 1-14.
Plischke E, 2010. An effective algorithm for computing global sensitivity indices (EASI). Reliability Engineering and System Safety, 95: 354-360.
Ratto M, Pagano A, Young P, 2007. State dependent parameter metamodelling and sensitivity analysis. Computer Physics Communications, 177: 863-876.
Ren Q W, Chen Y B, Shu X J, 2010a. Global sensitivity analysis of Xinanjiang model parameter based on Extend FAST method. Acta Scientiarum Naturalium Universitatis Sunyatseni, 49(3): 127-134. (in Chinese)
Ren Q W, Chen Y B, Zhou H L et al., 2010b. Global sensitivity analysis of TOPMODEL parameters based on Sobol method. Yangtze River, 41(19): 91-94, 107. (in Chinese)
Saltelli A, Tarantola S, Campolongo F et al., 2004. Sensitivity Analysis in Practice: A Guide to Assessing Scientific
Models. John Wiley & Sons, Ltd.
Sathyanarayanamurthy H, Chinnam R B, 2009. Metamodels for variable importance decomposition with applications to probabilistic engineering design. Computers & Industrial Engineering, 57: 996-1007. Sobol’ I, 1993. Sensitivity analysis for non-linear mathematical models. Mathematical Modeling & Computational
Experiment (English Translation), 1: 407-414.
Song X M, Kong F Z, 2010. Application of Xinanjiang model coupling with artificial neural networks. Bulletin of Soil and Water Conservation, 30(6): 135-138, 144. (in Chinese)
Song X M, Zhan C S, Kong F Z et al., 2011a. A review on uncertainty analysis of large-scale hydrological cycle modeling system. Acta Geographica Sinica, 66(3): 396-406. (in Chinese)
Song X M, Zhan C S, Kong F Z et al., 2011b. Advances in the study of uncertainty quantification of large-scale hydrological modeling system. Journal of Geographical Sciences, 21(5): 801-819.
Stephens D W, Gorissen D, Crombecq K et al., 2011. Surrogate based sensitivity analysis of process equipment. Applied Mathematical Modelling, 35: 1676-1687.
Tang Y, Reed P, van Werkhoven K et al., 2007 Advancing the identification and evaluation of distributed rainfall- runoff models using global sensitivity analysis. Water Resources Research, 43(6): W06415.
Tong C, 2010. Self-validated variance-based methods for sensitivity analysis of model outputs. Reliability Engineering and System Safety, 95(3): 301-309. van Griensven A, Meixner T, Grunwald S et al., 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment model. Journal of Hydrology, 324(1-4): 10-23.
Wang G S, Xia J, Chen J F, 2010. A multi-parameter sensitivity and uncertainty analysis method to evaluate relative importance of parameters and model performance. Geographical Research, 29(2): 263-270. (in Chinese)
Warmink J J, Janssen J A E B, Booij M J et al., 2010. Identification and classification of uncertainties in the application of environmental models. Environmental Modelling & Software, 25(12): 1518-1527.
Xia J, Wang G S, Lv A F et al., 2003. A research on distributed time variant gain modeling. Acta Geographica Sinica, 58(5): 789-796. (in Chinese)
Xia J, Wang G S, Tan G et al., 2005. Development of distributed time-variant gain model for nonlinear hydrological systems. Science in China (Series D), 48(6): 713-723.
Xia J, Ye A Z, Qiao Y F et al., 2007. An application research on distributed time-variant gain hydrological model in Wuding River of Yellow River. Journal of Basic Science and Engineering, 2007, 15(4): 457-465. (in Chinese)
Xu C, Gertner G, 2007. Extending a global sensitivity analysis technique to models with correlated parameters. Computational Statistics & Data Analysis, 51(12): 5579-5590. |