模态框(Modal)标题

在这里添加一些文本

模态框(Modal)标题

  • 期刊
  • 文章
  • 图表
  • 检索
EN中文
  • 首页
  • 关于期刊
    • 期刊介绍
    • 数据库收录
    • 期刊荣誉
  • 编委会
  • 投稿指南
  • 在线期刊
    • 当期目录
    • 优先出版
    • 过刊浏览
    • 推荐文章
    • 专题
    • 按栏目浏览
    • 阅读排行
    • 下载排行
    • 引用排行
    • E-mail Alert
    • RSS
  • 期刊订阅
  • 广告合作
  • 联系我们
EN中文

图/表 详细信息

Investigating nonlinear factors influencing multi-scale urban land surface temperature using machine learning models
SHI Yue, FAN Qiang, SUN Shuang, SONG Xiaonan, ZHANG Bing
地理学报(英文版), 2025, 35(9): 1998-2014.   DOI: 10.1007/s11442-025-2400-x

Figure 2 Spatial variation map of influencing factors in Shenyang for 2020 (Note: Owing to space limitations, only the spatial distribution of the influencing factors for 2020 is shown.)
本文的其它图/表
  • Figure 1 Location of Shenyang city, Liaoning province, Northeast China (Note: With the map approval number GS(2024)0650, the base map remains unmodified.)
  • Table 1 Classification rules for different temperature zones
  • Table 2 Landscape index and its significance
  • Table 3 Factors influencing LST
  • Figure 3 Mean standard deviation classification map of LST in Shenyang for 2005, 2010, 2015 and 2020
  • Table 4 Area and proportion of temperature classifications
  • Figure 4 Pearson’s analysis results at different scales for 2005, 2010, 2015 and 2020 (*p < 0.05, ** p < 0.01)
  • Figure 5 Training and test set results
  • Figure 6 Significance ranking of factors (The size of the symbols represents the strength of the influence, while the colour gradient visually illustrates the impact of each factor on LST.)

网站版权 © 《地理学报(英文版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发