
J. Geogr. Sci. 2019, 29(3): 432-448 
DOI: https://doi.org/10.1007/s11442-019-1608-z 

© 2019    Science Press    Springer-Verlag 

                    
Received: 2018-07-12  Accepted: 2018-08-17 
Foundation: National Basic Research Program of China, No.2015CB452702; National Natural Science Foundation of 

China, No.41671098, No.41530749; “Strategic Priority Research Program” of the Chinese Academy of Sci-
ences, No.XDA20020202; Open Foundation of Laboratory for Earth Surface Processes (LESP) Ministry of 
Education 

Author: Hou Wenjuan, PhD, specialized in research on karst ecosystem services. E-mail: houwj.13b@igsnrr.ac.cn 
*Corresponding author: Gao Jiangbo, PhD, E-mail: gaojiangbo@igsnrr.ac.cn 

   www.geogsci.com   www.springerlink.com/content/1009-637x 

Simulating runoff generation and its spatial  
correlation with environmental factors  
in Sancha River Basin:  
The southern source of the Wujiang River 
HOU Wenjuan, *GAO Jiangbo 

Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Re-
sources Research, CAS, Beijing 100101, China 

 

Abstract: Runoff generation is an important part of water retention service, and also plays an 
important role on soil and water retention. Under the background of the ecosystem degrada-
tion, which was caused by the vulnerable karst ecosystem combined with human activity, it is 
necessary to understand the spatial pattern and impact factors of runoff generation in the 
karst region. The typical karst peak-cluster depression basin was selected as the study area. 
And the calibrated and verified Soil and Water Assessment Tool (SWAT) was the main tech-
niques to simulate the runoff generation in the typical karst basin. Further, the spatial vari-
ability of total/surface/groundwater runoff was analyzed along with the methods of gradient 
analysis and local regression. Results indicated that the law of spatial difference was obvious, 
and the total runoff coefficients were 70.0%. The groundwater runoff was rich, about 2–3 
times the surface runoff. Terrain is a significant factor contributing to macroscopic control 
effect on the runoff service, where the total and groundwater runoff increased significantly 
with the rising elevation and slope. The distribution characteristics of vegetation have great 
effects on surface runoff. There were spatial differences between the forest land in the up-
stream and orchard land in the downstream, in turn the surface runoff presented a turning 
point due to the influence of vegetation. Moreover, the results of spatial overlay analysis 
showed that the highest value of total and groundwater runoff was distributed in the forest 
land. It is not only owing to the stronger soil water retention capacity of forest ecosystem, and 
geologic feature of rapid infiltration in this region, but also reflected the combining effects on 
the land cover types and topographical features. Overall, this study will promote the devel-
opment and innovation of ecosystem services fields in the karst region, and further provide a 
theoretical foundation for ecosystem restoration and reconstruction. 

Keywords: runoff generation; SWAT; spatial variation; impact factors; karst ecosystem 



HOU Wenjuan et al.: Runoff generation and its spatial correlation with environmental factors in Sancha River Basin 433 

 

 

1  Introduction 
Ecosystem services refer to the environmental conditions and utility provided and main-
tained by ecosystems, on which humans rely for survival and development (Daily, 1997). 
Bridging the natural and social systems, ecosystem services are a key research topic in 
ecology and geography, and receive significant attention from researchers and scientific or-
ganizations (Fu et al., 2013; Fu and Zhang, 2014; Li, 2014). According to their utility, eco-
system services can be classified into supporting, provisioning, regulating, and cultural ser-
vices (Costanza et al., 1997; Fu and Yu, 2016). The Millennium Ecosystem Assessment 
Report, however, highlighted that 60% of key ecosystem service items around the world 
have deteriorated since the late 20th century (among 24 global ecosystem services evaluated, 
15 of them are deteriorating) and problems related to regulating services have become more 
severe (MEA, 2005). Water retention is an important ecosystem service that covers water 
supply and regulation. It plays an essential role in many aspects, such as maintaining eco-
logical safety and ensuring a high quality of life for humans. Due to water cycle processes and 
water mass balances, different water retention indicators are closely related and interact with 
each other (Liu and Du, 1985). For example, water generation (i.e. water resource provisioning 
services) significantly affects other services such as soil moisture regulation and flood regula-
tion and storage. 

In southwest China, special geologic conditions and interconnected surface and subsur-
face hydrological systems result in fragile karst ecosystems. Global climate change and an-
thropogenic interference have led to serious vegetation deterioration and accelerated soil 
erosion, which eventually resulted in rocky desertification (Pan and Lu, 2010; Li et al., 
2016). This severely hinders sustainable development and ecological civilization construc-
tion in southwest China (Yuan, 2015). Soil and water loss is the core issue behind rocky de-
sertification (Bai and Wang, 2011), soil and water conservation (soil moisture retention and 
soil conservation) in karst areas is critical to prevent rocky desertification and to promote 
ecological restoration. Runoff processes provide water resources for humans and are essen-
tial for soil moisture and soil conservation. Studies on runoff generation services in typical 
karst areas are beneficial for strengthening the water-retention and soil-fixing capacity in 
karst areas, and enable analysis of the weighted relationship between runoff generation and 
soil moisture retention, providing theoretical evidence for rocky desertification control and 
ecological restoration. 

At present, studies on the karst runoff generation focus either on the macroscopic scale, 
where the total volume and value of water retention are calculated using empirical formulae 
or value equivalent methods based on water balance theories (Zhang et al., 2011), or at the 
plot scale, where dynamic pattern analysis of eco-hydrological processes (Chen et al., 2013; 
Dai et al., 2017) reveals the factors contributing to runoff processes (Hu et al., 2012). How-
ever, highly heterogeneous landscapes in karst areas lead to remarkable spatial differences in 
runoff generation. It is difficult to upscale the empirical patterns observed at observation 
plots to the regional scale. Empirical formulae and value equivalent methods also do not 
consider the physical mechanisms and spatial patterns of runoff volumes (Zhang et al., 
2013), which should be the main focus in karst areas with relatively high landscape frag-
mentation. Conversely, the Soil and Water Assessment Tool (SWAT) model is based on 
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physical mechanisms and depicts some processes using empirical models. Thus, it is widely 
employed in runoff studies under different environments (Zhou et al., 2013; Lv et al., 2014; 
Xu et al., 2015). In particular, its simplified calculation method makes the SWAT model 
somewhat applicable to karst areas, where the underlying surface conditions are complicated, 
and hydrogeological conditions are unusual (Wang et al., 2014; Tian et al., 2016). Therefore, 
this study uses the SWAT model to simulate runoff generation services in a typical karst 
drainage basin. Spatial variation characteristics are examined by various topographic back-
ground and land cover systems in order to promote the development of karst ecosystem ser-
vices research, and to provide theoretical support for regional sustainable development. 

2  Study area 
The Sancha River is a primary tributary of the southern source of the Wujiang River, lying 
between 104°54′–106°24′E and 26°06′–27°00′N with a drainage area of 4681 km2. It originates 
from Wumeng Mountain in west Guizhou. In Dongfeng Reservoir in Qianxi county, Bijie city, 
the Sancha River joins the Liuchong River, a primary tributary of the northern source of the 
Wujiang River, to form the Yachi River in the midstream of the Wujiang River. The Sancha 
drainage basin is situated in northwest Guizhou, which is a typical karst peak-cluster depres-
sion region. The area exhibits unique hydrogeological structures, thin and discontinuous sur-
face soils, rapid hydrological processes, and uneven spatial distributions of water and land 
resources (Wang et al., 2004). Fragile eco-geological environments, together with anthro-
pogenic interference, have led to severe rocky desertification in the region. Recently, the first 
stage of a comprehensive rocky desertification mitigation project has been completed, and has 
proven to be effective. However, related research is lagging behind project progress. 

The drainage basin is higher in the west and lower in the east, and elevation ranges be-
tween 911 and 2330 m. Land use types include forest, orchard, farmland, grassland, com-
mercial land, and industrial and mining storage. Most of the basin is covered by forests, 
which occupy 45% of the entire region, and orchards rank second (25%). Farmland and 
grassland cover relatively small areas. Because both commercial land and land for industry 
and mining are dominated by human activities, they are combined into one group. According 
to land use remote sensing data from 1990 to 2010, there have been no significant dynamic 
changes in land use in the Sancha River Basin. Changes in farmland, grassland, woodland, 
and unused land are between –0.2% and 9%. 

 
Figure 1  Map showing basic information of the Sancha River Basin (SCH: Sancha River; WJ: Wujiang River) 
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3  Materials and methods 

3.1  Data preparation 

Meteorological data, soil data, and DEM are the input data for the model simulation. Hy-
drologic data are used to verify the simulated effect. The rationality and accuracy of the in-
put data are all very important for the simulation performance of the model. 

3.1.1  Meteorological data 

The meteorological database comprises daily measurements collected at Anshun weather 
station by the China Meteorological Data Service Center (http://cdc.cma.gov.cn/home.do). 
The database includes daily average temperature, precipitation, average wind speed, relative 
humidity, and sunshine duration. In addition, because this study focuses on runoff simula-
tions, which are more prone to the influence of precipitation, four precipitation stations in 
the Sancha River Basin were selected for precipitation data. These stations are located at 
Bide, Machang, Santang, and Qibo. Measurements at the precipitation stations were col-
lected from the Institute of Geographic Sciences and Natural Resources Research, Chinese 
Academy of Sciences (CAS): Hydrological Yearbook of the People’s Republic of China – the 
Wujiang River Region of Yangtze River Basin. Basic information from weather and precipi-
tation stations is shown in Table 1. 

Table 1  Information for meteorological and rainfall stations 

Station types Station name Latitude Longitude Elevation (m) River system Period 

Meteorological 
station 

Anshun 26º15´ 105º54´ 1431 — 

Bide 26º34´ 105º10´ 1500 — 

Machang 26º19´ 105º33´ 1320 — 

Santang 26º35´ 105º33´ 1588 — 

Precipitation 
station 

Qibo 26º34´ 106º10´ 990 — 

Yangchang 26º39´ 105º11´ — Sancha River 

Longchangqiao 26º23´ 105º47´ — Sancha River 

Hongjiadu 26º52´ 105º52´ — Liuchonghe 

Hydrological 
station 

Yachihe 26º51´ 106º09´ — Wujiang 
River 

Preheat year: 
2006–2007; 
Calibration 

year: 
2008–2010; 
Validation 

year: 
2011–2013 

3.1.2  Hydrological data 

According to the Yangtze River Basin record in the Hydrological Yearbook of the People’s 
Republic of China (Ministry of Water Resources of the People’s Republic of China), there 
are two hydrological stations in the Sancha River Basin: the Yangchang station and the 
Longchangqiao station, which are located in the upstream and midstream regions, respec-
tively. Runoff data from hydrological stations in the discharge areas of the basin are required 
for model calibration, so Hongjiadu station (at the Liuchong River mouth) and Yachi station 
(in the mainstream of the Wujiang River, where the Liuchong River and Sancha River con-
verge) were selected. Daily and monthly average runoff data from the Yangchang, Long-
changqiao, Hongjiadu, and Yachi stations were used to calibrate and validate the SWAT 
model. Information about these stations is listed in Table 1. 
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3.1.3  Remote sensing data 

Remote sensing data include digital elevation model (DEM) data, land use data, and soil 
data, which include soil types and associated physical and chemical properties. The Nor-
malized Difference Vegetation Index (NDVI) was adopted for the spatial statistical analysis 
of runoff model simulation results. DEM data at 1 km resolution were obtained from the 
HYDRO1K database at the U.S. Geological Survey (USGS) EROS Center (http://eros.usgs. 
ov/#/Find_Data/Products_and_Data_Available/HYDRO1K). The 1:100,000 scale land use 
vector data of 2010 obtained from the Resources and Environmental Science Data Center, 
CAS (Liu et al., 2014) were applied. Soil data were collected from the Harmonized World 
Database version 1.1 (HWSD), established jointly by the Food and Agriculture Organization 
of the United Nations (FAO) and the International Institute for Applied System Analysis 
(IIASA) (Fischer et al., 2008). The main soil properties include soil type according to the 
FAO90 soil classification scheme, reference depth, and physical (such as gravel volume 
percentage, sand/silt/clay content, and effective moisture content) and chemical properties 
(namely organic carbon content and cation exchange capacity). NDVI data and the Moderate 
Resolution Imaging Spectroradiometer (MODIS) product (http://ladsweb.ascom. asa.gov/) 
from 2005–2010 were used, with temporal and spatial resolutions of 16 d and 500 m, re-
spectively. Vegetation index data were mainly used to study the statistical spatial relation-
ship between land cover and runoff generation in the river basin. NDVI in the Sancha River 
Basin is higher in the west and lower in the east, showing a banded spatial distribution (Fig-
ure 2). 

 
Figure 2  Spatial pattern of NDVI and index of landscape fragmentation in the Sancha River Basin 

3.2  SWAT model introduction 

This study used the SWAT model, which was calibrated and validated using measured runoff 
data from hydrological stations. It was then utilized to simulate runoff generation in a typical 
karst river basin, including total runoff, surface runoff, and groundwater runoff. The water 
cycle in the model was based on various hydrological variables: 
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where SWt denotes the final soil moisture content (mm); SW0 denotes the initial soil moisture 
content on the i th day (mm); t represents the time (d); Rday represents the precipitation on 
the ith day (mm); Qsurf is the surface runoff on the ith day (mm); Ea is the evapotranspiration 
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on the i the day (mm); Wseep denotes the water seepage from the soil profile to the vadose 
zone (mm); and Qgw denotes the baseflow returned on the i th day (mm). 

Compared to other hydrological models (distributed and conceptual hydrologic models), 
the SWAT model is more favorable because it is based on hydrological processes and is 
more efficient due to easily obtained parameters. For example, the MIKE SHE hydrological 
model comprehensively considers hydrological processes, boundary conditions, and the spa-
tial heterogeneity of collective characteristics in river basins; however, it is difficult to col-
lect data on underlying surfaces and hydrogeological conditions (McMichael et al., 2006). 
The TOPMODEL model has a simple structure and demands fewer parameters, but it does 
not thoroughly consider the spatial heterogeneity of hydrological elements, and the coupled 
relationships between hydrological units (Beven et al., 1984). In the SWAT model, runoff 
simulation is performed using different modules (surface runoff, groundwater, and river 
confluence). For surface runoff, this study employs the relatively mature SCS curve number 
method (empirical model), which is a function of soil permeability, land use, and antecedent 
soil moisture conditions. The soil permeability is predominantly calculated according to the 
physical and chemical properties of different soil types in the karst area, which can reasona-
bly reflect actual soil permeability in the region. Different land use types will affect runoff 
by changing surface evaporation, soil moisture conditions, and interception of land cover. As 
an input data point, the land use types in the river basin are eventually reflected by the SCS 
curve number. Studies have indicated that surface runoff will occur after the precipitation 
depth reaches 40 mm in karst areas (Peng and Wang, 2012). Therefore, antecedent soil 
moisture conditions are also a key factor influencing surface runoff in typical karst river ba-
sins. Groundwater runoff was calculated using water mass balance equations of shallow and 
deep aquifers. The volume was calculated based on different movement processes, and each 
module was controlled by the corresponding parameters. Groundwater runoff simulation 
results in karst areas are generally affected by factors such as the baseflow alpha factor 
(ALPHA_BF, a direct indicator of groundwater runoff in response to recharge variations) 
and threshold water depth in the shallow aquifer for flow (GWQMN). 
3.2.1  Data preparation and model construction 

(1) Construction of spatial database 
Coordinate systems of different spatial data were consolidated (Krasovsky_1940_Albers) 

through ArcGIS using the .img data format. According to the land use data classification in 
the SWAT model, land use raster data were re-classified and converted to codes defined by 
the model. The 1:1,000,000 soil data for the Sancha River Basin underwent projection con-
version, and special situations in the attribute tables were determined according to previous 
research experience.  

(2) Preparation of attribute database 
Soil database. The major parameters required by “USERSOIL” in the SWAT database are 

soil physical and chemical properties. Physical properties include mechanical composition, 
saturated hydraulic conductivity, and available water capacity, and chemical properties in-
clude organic carbon content, electrical conductivity, and others. Some parameters were ob-
tained from the HWSD soil database, for example, soil layer thickness and organic carbon 
content, and saturated hydraulic conductivity and available water content were calculated 
using software (SPAW) or empirical equations. 
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Meteorological database. For each weather station, the .DBF documents of daily precipi-
tation, daily maximum and minimum temperatures, solar radiation, average wind speed, and 
relative humidity were established. Meanwhile, a geographic information document (.DBF) 
of weather and precipitation stations was created to link the location map of the weather sta-
tions with the meteorological database. 

Land use and soil index table. The index table links the SWAT attribute data with the spa-
tial distribution maps of land use and soil type. 

3.2.2  Sensitivity analysis and parameter calibration of SWAT model 

This study utilizes measured runoff data from the Yangchang, Longchangqiao, Yachi, and 
Hongjiadu hydrological stations for parameter sensitivity analyses and model calibration and 
validation. Parameter sensitivity analyses were performed using the LH-OAT method em-
bedded in the model and measured runoff data from hydrological stations. The results are 
shown in Table 2, which demonstrates that the most influential parameters for the runoff 
simulation were: the initial curve number (II) value (CN2), which controls surface hydro-
logical processes under soil moisture condition II (moderately moist soils); available water 
capacity (SOL_AWC); the soil evaporation compensation factor (ESCO); maximum canopy 
storage (CANMX); baseflow alpha factor (ALPHA_BF), which controls subsurface hydro-
logical processes; the groundwater delay time (GW_DELAY); threshold water depth in the 
shallow aquifer for flow(GWQMN); and channel effective hydraulic conductivity (CH_K2), 
which controls the main stream confluence. Based on the parameter sensitivity results and 
actual hydrological processes, the adjustable parameters were CN2, SOL_AWC, ALPHA_BF, 
GWQMN, and CH_K2. These parameters were adjusted several times until the simulated 
values were close to the measured values. The final values for all parameters are listed in 
Table 2. For groundwater runoff, previous studies on subsurface hydrological processes in 
karst areas (recharge, runoff, and discharge) (Amatya et al., 2011; Chen et al., 2014) were 
examined. Parameters were adjusted and validated several times to ensure accurate simula-
tion results. Eventually, ALPHA_BF and GWQMN were set to 0.048–0.5 and 1000, respec-
tively. 

Table 2  Results of the sensitivity analysis and parameter calibration for the SWAT model 

Parameters Sensitivity 
rank Parameter value 

Physical significance Code Process YC LCQ CK Default 
range 

Adjustment 
range 

SCS runoff curve number under 
normal moisture conditions 

CN2 (.mgt) Surface runoff 2 3 5 35–98 50–98 

Soil available water content SOL_AWC (.sol) Soil moisture 9 11 8 0–1 0.05–0.16 

Baseflow alpha factor ALPHA_BF (.gw) Groundwater 5 14 15 0–1 0.048–0.5 

Threshold water level in the 
shallow aquifer for groundwater 
to enter the main stream (mm) 

GWQMN (.gw) Groundwater 7 4 4 0–5000 1000 

Channel effective hydraulic 
conductivity (mmh-1) 

CH_K2 (.rte) Interflow 6 1 1 0–150 0–25 

The Nash-Sutcliffe efficiency, Ens, coefficient of determination, r2, and hydrograph based 
on measured monthly runoff data for 2008–2010 were applied to evaluate the efficiency of 
the model and validate the calibration results. Ens values closer to 1 indicate simulation val-
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ues that are closer to the measured values. Ens was calculated as follows:  
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where Oi, O, Pi, and P are measured values, average measured values, simulated values, and 
average simulated values, respectively. It is generally believed that Ens within 0.5–0.65 in-
dicates acceptable simulation results. Ens values of 0.65–0.75 and above 0.75 signify rela-
tively good and excellent simulation results, respectively (Popov, 1979). 

The results suggest that simulated monthly average precipitation at Longchangqiao sta-
tion matches the measured values relatively well during the calibration period, with an Ens of 
0.82 and an R2 of 0.92 (Figure 3 and Table 3). During the validation period, Ens and R2 are 
0.90 and 0.93, respectively. The simulation agrees well with the measurement at Yangchang 
station during both calibration and validation periods, with corresponding Ens values of 0.70 
and 0.73. The simulation results are thus relatively good. In addition, from the hydrograph, 
the simulated and measured values at Yangchang and Longchangqiao stations are relatively 
coherent. Furthermore, simulation results at the basin outlet of both stations are not as good 
as those of Longchangqiao and Yangchang stations. The measured runoff in the discharge 
areas is estimated based on the difference between Yachi and Hongjiadu stations, which may 
contribute to the partial discrepancy.  
Table 3  Statistical indicators of model performance at the three different monitoring stations of the Sancha River 
Basin 

Calibration period (2008–2010) Validation period (2011–2013) 
Hydrological stations

Ens R2 Ens R2 

Yangchang 0.70 0.84 0.73 0.93 

Longchangqiao 0.82 0.92 0.90 0.95 

Basin outlet 0.64 0.92 0.50 0.78 

 
Figure 3  Simulated and observed monthly runoff at Yangchang (left) and Longchangqiao (right) station  
(Calibration period: 2008–2011; Verification period: 2011–2014) 

3.3  Landscape fragmentation index 

This study used the NDVI vegetation index to examine the spatial heterogeneity of runoff 
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generation, and the land use landscape fragmentation index to explain the spatial relation-
ship between runoff service spatial heterogeneity and runoff volumes. The degree of land-
scape fragmentation was measured using the effective mesh size (Jaeger, 2000), which refers 
to the average value of the continuous area of each land use type in a landscape. A small 
value denotes a less fragmented landscape. The landscape fragmentation index can spatially 
reflect the intensity of land use type variations among different hydrological response units 
(HRUs). In more fragmented areas, there are remarkable differences in land use types be-
tween neighboring HRUs. The index integrates ecological processes, landscape composi-
tions, and spatial patterns, and can therefore comprehensively and objectively express the 
degree of fragmentation (Gao and Cai, 2010). The equation is as follows: 

 2 2

1 1

1( ) ( )
n n

ij
eff j ij

i ij j

A
m j A A

A A 

     (3) 

where m(j), n, Aij, and Aj denote the effective mesh size of landscape j, the number of com-
plete patches in landscape j, the area of patch i in landscape j, and the area of landscape j, 
respectively. If the minimum of the index equals the size of the grid, it indicates that land 
use types are different for all neighboring grids. If the maximum equals the landscape area, 
it suggests that the landscape is of a homogeneous type. This study used the ‘moving win-
dow’ analysis (research amplitude) in the landscape pattern analyzing software 
FRAGSTATS (McGarigal and Marks, 1995) to compute the effective mesh size.  

Based on the 30-m land use data (2010) in the Sancha River Basin (Figure 2b), it demon-
strates that areas with high and low landscape fragmentation indices are scattered all over 
the region. The total area of low-value (highly fragmented) regions is larger than that of 
high-value regions. High-value areas are mainly located along the upstream region with 
higher elevations and less anthropogenic interference. Low-value areas are concentrated in 
the mid- and downstream regions.  

3.4  Geographically weighted regression 

Geographically Weighted Regression (GWR), proposed by Brunsdon et al. (1996; 1998), is 
a simple and practical local spatial analysis technique. GWR depicts the internal spatial rela-
tionships in the study area. In this study, it was used to reveal the spatial relationships of 
runoff volume with landscape fragmentation indices and the NDVI vegetation index under 
linear non-stationary conditions. The GWR model is an extension of the traditional regres-
sion model. It uses the spatial locations of data as one of the parameters, and evaluates spa-
tial variations in independent variable–dependent variable relationships through using pa-
rameters. 

The basic form of the GWR model is: 

 0
1

( , ) ( , )
p

i i i k i i ik i
k
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

    (4)
 

where (μi, vi) and k represent the coordinates of the ith sampling point and the number of in-
dependent variables, respectively; yi, xik, and εi are the independent variables (total, surface, 
and groundwater runoff volumes), dependent variables (landscape fragmentation index and 
NDVI), and random errors at regression point i, respectively. β0(μi, vi) and βk(μi, vi) denote the 
intercept and slope of the GWR model at regression point i, respectively. The parameters can 
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be estimated using the following formula: 
 1( , ) ( ( , ) ) ( , )T T

i i i i i iX W X X W Y        (5) 
where β(μi, vi) and W(μi, vi) are, respectively, the unbiased estimator of the regression coeffi-
cient and the spatial weighting matrix, which is the core of the GWR model; the weight in-
creases when the observation point is closer to the defined point. X and Y are the matrices for 
independent and dependent variables, respectively.  

The Gaussian Spatial Weight function is universal, and its expression formula is as fol-
lows: 
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where ωij, dij, and b denote the weight of observation point j, the Euclidean distance between 
regression point i and observation point j, and the non-negative attenuation parameter de-
scribing the weight-distance function relationship (also called bandwidth), respectively. When 
the distance between observation points is greater than b, the weight rapidly approaches 0.  

4  Results and analysis 
4.1  Spatial pattern of runoff services in the Sancha River Basin 

The spatial patterns of runoff generation in the Sancha River Basin, including total runoff 
volume (TOTAQ), surface runoff (SURQ), and groundwater runoff (GWQ), are obtained 
using the SWAT model. In addition, because evapotranspiration significantly affects water 
balance, this study also analyzes the simulation results of actual evapotranspiration (ET). 
The average total runoff volume over the study period is higher in the north and lower in the 
south of the Sancha River Basin (Figure 4a), and fluctuates within 510–1177 mm, with an 
average of 826.4 mm. The total runoff coefficient reaches 70%. Areas with higher total run-
off volumes (900–1100 mm) are mostly located in the east and the north, and cover 22% of 
the basin. The total runoff volume in the south of the basin is smaller and mostly within 
500–700 mm.  

The overall surface runoff is relatively low in the river basin, with an average value of 
276 mm, and shows remarkable spatial heterogeneity. The surface runoff coefficient is 
23.9%. Surface runoff in 50% of the river basin is between 0 and 300 mm, and mainly lo-
cated in the southern portion. Areas with more than 300 mm runoff are scattered in the east 
and the north. This is because the Sancha River Basin is situated in a typical karst area, and 
surface runoff patterns are highly heterogeneous. The unique surface-subsurface binary hy-
drological structures cause a considerable amount of surface water loss to the subsurface. 
Hence, there is relatively abundant subsurface runoff in the river basin (Figure 4c). Ap-
proximately 60%–70% of the region has an underground runoff volume of 500–700 mm. 
Underground runoff volume in upstream areas is typically over 500 mm. 

The actual evapotranspiration amounts show no significant differences over the river ba-
sin. Most areas in upstream and downstream regions experience evapotranspiration of 
100–300 mm (Figure 4d), covering 53% of the total area. Evapotranspiration is 300–500 mm 
in certain parts of central and southern regions. Compared to the spatial patterns of different 
runoff types, the distribution of actual evapotranspiration is relatively homogeneous in the 
Sancha River Basin. This is because evapotranspiration is mostly influenced by temperature,  
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Figure 4  Spatial pattern of TOTAQ (a), SURQ (b), GWQ (c), and ET (d) in the Sancha River Basin 

precipitation, wind speed, and vegetation type (Borba et al., 2012). The DEM data (Figure 1) 
show 70% of the area is within the range of 900 to 1500 m and no remarkable differences in 
temperature and wind speeds over the study area. Coniferous forests and shrubs are the 
dominant vegetation types (more than 80%), which results in relatively low spatial hetero-
geneity of evapotranspiration. 

4.2  Gradient analysis of runoff generation based on topographic factors 

Elevation in the Sancha River Basin ranges between 911 and 2330 m. The corresponding 
average values and coefficients of variation for the total runoff volume, surface runoff, un-
derground runoff, and actual evapotranspiration at elevation gradients of 911–1000 m, 
1000–1500 m, and 1500–2330 m are obtained. Figure 4 and Table 4 show that variations in 
the total runoff volume with elevation are small (803–882 mm), and fluctuations in the coef-
ficient of variation are insignificant (0.09–0.21), while surface runoff variations are rela-
tively large. At elevations of 911–1000 m, the surface runoff is 401 mm and the coefficient 
of variation is 0.52. As the elevation increases, the surface runoff decreases to 154 mm and 
the coefficient of variation increases to 0.85. The average value of underground runoff 
gradually increases at higher elevation. The actual evapotranspiration exhibits no difference 
at different elevation gradients. In general, elevation has significant effects on surface and 
underground runoff in the Sancha River Basin. The percentage of underground runoff in-
creases with elevation, while that of surface runoff decreases.  

The gradient analysis of slope (Table 4) indicates that the total runoff volume increases on 
steeper slopes. The surface runoff first increases and then decreases with increasing slope. It 
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reaches a maximum (319 mm) on slopes from 5–10°. For a slope range of 0–10°, the surface 
runoff increases with slope. The force in the water layer along the slope surface increases, 
and the pressure perpendicular to the slope surface decreases. This leads to a smaller infil-
tration rate and greater surface runoff. As the slope becomes steeper, the vertical action force 
exerted by precipitation on the ground surface is smaller, and soil crust formation is slower, 
resulting in less surface runoff. This is similar to the law of runoff generation on karst slopes 
studied by Hu et al. (2012), whereby groundwater runoff essentially increases on steeper 
slopes. The highest runoff value is 629 mm. For steeper slopes, the vertical action force ex-
erted by precipitation on the ground surface is smaller, and underground runoff increases at 
slower rates (Wu and Zhang, 2006). In different slope ranges, the average actual evapotran-
spiration fluctuates between 222 and 259 mm.  

Table 4  Runoff and evapotranspiration based on different elevations of hydrological response units (HRUs)  
in the Sancha River Basin 

Terrain factors Total flow 
(mm) 

Surface runoff 
(mm) 

Groundwater 
(mm) 

Evapotranspiration 
(mm) 

Element Gradient Percentage 
area Average CV Average CV Average CV Average CV 

911–1000 1.8% 882 0.09 401 0.52 481 0.52 212 0.28 

1000–1500 64.2% 803 0.17 310 0.75 493 0.48 251 0.27 
Elevation 

(m) 
1500–2330 34.0% 882 0.15 154 0.85 591 0.42 245 0.27 

0–5 61.9% 825 0.17 301 0.80 523 0.46 253 0.27 

5–10 24.5% 838 0.16 319 0.72 519 0.46 241 0.27 

10–15 12.3% 881 0.15 303 0.75 578 0.49 227 0.27 
Slope (°) 

15–24 1.3% 863 0.21 233 0.85 629 0.44 222 0.28 

4.3  Spatial statistical relationship between land cover and runoff services 

4.3.1  Statistical characteristics of runoff services under different land cover conditions 

Vegetation cover influences runoff by reducing the kinetic energy of raindrops, intercepting 
precipitation, modifying soil crusts, and altering soil infiltration capacity (Wu and Zhang, 
2006). The total runoff volumes are similar for the five land use types, and all fluctuations 
are within 718–850 mm. Total runoff volumes for grassland are slightly lower. There are 
relatively significant differences in surface and underground runoff among the different land 
use types. In particular, industrial and commercial land experiences the highest surface run-
off (544 mm), followed by farmland. Commercial and industrial land is dominated by heavy 
human activities and impermeable layers in urban areas, which substantially weaken the 
capacity of soil to retain and store water. Consequently, most precipitation becomes surface 
runoff. Meanwhile, underground runoff shows the opposite trend. It accounts for more than 
70% of the total runoff in orchard and forest land underground, and is the highest in forests 
(628 mm). Soils in forests have better physical structures, higher permeability, and the lit-
terfall excels at retaining water (Shi and Li, 2001). Moreover, forests are often located in 
higher-altitude and steeper regions.  

Vegetation cover conditions affect the hydrological processes and runoff generation in the 
river basin by changing surface evaporation, soil moisture conditions, and interception of 
land cover. The NDVI in the Sancha River Basin is divided into three classes: <0.5, 0.5–0.7, 
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and >0.7, and the corresponding runoff for each NDVI gradient is analyzed. Figure 5 shows 
that the total runoff and underground runoff increase with higher NDVI, while the surface 
runoff increases at first but subsequently decreases (259-319-282 mm). This is because im-
proved vegetation cover conditions reduce with limits resulting in water loss, which is due to 
surface-subsurface binary hydrological structures. As NDVI continues to rise, interception 
by the vegetation canopy increases and transpiration becomes stronger, and the soils can 
retain and store more water, which decreases surface runoff. 

 
Figure 5  Runoff generation of different land use types in the Sancha River Basin 

4.3.2  Spatial correlation between landscape fragmentation, vegetation cover, and runoff 
generation 

Based on the GWR model, the landscape fragmentation index (meff), and NDVI, the local 
spatial relationships between land cover and different runoff volume variations are analyzed 
at the HRU scale (Figure 6). To ensure accurate characterization of macroscopic patterns and 
local details over the entire study area, R2 and residual sum of squares of regression models 
are employed as criteria to determine the optimal bandwidth, which is 7 km. The Gaussian 
function is selected as the weight function. The total runoff volume and the landscape frag-
mentation index in the Sancha River Basin show mostly positive correlations. Areas with 
positive correlations occupy 96.5% of the entire region. Negative correlations mainly occur 
in limited areas in the southeast. Areas with strong positive spatial correlations are located in 
the south and northeast. The spatial regression relationship between underground runoff vo-
lume and the landscape fragmentation index is similar to that of the total runoff volume. 
99.9% of the river basin shows positive correlations, and correlations gradually weaken from 
west to east. A relatively heterogeneous spatial relationship is noted between surface runoff 
and the landscape fragmentation index; they are mostly negatively correlated (74.2%) in 
western and central regions. Positive correlations are only observed in limited areas in the 
east and north. The actual evapotranspiration volume and the landscape fragmentation index 
demonstrate negative spatial correlations overall (96.9%). 

The spatial non-stationary relationship of the GWR regression coefficient between NDVI 
and runoff shows remarkable differences in the south and west (Figure 7). In the upstream 
and midstream regions of the Sancha River Basin, the total runoff volume and NDVI are 
mostly positively correlated, which accounts for 61.4% of the entire basin. The correlations 
become negative in the north and the downstream region. The spatial relationship between 
surface runoff and NDVI is relatively complex, and the positively and negatively correlated  
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Figure 6  Spatial pattern of regression coefficients using the GWR model of the landscape fragmentation index 
and water balance components in the Sancha River Basin (a. total flow, b. SURQ, c. GWQ, d. ET) 

 
Figure 7  Spatial pattern of regression coefficients using the GWR model of the NDVIand water balance com-
ponents in the Sancha River Basin (a. TOTAQ, b. SURQ, c. GWQ, d. ET) 
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areas are scattered throughout the basin. The positively correlated areas cover 67.3% of the 
entire region, and are mostly located in the western and central regions as well as the outlet 
of the basin. The underground runoff demonstrates negative correlations with NDVI for 
56.4% of the basin. Figures 6 and 7 jointly suggest that areas with relatively better ecologi-
cal background in the upstream region have higher elevation, less landscape fragmentation, 
greater NDVI, higher total runoff volume, more underground runoff, and less surface runoff. 
This indicates relatively effective ecological restoration. 52.5% of the basin shows negative 
correlations between actual evapotranspiration and NDVI, predominantly in the south and 
upstream regions. 

5  Conclusions and discussion  
Based on the calibrated SWAT model, the runoff services of typical karst basin were simu-
lated, and the spatial variability of different services were analyzed along with the methods 
of gradient analysis and local regression. The applicability of the SWAT model to the San-
cha River Basin was enhanced through sensitivity analyses and parameter calibration. The 
simulated average total runoff volume is higher in the north and lower in the south, and the 
total runoff coefficient of the basin is 70%. The surface runoff demonstrates remarkable 
spatial heterogeneity, and the overall value is relatively low. There is abundant underground 
runoff, which is closely related to the typical karst topography and surface-subsurface bi-
nary hydrological structures. Higher elevations and steeper slopes increase the percentages 
of total runoff and underground runoff. Vegetation cover conditions impose different influ-
ences on runoff generation. Relatively significant differences exist among the effects of 
vegetation cover types on surface runoff and underground runoff. NDVI is mostly posi-
tively correlated with surface runoff generation. Together with the influence of vegetation 
cover, steeper slopes cause surface runoff to first increase and then decrease. Spatial overlay 
analyses indicate that total runoff and underground runoff attain their maximum values in 
forests. This is because forest ecosystems have a stronger soil moisture retention capacity, 
and water can rapidly infiltrate into the soils in the study area. Moreover, because forests 
are mainly located at higher elevation, and the slopes are relatively steep, underground run-
off is formed easily. 

To summarize, in upstream regions of the Sancha River Basin, elevation is the dominant 
factor affecting total runoff volume and underground runoff, while land cover conditions 
determine the surface runoff volume. In downstream regions, both topography and eleva-
tion affect the total runoff volume and underground runoff. Specifically, orchards (56% of 
the total area) play an important role in retaining water and modifying evapotranspiration, 
affecting surface runoff. By studying runoff generation in a typical karst river basin, and 
their spatial variation characteristics, it is concluded that specifically designed ecological 
restoration measures (Grain to Green Project in upstream regions, and garden construction 
in downstream regions) can enhance the total water retention in the region, and reduce the 
surface runoff volume, therefore strengthening the regional soil conservation capability. 
Eventually, the capacity of carbon fixation in forests in upstream regions will increase, and 
the wellbeing for downstream areas can be improved. 

This study makes full use of the fact that a semi-distributed hydrological model (SWAT) 
is based on hydrological processes and requires easily obtainable input data. The most in-
fluential parameters for runoff simulation in karst river basins, namely CN2 and 
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ALPHA_BF, were adjusted to attain a final Nash-Sutcliffe efficiency above 0.7. The objec-
tive of this study was to analyze the spatial patterns of runoff in the Sancha River Basin, 
and the spatial statistical relationships with different environmental factors. After parameter 
calibration and validation, the SWAT model can effectively achieve this goal. Therefore, the 
SWAT model was employed to simulate the spatial patterns of runoff generation services 
during the study period. Subsequently, based on the quantification of landscape fragmenta-
tion, the GWR model was used to quantitatively examine the spatial correlations between 
land cover conditions and runoff generation. This study therefore fills the gap in previous 
research that solely analyzed runoff characteristics based on statistical surveys on different 
land use types and landscape indices (Lin et al., 2014), and which lacked information on 
relevant macroscopic patterns. Moreover, although the SWAT model provides superior si-
mulation results after parameter calibration and validation, it is hard to completely avoid 
equifinality due to the extremely complex hydrological processes and hundreds of parame-
ters involved. It is possible that the final simulation results are satisfactory only because 
some combinations of parameters reach the ideal levels. Hence, in future, meticulous opti-
mization of hydrological process simulation should be performed, considering the special 
hydrogeological conditions in karst areas, so that the model better depicts actual hydrological 
processes in the study area. 
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