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Abstract: Increasing soil organic carbon (SOC) sequestration is not only an efficient method 
to address climate change problems but also a useful way to improve land productivity. It has 
been reported by many studies that land-use changes can significantly influence the se-
questration of SOC. However, the SOC sequestration potential (SOCP, the difference be-
tween the saturation and the existing content of SOC) caused by land-use change, and the 
effects of land-use optimization on the SOCP are still not well understood. In this research, we 
modeled the effects of land-use optimization on SOCP in Beijing. We simulated three 
land-use optimization scenarios (uncontrolled scenario, scale control scenario, and spatial 
restriction scenario) and assessed their effects on SOCP. The total SOCP (0–20 cm) in Bei-
jing in 2010 was estimated as 23.82 Tg C or 18.27 t C/ha. In the uncontrolled scenario, the 
built-up land area of Beijing would increase by 951 km2 from 2010 to 2030, and the SOCP 
would decrease by 1.73 Tg C. In the scale control scenario, the built-up land area would de-
crease by 25 km2 and the SOCP would increase by 0.07 Tg C from 2010 to 2030. Compared 
to the uncontrolled scenario, the SOCP in 2030 of Beijing would increase by 0.77 Tg C or 
0.64 t C/ha in the spatial restriction scenario. This research provides evidence to guide plan-
ning authorities in conducting land-use optimization strategies and estimating their effects on 
the carbon sequestration function of land-use systems. 
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1  Introduction 

The soil organic carbon (SOC) pool is the largest carbon pool in the global terrestrial eco-
system (about 1550 Gt) (Lal, 2004). The SOC level represents a dynamic carbon equilibrium 
of input from photosynthetic carbon and output through organic matter erosion, soil respira-
tion, and leaching (Chapin III et al., 2011). SOC sequestration refers to the transfer of CO2 
in the atmospheric system into the SOC pool for safe storage (Lal, 2004). SOC sequestration 
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is not only an important process in global carbon cycling, but also a key process in improv-
ing the quality of soils (West and Post, 2002; Armstrong et al., 2003; Lal, 2004; Pan et al., 
2004; Blair et al., 2006). However, the carbon holding capacity of soil is limited by both the 
carbon input and the stabilization mechanisms of soil organic matter (Six et al., 2002). The 
concept of soil carbon saturation has been proposed, analyzed, and estimated in many 
studies (Stewart et al., 2008; Du et al., 2014). On the basis of the observation of long-term 
field experiments in Africa, Asia, Australia, Europe, and America (Grant et al., 2001; Bayer 
et al., 2006; Kamoni et al., 2007; Yang et al., 2007; Young et al., 2009; Angers et al., 2011), 
it has also been proved that the saturation of SOC does occur. The SOC content will show 
little or no significant changes when the existing SOC level achieves saturation. The satura-
tion of SOC is correlated with temperature, water input (precipitation and irrigation), and 
soil properties (Chung et al., 2008; Stewart et al., 2008). 

With the understanding of soil carbon saturation, SOC sequestration potential (SOCP) 
was used to evaluate the carbon sequestration function of land-use systems (Qin et al., 2013). 
SOCP refers to the soil carbon saturation deficit, i.e. the difference between the saturation 
and existing SOC level (Qin et al., 2013). Several process-level models, such as CENTURY 
(Ardö and Olsson, 2003; Lugato et al., 2014) and DNDC (Zhang et al., 2015), have been 
developed to estimate the SOCP. However, the limitation of the process-level model is that 
the site-specific parameters are usually not available in practice. Another commonly adopted 
method to estimate the SOCP is to upscale the SOCP from the specific site scale to the large 
area scale (Lal, 2002; Lu et al., 2009). This method ignores the heterogeneity of climate and 
soil conditions, which will determine the SOCP to some degree. In order to develop a prac-
tical approach to evaluate the SOC sequestration function of land-use systems, a statistical 
model was proposed to estimate the saturation level of SOC (Qin and Huang, 2010). The 
model was developed with the information from field experiments, and it has been widely 
adopted to estimate the SOCP of land-use systems (Qin et al., 2013). In previous studies, it 
was presumed that the structure and spatial distribution of land-use types would not change 
in the short or long term (Qin et al., 2013). This assumption is flawed since land-use systems 
continuously change in the real world (Foley et al., 2005; Wright and Wimberly, 2013). Par-
ticularly in China, the land-use system is experiencing dramatic changes under the force of 
urbanization and population growth (Liu et al., 2003). Soil sealing as a consequence of ur-
banization will decrease the SOCP (Munafò et al., 2013). Soil reconstruction as a conse-
quence of reclamation and afforestation will increase the SOCP (Ussiri and Lal, 2005). The 
SOCP is highly determined by land-use changes (Wang et al., 2016; Yang et al., 2017). Op-
timization of land-use change would contribute to improving the carbon sequestration func-
tion of land-use systems. 

Land-use change research has a long history and many simulation models have been de-
veloped (Veldkamp and Lambin, 2001; Han et al., 2005). The Markov chain (Al-sharif and 
Pradhan, 2014; Mondal et al., 2014) and the CLUE-S model (Verburg et al., 2002; Jiang et 
al., 2015) are very popular models. The Markov chain model was developed based on the 
historical knowledge of land-use changes. In this model, the transition probabilities between 
land-use types are assumed stable across time. The model has been applied to simulate 
land-use changes under the natural evolution process of land-use systems. The CLUE-S 
model was developed based on the driving factors of land-use, and combines the structural 
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and spatial allocation changes of land-use types. The model is applied to simulate both the 
structure and the spatial distribution change of land-use types. However, the conversion set-
ting of land-use types is partly empirical-based. This setting will increase uncertainties of 
simulation results and influence the application of the model. Since the empirical-based set-
ting in CLUE-S is highly related to the historical knowledge of land-use changes, develop-
ing a land-use change model coupling the CLUE-S concept and the historical knowledge of 
land-use changes would contribute to the application and performance of land-use change 
simulation. The major challenge in developing this model is to estimate the transition prob-
ability matrix based on the historical matrix and land-use optimization strategies, i.e. the 
scale control planning (the maximum of built-up land, the minimum of arable land, etc.). 

Land-use changes which affect the carbon sequestration function of land-use systems, are 
highly related to land-use optimization policies. It is necessary to model the effects of 
land-use changes on SOCP. This research will provide evidence to policy-makers and thus 
improve the SOC sequestration function of land-use systems. In the following sections of 
this article, we first describe the study area and data materials. Second, we introduce the 
land-use change simulation model and the SOCP estimating methods. Third, we validate the 
land-use change simulation method, make a multi-scenario simulation of land-use optimiza-
tion, and estimate the effects of land-use optimization on SOCP. Last, we propose the 
land-use optimization policies. 

2  Study area and data materials 

2.1  Study area 

Beijing, located in the north of the Northern China Plain, is the capital of China. It covers an 
area of approximately 16,800 km2. The geography in this region is characterized by alluvial 
plain in the south and east, and mountains and hills in the north and west (Wu et al., 2006). 
The average annual temperature ranges from 9.76  to 13.42 , and the average annual pr℃ ℃ e-
cipitation from 424 mm to 628 mm. In the last two decades, Beijing has experienced rapid 
population growth and urbanization processes. The population grew from 8.71 million in 
1978 to 21.70 million in 2015. Population growth brings huge demand for built-up areas. 
The built-up land area grew from 1461 km2 in 1990 to 2785 km2 in 2010. In the process, 
1288 km2 of arable land was converted to built-up land. Beijing is a typical region to study 
land-use changes in urbanization processes (Han et al., 2015). Since the carbon sequestra-
tion capability of land-use systems is reduced because of land-use changes in the urbaniza-
tion processes (Lal, 2004), and population growth leads to the high consumption of 
non-renewable energy (Zhao et al., 2017), Beijing is under high pressure of the carbon bal-
ance and pollution. In order to restrict urban expansion and improve the carbon sequestration 
function of land-use systems, it is necessary to couple land-use optimization and SOCP in 
this region.  

2.2  Data materials 

The land-use data of Beijing (1990, 2000, and 2010) was acquired from the Data Center for 
Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (Liu et al., 
2002). The data was interpreted from Landsat TM images with a man-machine interactive 
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method with an overall accuracy of 81% (Liu et al., 2002). The format of the database is 
grid with a spatial resolution of 100 m × 100 m (Figure 1). The spatial distribution data of 
the average annual temperature and precipitation from 1990 to 2010 was taken from the re-
cords of meteorological stations during this period (http://data.cma.cn/). The Kriging inter-
polation method was employed to translate the stations’ recorded data to spatial distribution 
maps with a spatial resolution of 100 m × 100 m (Appendix A). Spatial distribution maps of 
soil properties, including soil pH, soil clay, soil bulk density and SOC density, came from 
the China Soil Map (Fischer et al., 2008) (Appendix B). The data was obtained from the 
Cold and Arid Regions Sciences Data Center at Lanzhou (http://westdc.westgis.ac.cn) (Liu 
et al., 2006). The data was developed based on the Second National Soil Survey, which was 
conducted from the late 1970s to the early 1990s. 

 
Figure 1  Spatial distribution maps of land-use types in Beijing, 1990–2010 
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3  Methods 

3.1  Modeling of land-use changes 

3.1.1  Model framework 

There are two steps in simulating land-use change under different land-use optimization 
policies. The first step is to simulate the structure changes of land-use types at the regional 
scale. The second step is to simulate the spatial distribution change at the grid scale (Figure 2). 
In the first step, both the historical transition probability matrix and the scale control rules 
are developed to design the future transition matrix. In the second step, the future transition 
matrix of land-use change is spatially distributed based on the location suitability of land-use 
types and the spatial restriction rules. 

 

Figure 2  Model framework of land-use change simulation 

3.1.2  Structure change simulation of land use at the regional scale 

In this model, we assume that the uncontrolled land-use change is submitted to a Markov 
process (Weng, 2002) and the transition probability matrix is stable in different time states 
(Alqurashi et al., 2016). The future transition between land-use types can be simulated based 
on the historical transition probability matrix, which are described in Eqs.1 and 2. 
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where ph, hp  and pf refer to the historical transition probability matrix, the annual transi-

tion probability matrix from past state to current state and the transition probability matrix 
from current state to future state, respectively. m and n refer to the time step (year) from past 
state to current state, and current state to future state, respectively.  

Since the annual transition probability matrix cannot be directly acquired from the matrix 
multiplication, a gradient descent approach is employed to obtain the annual transition 
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probability matrix (Yao et al., 2016). The transitions between land-use types from the current 
state to future state and the land-use areas in the future state can be simulated with Eqs.3 and 4. 

 , , ,ij f i c ij fA A p   (3) 

 , ,j f i ij fA A   (4) 

where pij,f and Aij,f refer to the transition probability and transition area from land-use i to j 
from current state to future state, respectively. Ai, c and Aj, f refer to the area of land-use i in 
current state and the area of land-use j in future state, respectively. 

The scale control policy is a common strategy of land-use optimization. Since the 
land-use change is a flexible, stable and self-organized process (Verburg et al., 2002), we 
assumed that the uncontrolled transition matrix reflecting the historical knowledge of 
land-use changes, would self-adjust to meet the land-use demand of scale control policies 
with minimum cost (Duan et al., 2006). In this article, the cost is measured by the 
cross-entropy from the uncontrolled transition matrix to the controlled matrix. The object to 
derive the controlled matrix with scale control policies is to minimize the value of the 
cross-entropy cost (Eq.5). 

 ,
, *

1 1 ,

Min Min ln
n n

ij f
ij f

i j ij f

p
H p

p 

  
   

    
  (5) 

where pij, f and *
,ij fp  refer to the transition probabilities from land-use type of i to j in the 

controlled and uncontrolled matrixes, respectively. n refers to the number of land-use types. 
The constraint conditions can be described by Eqs.6 and 7. 
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where Dj represents the scale control value of land-use type j. 
The constraint optimization problem can be translated into a non-constraint optimization 

problem with the Lagrangian multiplier method (Bertsekas, 2014), and the translated project 
function can be described by Eq.8. 
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The function can be solved with the first optimal conditions, which can be described by 
Eqs.9–11. 
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3.1.3  Spatial allocation simulation 

On the basis of land transition matrix simulated at the region scale, the spatial allocation 
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module is employed to simulate the spatial allocation change at the grid scale. In this mod-
ule, the land-use specific location suitability of different land-use types and the spatial pro-
tection planning strategies were considered to derive the spatial allocation change (Figure 3).  

 

Figure 3  Spatial allocation module of land-use change simulation 

The land-use specific location suitability from current land-use type i to the target 
land-use type j at the specific location loc is determined by the location factors, i.e. soil tex-
ture, height, distance, etc., and the neighbor enrichment factors (Verburg et al., 2004) 
(Eqs.12 and 13).  
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where Sj,(loc,i) represents the logistics probability of the specific location loc changing from 
land-use type i to j, LX,(loc, i) represents the value vector of local driving factors such as slope, 
height, distance to main roads, etc., WL,X,j represents the weight vector corresponding to the 
value vector of local driving factors, NX,(loc,i) represents the value vector of neighbor enrich-
ment factors, and WN,X,j represents the weight vector of the neighbor enrichment vector. a 
represents the intercept value of the regression model. Nx,(loc,i) and nx,(loc,i) represent neighbor 
enrichment value of land-use type x and the number of grids with land-use type x in the 
neighborhood of land grid loc with land-use type of i, respectively; n(loc,i) represents the total 
amount of grids for all land-use types in the neighborhood of the land grid, Nx represents the 
amount of grids of land-use type x in the study area, and N represents the total amount of 
grids in the study area. 

The transition probability from current land-use type i to the target land-use type j at the 
specific location loc (Pj, (loc, i)) is determined by both the suitability and the spatial restriction 
rules (Eq.14). 
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where prt is equal to 0 when the specific location falls in the spatial protection zone, prt is 
equal to 1 when the specific location does not fall in the spatial protection zone. sgn refers to 
the sign function. |sgn(i-j)| equals 0 when i is equal to j, and equals 1 when i is not equal to j.  

Whether the specific location loc will change from current land-use type i to j is deter-
mined by whether the transition probability value at this location is greater than the break 
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value (Eq.15).  The original break value for all transition probabilities was set as 0.5. The 
aggregate number of change areas will be calculated for every iteration and the break value 
will be modified in the next iteration until the aggregate results of land-use changes at the 
grid scale meet the demand of transition matrix at the region scale (Eq.15). 
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where Bi, j, L represents the break value of land-use transition from i to j at step L. Σloc,i 
(Pj,(loc,i) >Bi, j, t) represents the amount of grids of land-use type i and the transition probabil-
ity to j is greater than the break value. Ti, j represents the demand transition number of grid from i 
to j which is determined by the structure change simulation module at the regional scale. 

3.2  Effects of land-use changes on SOCP 

The urbanization process, featuring land-use change from agricultural land or ecological 
land to built-up areas, will lead to decrease of SOCP due to soil sealing. On the contrary, 
reclamation or reforestation will lead to increase of SOCP due to the conversion from 
built-up land to agricultural or ecological land. In this article, we presumed that the land-use 
change between agricultural land and ecological land has no effects on SOCP. 

The assessment of SOCP first requires the calculation of the saturation and existing level 
of SOC (Eq.16) (Qin et al., 2013). The existing level of SOC is estimated based on the 
China Soil Map (Eq.17) (Pan et al., 2004). The saturation level of SOC is estimated based 
on the statistical model including precipitation, temperature, irrigation, and soil properties 
(Qin and Huang, 2010) (Eq.18). 

 P S ESOC SOC SOC   (16) 

 1(1 ) 10E CSOC SOC D BD F        (17) 

 0.021* 0.42 0.1140.5 98.8 39.6 4.1 27.7MT MW CL
SSOC e e e pH             (18) 

where SOCp and SOCS refer to the SOCP and the saturation level of SOC of soil, respec-
tively. SOCE refers to the existing level of SOC (t C/ha) and SOCC refers to the existing SOC 
concentration (g C/kg). D refers to the corresponding soil depth (20 cm). BD and F refer to 
the soil bulk density (g/cm3) and the soil gravel content (%), respectively. MT and MW refer 
to the mean annual temperature ( ) and water input (precipitation and irrigation for agr℃ i-
cultural land, precipitation for ecological land; unit: 100 mm), respectively. CL and pH refer 
to the soil clay fraction (%) and soil pH, respectively.  

4  Results 

4.1  Model validation 

4.1.1  Quantity validation 

The structure change of land-use systems was simulated based on the transition probability 
matrix. The probability matrix would remain stable with the historical matrix in the uncon-
trolled scenario. The uncontrolled matrix could self-adjust to meet the demand of the scale 
control scenario with minimum cost of cross-entropy. To validate the model, we adopted the 
transition probability matrix obtained from the historical matrix (1990–2000) and predicted 
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the structure of land-use types in 2010 with the uncontrolled scenario and scale-control sce-
nario, where the scale of built-up land would be controlled as the observed value in 2010. 
The NRMSE value was employed to evaluate the accuracy of the prediction by comparing 
the predicted area with the observed area of land-use types in Beijing, 2010 (Table 1).  

Table 1  Quantity validation of land-use structure simulated in 2010 

Uncontrolled scenario Scale control scenario 
Land-use type 

Observed area 
(ha) Predicted area (ha) Error (%) Predicted area (ha) Error (%) 

Built-up land 278464 283675 1.87 278464 – 

Agricultural land 444089 420205 –5.38 424308 –4.45 

Ecological land 918253 934608 1.78 935716 1.90 

NRMSE 0.0278 0.0249 

The absolute errors of quantity prediction of land-use types of the uncontrolled and 
scale-control scenarios range from 1.78% to 5.38%, and 1.90% to 4.45%, respectively. The 
NRMSE value of the scale control scenario is 0.0249, a little smaller than that in the uncon-
trolled scenario (0.0278). It can be concluded that the model is satisfied in the two scenarios. 
Furthermore, the accuracy would be improved with the cross-entropy optimization method 
when the scale of specific land-use type is controlled.  

4.1.2  Spatial validation 

In this research, the spatial allocation change of land-use types was simulated based on the 
structure change simulation at the region scale and the land-use specific suitability driven by 
the location and neighbor factors of land-use cells. To validate the spatial allocation accu-
racy of the model, we simulated the spatial land-use change from 2000 to 2010 based on the 
land-use map of 2000 and the transition probability matrix from 2000 to 2010. The kappa 
statistical approach with multi fuzzy radius 
(Duan et al., 2004; Pontius et al., 2008) was 
employed to validate the spatial simulation 
accuracy of the model.  

The kappa coefficient of different 
land-use types ranges from 0.79 to 0.93 via 
different fuzzy radius. The aggregate kappa 
coefficient ranges from 0.87 to 0.91. Both 
the specific kappa and the aggregate kappa 
show a positive correlation with the in-
crease of fuzzy radius (Figure 4). It can be 
concluded that spatial validation acquired 
satisfactory results at both the detailed and 
aggregate levels. 

4.2  Results of land-use change simulation 

4.2.1  Scenario setting 

Three scenarios were designed in this research to assess the effects of land-use optimization on 
the SOCP from 2010 to 2030 in Beijing. The uncontrolled scenario (UCS) was designed as the 

 

Figure 4  Kappa values of land-use simulation of Bei-
jing, 2010 
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basic scenario to simulate land-use changes following the historical trend of land-use changes. 
The scale control scenario (SCS) was designed to simulate land-use changes in which the 
scale of built-up land was controlled to reduce to 2760 km2 in 2030 based on the overall ur-
ban plan of Beijing (http://www.china.org.cn/china/2017-03/30/content_40527731.htm). The 
spatial restriction scenario (SRS) was designed to simulate land-use changes in which the 
spatial locations with high SOCP (greater than 20 t C/ha) were set as the protection zone. 
Land-use types of grid in the protection zone would not change during the simulation period.  

4.2.2  Simulation results on land-use changes 

In this research, we assumed that the spatial restriction policy would have no effect on the 
structure change of land-use types at the regional scale. Therefore, the transition probabili-
ties and the structure change of land-use types in the SRS would be the same as that in the 
UCS. The transition probability from agricultural land to built-up land between 2010 and 
2030 would significantly decrease from 0.1822 in the UCS to 0.0680 in the SCS. Meanwhile, 
the transition probability from ecological land to built-up land would significantly decrease 
from 0.0163 in the UCS to 0.0035 in the SCS. On the contrary, the transition probability 
from built-up land to agricultural land and ecological land would increase from 0.0008 in the 
UCS to 0.0487 in the SCS, and from 0.0013 in the UCS to 0.0801 in the SCS, respectively. 
It can be concluded that the scale control policy of built-up land would both limit the ur-
banization process and facilitate the reclamation/reforestation process (Tables 2 and 3). As a 
consequence, the structure change of land-use types from 2010 to 2030 in the SCS is 
significantly different from that in the UCS (Figure 5). 

Table 2  Transition probabilities of land-use types in the uncontrolled scenario (UCS), 2010–2030 

Land-use type 2030 
 

Built-up land Agricultural land Ecological land 

Built-up land 0.9979 0.0008 0.0013 

Agricultural land 0.1822 0.8106 0.0072 

Land-use type 2010 

Ecological land 0.0163 0.0019 0.9818 

Table 3  Transition probabilities of land-use types in the scale control scenario (SCS), 2010–2030 

Land-use type 2030 
 

Built-up land Agricultural land Ecological land 

Built-up land 0.8712 0.0487 0.0801 

Agricultural land 0.0680 0.9238 0.0082 

Land-use type 2010 

Ecological land 0.0035 0.0019 0.9946 

Although the scale control policy would restrict the urbanization process and facilitate the 
reclamation/reforestation process, the central city of the study area would expand both in the 
UCS or SCS. The major area of the expansion would occur in the southern plain of the re-
gion, which is also the major area of agricultural land (Figure 6). The spatial restriction pol-
icy would significantly influence the spatial expansion of built-up land, and the spatial ex-
pansion of built-up land in the southern plain would be significantly restricted in the SRS. It 
can be concluded that both the scale control and spatial restriction policies would influence 
the spatial allocation change of land-use types and this influence is different from different 
locations and different policies.  
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Figure 5  Land-use structure changes of Beijing in different scenarios 
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Figure 6  Land-use change simulation results of Beijing under different scenarios 

 
Figure 7  Spatial maps of SOC in Beijing, 2010 
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4.3  Effects of land-use optimization on SOCP 

4.3.1  SOCP estimated of Beijing in 2010 

Based on the spatial database of soil and land-use maps, we estimated the existing level of 
SOC, saturation level of SOC and SOCP of the top soil (0–20 cm) in Beijing in 2010 using 
the SOCP estimating method (Figure 7). 

The existing SOC density in Beijing averaged 30.76 t C/ha and 33.36 t C/ha in agricul-
tural land and ecological land, respectively. Based on recommended management practices 
of agricultural land and natural restoration of ecological land, the saturation level of SOC 
would reach an average value of 47.60 t C/ha and 49.61 t C/ha in agricultural land and eco-
logical land, respectively. The SOCP of agricultural land and ecological land can reach 23.82 
Tg C or averaged 18.27 t C/ha in Beijing (Figure 8). The major zone of SOCP of agricultural 
land is found in the southeast and northeast of the region.  

 

Figure 8  Average SOCP in Beijing, 2010 (SOC, soil organic carbon; SOCE, existing SOC level of the top soil 
(0–20 cm); SOCS, saturation SOC level of the top soil; SOCP, SOC sequestration potential of the top soil) 

4.3.2  Effects of land-use optimization on SOCP 

Combining the land-use change simulation results from 2010 to 2030 under the three sce-
narios (UCS, SCS, SRS) and the SOCP (0–20 cm) estimating results of Beijing in 2010, the 
SOCP in the region would decrease 1.73 Tg C in the UCS (from 23.82 to 22.09 Tg C), 0.95 
Tg C in the SRS, and increase 0.06 Tg C in the SCS between 2010 and 2030 because of 
land-use changes. The average SOCP would increase from 18.27 t C/ha to 18.91 t C/ha in 
the SRS (Figure 9). The average SOCP in agricultural land would increase from 18.51 t C/ha 
to 20.26 t C/ha in the SRS. The average SOCP in ecological land would increase from 18.14 
t C/ha to 18.34 t C/ha in the SRS (Figures 8 and 10). It can be concluded that both the scale 
control and spatial restriction policies would have positive effects on the SOCP of land-use 
systems. 

5  Discussion 

In this research, we developed a land-use change simulation model to simulate the structure 
and spatial allocation changes of land use under different optimization scenarios. The model 
is genetic since it is developed on the basis of the historical knowledge of land-use changes, 
and it is also flexible since it can be easily adapted to the scale control or spatial restriction 
policies. The spatial allocation simulation module in the model was developed based on 
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Figure 9  Effects of land-use changes on SOCP from 2010 to 2030 in different scenarios (SOCP, soil organic 
carbon sequestration potential of top soil of 0–20 cm) 

 

Figure 10  Average SOCP of Beijing in 2030 in different scenarios (SOCP, soil organic carbon sequestration 
potential of top soil of 0–20 cm) 

the historical transition probability matrix instead of the land-use type specific settings, as in 
the CLUE-S model. Since the specific settings of conversion elasticity of land-use types in 
the CLUE-S model are often empirically based, the model developed in this research can 
improve the uncertainties of land-use change simulation. 

The saturation level of SOC of agricultural and ecological land was estimated by a statis-
tical model driven by temperature, irrigation, precipitation, soil clay, and soil pH. This 
model was developed based on the information from 95 global long-term agricultural ex-
periments (Qin and Huang, 2010). The model was validated against independent data from 
19 long-term agricultural experiments in China, and results suggest that the model performs 
well (Qin and Huang, 2010). The model has been widely adopted to estimate the saturation 
level of SOC in agricultural systems (Qin and Huang, 2010; Luo et al., 2011; Qin et al., 
2013). Since the model was developed and validated based on the information of agricultural 
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systems, it would increase the uncertainty of this research using the model to estimate the 
saturation level of SOC of ecological land. However, the major land-use change in Beijing is 
the conversion between agricultural land and built-up land (He et al., 2001; Wu et al., 2006). 
The area and allocation of ecological land are relatively stable in historical and future 
land-use changes. In consequence, the uncertainty of the SOC saturation estimation of the 
ecological land has little effect on the research result. 

Recent studies show that built-up land can also sequester carbon in soil through the ap-
plication of residuals to pervious surfaces (Lorenz and Lal, 2009; Brown et al., 2012). 
However, whether the soil could sequester C in the built-up land is correlated with both the 
scale and management practices of pervious surfaces, and few studies have been conducted 
to reveal the SOC sequestration of built-up land in China. In this article, the SOC sequestra-
tion in built-up land is neglected and we assume that the SOC level would not change in the 
built-up land. Similar assumptions can also be found in other studies (Grimm et al., 2008). 

Despite the uncertainty of both land-use change simulation and SOCP estimation, this ar-
ticle provides a new way to estimate the effects of land-use optimization on the carbon se-
questration function of land-use systems by coupling the land-use change simulation model 
and knowledge of SOC saturation. This coupling is new and essential since it can provide 
evidence for planning authorities to understand the relations between land-use optimization 
policies and the carbon sequestration function of land-use systems. It is also expected that 
the coupling model will be improved according to the development of land-use change 
simulation methods, the theoretical improvement of soil carbon saturation, and the long-term 
experimental data accumulation in different land-use systems.  

The methods and results presented in this research are universal and representative and 
they are applicable to other regions. First, the land-use change simulation model developed 
in this article is applicable to simulate and analyze land-use changes with land-use optimiza-
tion scenarios in other regions. Second, the coupling of land-use change simulation and the 
carbon sequestration function of land-use systems should also be applied to other regions 
where landscape is dramatically changing as a consequence of urbanization. It is necessary 
to discuss the effects of land-use changes on the carbon sequestration function of land-use 
systems in these regions and to evaluate the effects of land-use optimization policies on the 
basis of this coupling analysis.  

6  Conclusions 

In order to estimate the effects of land-use optimization on SOCP and improve the SOC se-
questration function of land-use systems through land-use optimization policies, a coupling 
analysis was conducted by combining a land-use change simulation model and the SOCP 
(0–20 cm) estimating method in this research. The effects of land-use changes on SOCP 
were estimated based on SOC saturation knowledge. Three land-use optimization scenarios 
were designed and studied in this research to discuss the effects of land-use optimization on 
land-use changes and SOCP from 2010 to 2030 in Beijing. The results demonstrated that 
land-use changes significantly influence the SOCP, and that both the scale control of 
built-up land and the spatial restriction setting of high SOCP areas can have a positive effect 
on the carbon sequestration function of land-use systems in Beijing.  

Some specific measures can be adopted to improve the carbon sequestration function of 
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land-use systems. First, controlling the scale of built-up land should consider not only 
population growth but also the balance of carbon sequestration. Second, areas of high SOCP 
should be recognized and protected based on the carbon saturation knowledge. These areas 
are important carbon pools, and can constitute a restriction line to shape the expansion of 
built-up land.  
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Appendix A 

 
 
Figure A  The average annual temperature and precipitation maps of Beijing from 1990 to 2010 
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Appendix B 

 
Figure B  Spatial distribution maps of soil properties in Beijing, 2010 
Note: The data was developed based on the Second National Soil Survey, which was conducted from the late 
1970s to the early 1990s. 


