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Abstract: In recent years, global reanalysis weather data has been widely used in hydrologi-
cal modeling around the world, but the results of simulations vary greatly. To consider the 
applicability of Climate Forecast System Reanalysis (CFSR) data in the hydrologic simulation 
of watersheds, the Bahe River Basin was used as a case study. Two types of weather data 
(conventional weather data and CFSR weather data) were considered to establish a Soil and 
Water Assessment Tool (SWAT) model, which was used to simulate runoff from 2001 to 2012 
in the basin at annual and monthly scales. The effect of both datasets on the simulation was 
assessed using regression analysis, Nash-Sutcliffe Efficiency (NSE), and Percent Bias 
(PBIAS). A CFSR weather data correction method was proposed. The main results were as 
follows. (1) The CFSR climate data was applicable for hydrologic simulation in the Bahe River 
Basin (R2 of the simulated results above 0.50, NSE above 0.33, and |PBIAS| below 14.8. 
Although the quality of the CFSR weather data is not perfect, it achieved a satisfactory hy-
drological simulation after rainfall data correction. (2) The simulated streamflow using the 
CFSR data was higher than the observed streamflow, which was likely because the estima-
tion of daily rainfall data by CFSR weather data resulted in more rainy days and stronger 
rainfall intensity than was actually observed. Therefore, the data simulated a higher base flow 
and flood peak discharge in terms of the water balance, except for some individual years. (3) 
The relation between the CFSR rainfall data (x) and the observed rainfall data (y) could be 
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represented by a power exponent equation: y=1.4789x0.8875 (R2=0.98，P＜0.001). There was a 

slight variation between the fitted equations for each station. The equation provides a theo-
retical basis for the correction of CFSR rainfall data. 

Keywords: CFSR; weather data; hydrologic simulation; applicability evaluation; SWAT model; Bahe River Basin 

1  Introduction 

As the driving factor for hydrological models, it is clear that hydrometeorological data is of 
great significance. However, investigators often encounter various practical challenges such 
as missing data, difficulty in collecting data, a lack of observation stations, and being located 
far from study areas. These problems have greatly restricted research progress and have also 
reduced the efficiency of models. Since the 1990s, some international researchers have used 
satellite data as an input to hydrological models (Barrett et al., 1993; Dile and Srinivasan, 
2014). With the development of surface observation technology, satellite remote sensing, 
radar observation systems, and computer models, the inversion of meteorological data using 
these techniques has been increasingly applied to hydrological modeling. Global reanalysis 
weather data provided by the United States and Europe is currently used for various hydro-
logical applications around the world (Zhao et al., 2010; Fuka et al., 2014). Some examples 
include: the National Centers for Environmental Prediction (NCEP) Climate Forecast Sys-
tem Reanalysis (CFSR); the NCEP and US Department of Energy (DOE) NCEP/DOE; the 
NCEP and the National Center of Atmospheric Research (NCAR) NCEP/NCAR; the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) RA-15/40; Japan Meteoro-
logical Agency (JMA) JRA-25; and National Aeronautics and Space Administration (NASA) 
DAO. In recent years, global reanalysis weather data has also been gradually applied to the 
field of hydrology. For example, it has been reported that NCEP/NCAR and ECMWF 
40-year datasets have an obvious variability in the field of reanalysis precipitation, and it has 
therefore been suggested that higher spatial resolution data would have great advantages in 
acquiring higher frequency events, especially in medium-sized watersheds (Ward et al., 2011; 
Fuka et al., 2014). Zhao et al. (2015) reported that in terms of the performance of model 
simulation, Tropical Rainfall Measuring Mission (TRMM) data was more effective than 
gauge data provided at monthly time scale. Fuka et al. (2014) suggested that when global 
reanalysis data sets are selected for small- to medium-sized watersheds, three criteria should 
be considered: (1) the dataset should be open and available, including temperature and pre-
cipitation; (2) spatial resolution needs to be 30 km; and (3) the length of records should in-
clude adequate historical coverage to allow model calibration and validation, and extend to 
the present. Compared with nine other global reanalysis data products, Fuka et al. (2014) 
found that only the CFSR dataset could simultaneously satisfy the aforementioned criteria. 

The CFSR provided by NCEP was completed over 36 years (from 1979 to 2014). It is 
currently used by many researchers who regard it as an ideal alternative data source. When 
conducting a hydrologic forecast, Dile and Srinivasan (2014) demonstrated that CFSR 
weather data was a viable option for simulating the hydrology of data-scarce regions such as 
remote parts of the Upper Blue Nile Basin. Sharp et al. (2015) compared the CFSR reanaly-
sis hourly wind speed with in situ measurements and discovered that CFSR weather data 
could represent the variety of terrain across the UK well. To a certain extent, CFSR might 
therefore provide an alternative to in situ measurements for the UK. Fuka et al. (2014) re-
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ported that a watershed model forced by CFSR precipitation and temperature data could 
provide a perfect runoff simulation. The simulation result was as good as or better than a 
model using conventional weather data (Fuka et al., 2014). CFSR weather data is widely 
applied in the field of meteorology (Xu et al., 2010; Hu et al., 2013; Xiang et al., 2014), but 
the application of CFSR in the field of hydrology has been less frequently reported in China. 
According to the results of several Chinese studies, CFSR precipitation data can be affected 
by topography and geomorphology, the number of available sites and their homogeneity, and 
the physical parameters of models. This results in significant differences between CFSR 
precipitation and observed precipitation, resulting in streamflow simulations using CFSR 
precipitation being overestimated. It has also been shown that CFSR weather data has dif-
ferent levels of applicability in different regions (Hu et al., 2013; Tang et al., 2014; Yu and 
Mu, 2015). These studies have indicated that the quality of CFSR data still needs to be im-
proved, but CFSR reanalysis data can be used for hydrological simulations, especially in 
areas lacking observed data. Unfortunately, although many researchers (Dileand Srinivasan, 
2014; Worqlul et al., 2014; Fuka et al., 2014; Zhao et al., 2015; Yu and Mu, 2015; Blacutt et 
al., 2015) have conducted evaluations of the suitability of CFSR weather data, they have not 
proposed revised methods for the use of CFSR weather data or their methods were oversim-
plified. To improve the applicability of CFSR for different study areas, we undertook a pre-
liminary revision of CFSR weather data on the basis of previous studies. 

The Qinling Mountains, as the geographical boundary dividing the north and south of 
China, is not only an area sensitive to global climate change, but is also prone to torrential 
flooding, debris flows, and landslides. Due to the terrain, Qinling has a limited number of 
hydrometeorological stations at high altitudes, which is a major challenge for the hydro-
logical simulation of small- to medium-sized watersheds. Therefore, we selected the Bahe 
River Basin, which is located on a north-facing slope in the Qinling Mountains, as the study 
area. Based on ArcGIS 10.2 and SWAT 2012, we used regression analysis, Nash-Sutcliffe 
Efficiency (NSE), and Percent Bias (PBIAS) to comprehensively explore the suitability of 
CFSR weather data for hydrological simulations. We used the results to propose a revised 
method for CFSR weather data in the Bahe River Basin. We hope that the results will pro-
vide a scientific reference for hydrological simulation and mountain hazard warning in the 
Qinling Mountains. 

2  Study area 

Rising in Jiudaogou (Nine Gaps) (part of the Bayuan Townships, Lantian County, Shaanxi 
Province), Bahe River is located on a north-facing slope of the Qinling Mountains and to the 
southeast of Xi’an City (33°50'N–34°27'N, 109°00'E–109°47′E). It has a length of 104.1 km, 
drainage area of approximately 2581 km2, and the river drops by 1142 m. Topographically, 
the area tilts from the southeast to the northwest (Figure 1). The Bahe River Basin has a 
warm temperate continental monsoon climate. Annual precipitation in the area is about 800 
mm and annual evaporation is about 776 mm. 

3  Hydrometeorological data 

3.1  Data sources 

Digital elevation model (DEM) data, land cover data, soil data, hydrological data and  
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Figure 1  Map showing the location of the Bahe River Basin and its land use types in 2014 
 

meteorological data are the essential and fundamental information required for modeling in a 
Soil and Water Assessment Tool (SWAT) model. The DEM dataset was obtained from the 
Geospatial Data Cloud (http://www.gscloud.cn) and has a resolution of 30 m × 30 m. The 
land cover data used in the SWAT was collected from the Department of Land and Re-
sources of Shaanxi Province’s Second National Land Survey County-level Database. By 
reclassifying the land use, we identified six land use types (Figure 1) in the study area. The 
soil dataset was derived from the China Soil Map Based Harmonized World Soil Database 
(v1.1) provided by the Cold and Arid Regions Sciences Data Center at Lanzhou 
(http://westdc.westgis. ac.cn/), China. The hydrological data was transcribed from Yellow 
River Basin Hydrological Data (2001–2012), which is a special collection held in the Xi’an 
University of Technology Library. The meteorological data used in our study had two dif-
ferent sources. The conventional weather data was provided by the China Meteorological 
Data Network (http://data.cma.gov.cn/) and Yellow River Basin Hydrological Data 
(2001–2012). The CFSR weather data was downloaded from the SWAT model’s official web-
site (http://globalweather.tamu. edu/). 

3.2  Comparison of the conventional and CFSR weather data 

Meteorological data is the driving factor of the hydrological modeling in the SWAT model. 
However, many researchers have been unable to obtain high-quality hydrometeorological 
data. The main purpose of this study was to investigate if global reanalysis data products can 
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replace observed hydrometeorological data for use in hydrological modeling, especially for 
areas where there is a lack of observed data. To intuitively compare the performance of a 
CFSR weather simulation with a conventional one in the SWAT model, no model calibration 
was undertaken. This also eliminated the influence of parameter calibration. Clearly, the two 
types of data had some significant differences in their temporal and spatial features. 

In the Bahe River Basin, there are 12 conventional precipitation stations that provide a 
dense network with a uniform distribution (Figure 2). Because the SWAT model adopts the 
Theissen Polygon Interpolation algorithm to distribute meteorological sites for a sub-basin, 
each precipitation station represented only a small part of the sub-basin (Table 1). We se-
lected the period 2001–2012. On account of some rain gauging stations only operating in 
flood season, equipment failure, or lags in upgrades, there was some missing data. The con-
ventional stations provided daily observed precipitation data. The average annual precipita-
tion of the 12 stations was 763.2 mm with the maximum value recorded at Wangchuan sta-
tion (904.2 mm) and the minimum at Xiqu station (582.8 mm). 
 
Table 1  Conventional rainfall information (2001–2012) and Climate Forecast System Reanalysis (CFSR) 
weather data in the Bahe River Basin 

Stations Id Average annual rainfall (mm) Elevation (m) Controlling sub-basins 

Bayuana P01 773.9 1144 Sub 13-14, 17 

Mujiayanc P02 896.3 794 Sub 3-4, 7-8, 19, 21 

Muhuguanb P03 649.9 1200 Sub 25-28 

Lanqiaob P04 676.7 1768 Sub 22-23 

Luolicunc,e P05 830.4 544 Sub 12, 15-16, 18, 20 

Gepaizhena P06 853.6 1145 Sub 32-33 

Yuchuana P07 891.2 1117 Sub 29-31 

Longwangmiaoc P08 806.2 1352 Sub 34-35 

Wangchuana P09 904.2 985 Sub 24 

Pantaowana P10 655.5 495 Sub 2, 5-6, 9-11 

Maduwangc,e P11 637.2 431 Sub 1 

Xiquc P12 582.8 402 Sub 1 

CFSR1d p3391094 1223.5 1590 Sub 27, 29-31, 33-35 

CFSR2d p3391097 1271.0 1142 Sub 28, 32 

CFSR3d p3421091 437.0 470 Sub 1, 5 

CFSR4d p3421094 645.2 680 Sub 2, 6-12, 15-16, 18-20, 22-24 

CFSR5d p3421097 983.7 1385 Sub 3-4, 13-14, 17, 25-26 

Note: aindicates rain gauging stations operating only in the flood season (from April to October) of 2001; bindicates 
rain gauging stations operating in the flood season during 2001–2010; cindicates rain gauging stations operating year 
round; dindicates meteorological stations; eindicates hydro-gauging stations. 

 
CFSR is the product of global climate reanalysis grid data generated by the NCEP Global 

Forecast System. The horizontal resolution of the CFSR is 0.5°×0.5° (approximately 38 × 38 
km). Compared with the use of conventional weather stations, CFSR is more suitable for a 
large-scale to mesoscale watershed. Users can access the SWAT website (http://global-
weather. tamu.edu/) to freely and expediently download daily CFSR weather data (including 
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data (including precipitation, wind, relative humidity, and solar) in the SWAT file format for 
a given location and time period. As mentioned earlier, the use of CFSR weather data has 
many advantages, but also some drawbacks. For example, CFSR weather data over- or un-
derestimates precipitation at some stations and there are large uncertainties in its data qual-
ity. 

4  The hydrological model and its evaluation 

4.1  SWAT model 

The SWAT model is a watershed scale model, which was developed by Jeff Arnold of the 
Agricultural Research Service (ARS) of United States Department of Agriculture (USDA). It 
has a strong physical basis and can be used for modeling in regions where there is a lack of 
observational data (Wang et al., 2003). The original intention of the model was to predict the 
long-term effects of large watershed land management on runoff, sediment, and agricultural 
chemicals, under conditions of complex land use, soil type, and management measures (Hu, 
2015). At present, the model is applied widely in North America, Africa, the Middle East, 
Europe, and other locations (Dile and Srinivasan, 2014; Rouholahnejad et al., 2014; 
Abbaspouret al., 2015; Troin et al., 2015). In recent years, Chinese researchers have con-
ducted research in various basins at different scales, including the basins of Yellow River, 
Heihe River, Sanjiang Plain, Beiluo River, Jinjiang River, Xiangjiang River, Ganjiang River, 
and Hanjiang River (Liu et al., 2004; Wang and Chen, 2008; Lai et al., 2013; Liu et al., 2014; 
Hu, 2015).These studies have mainly involved simulations of runoff and sediment discharge, 
soil erosion, agricultural non-point source pollution, and climate and land use changes on 
runoff response, as well as SWAT model improvements, hydrological simulations at differ-
ent temporal and spatial scales, the coupling of various hydrological models, the sensitivity 
and optimization of model parameters, and considerations of the regional adaptability of the 
SWAT model (Hu, 2015). 

4.2  Model setup 

A unified projection and coordinate system is the mathematical foundation for successfully 
running the SWAT model. All spatial data in this study used the Xi’an 1980 coordinate sys-
tem and the 3° zoning Gauss_Kruger projection system, and the central meridian was108°E. 
The linear river data in the Second National Land Survey County-level Database was used in 
the extraction of the river network, using a DEM to ensure the accuracy of the auto-gen-
erated river network. To obtain the appropriate amount of sub-basin and number of Hydro-
logical Response Units (HRUs), we set the minimum catchment area to 2000 ha (20 km2) on 
the basis of a repeated debug. The threshold of land use, soil type, and gradient was set to 
20% in each case. Finally, the SWAT model generated 35 sub-basins (Figure 2) and 315 
HRUs. To obtain a better initial state, the SWAT model needs to set a preheating period of 
3–5 years. The preheating period of the model used in this study was set to 5 years, and 
therefore the start simulation time was January 1, 1996 and the end was December 31, 2012. 
In addition, we used the two different types of meteorological data and selected two different 
time intervals (monthly and annual) for hydrological simulation. 
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Figure 2  Map showing the distribution of sub-basins and hydrometeorological stations 
 

4.3  Model evaluation 

(1) Regression analysis 
Regression analysis is the most basic method of quantitative analysis. A unary linear re-

gression analysis and a nonlinear regression analysis of a power exponent model, which are 
used in mathematical statistics to determine the quantitative relationship between two or 
more interdependent variables, were used in this study. Considering that the two methods are 
very common there is no further explanation given here. 

(2) Nash-Sutcliffe Efficiency (NSE) 
In hydrology, efficiency is usually evaluated with the Nash-Sutcliffe efficiency coefficient 

(NSE). NSE is a normalized statistic to determine the relative amount of residuals and the 
variance of the observed data (Nashand Sutcliffe, 1970). It is calculated with Equation (1): 
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where NSE is the Nash-Sutcliffe Efficiency; obs
iQ is the observed streamflow at the ith time 

interval; sim
iQ is the simulated streamflow at the ith time interval; mean

obsQ is the average of 

the observed streamflow; and n is the total number of observations. NSE values can range 
from –∞ to 1. An NSE value of 1 corresponds to a perfect match between observed and 
simulated streamflow. An NSE value between 0 and 1 is considered to be an acceptable level 
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of performance, whereas an NSE value ≤0 suggests the observed average is a better pre-
dictor than the model. 

(3) Percent Bias (PBIAS) 
Percent Bias (PBIAS) is another important index for evaluating the efficiency of a hydro-

logical model (Gupta et al., 1999; Moriasi et al., 2007). It is computed with Equation (2): 
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The meaning of the variables in Equation (2) is the same as in Equation (1). The optimal 
value of PBIAS is 0. A positive value indicates that the model has underestimated and a 
negative value indicates an overestimation. 

5  Results 

5.1  Model simulations with conventional weather data 

All of the simulation results in this study were obtained without any parameter calibration. 
Figures 3 and 4 show the simulated and observed flow at monthly and annual time scales,  
 

 
 

Figure 3  Hydrographs showing monthly observed streamflow and streamflow simulated with conventional and 
Climate Forecast System Reanalysis (CFSR) weather data 
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Figure 4  Hydrographs showing annual observed streamflow and streamflow simulated with conventional and 
Climate Forecast System Reanalysis (CFSR) weather data 

 
respectively. It was found that the discharge curve of the simulations using conventional 
weather data at a monthly time scale fitted perfectly with the observed steamflow. Never-
theless, the SWAT model driven by conventional weather performed poorly in the simulation 
of base and peak flow, and generally underestimated both values. A similar situation was 
apparent in the simulations with an annual time scale, in which the normal year was well 
simulated, but the simulation of wet years was underestimated. To accurately quantify the 
relationship between the simulated and observed streamflow, we performed an ordinary lin-
ear regression analysis. Figures 5 and 6 show that this resulted in a highly (0.001<P<0.01) 
or extremely (P<0.001) significant linear relationship. At a monthly time scale, the goodness 
of fit (R2) values for Luolicun and Maduwang were 0.85 and 0.83 respectively. However, the 
R2 values at an annual time scale were 0.66 (Luolicun) and 0.72 (Maduwang), i.e., slightly 
worse. 

As seen in Table 2, the NSE values for two hydrological stations were greater than 0, in-
dicating that the simulation results at both monthly and annual time scales were within the 
acceptable range, but at different scales, and displayed a greater difference (NSEmonthly>0.7, 
NSEannual<0.2). The PBIAS values for Luolicun and Maduwang were greater than 0. Overall, 
simulated streamflow was generally lower than observed streamflow, but the PBIAS values 
at monthly and annual time scales were basically the same. In conclusion, the SWAT model 
based on conventional weather data produced better hydrological simulations. Monthly 
simulation results were generally more reliable than annual simulations, although they also 
displayed minor underestimations. There were still some concerns regarding the simulation 
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results at an annual time scale, such as some large deviations in individual years, underesti-
mations of NSE and goodness-of-fit (R2) values (which were the main sources of uncertainty 
in model simulations), the quality of hydrological and meteorological data, and modeling 
without parameter calibration. These issues were system errors rather than mistakes. After 
choosing 13 parameters to preliminarily calibrate the SWAT model, we found that the NSE 
value of the annual simulated result increased to 0.78, the R2 value increased to 0.8, and the 
|PBIAS| values decreased to 5.6 and 7.8. 

 

 
 

Figure 5  Regression analysis between monthly observed and simulated streamflows 

 

 
 

Figure 6  Regression analysis between annual observed and simulated streamflows 

 
Table 2  Model performance evaluations for monthly and annual time scales in the Bahe River Basin using con-
ventional and Climate Forecast System Reanalysis (CFSR) weather simulations 

Conventional CFSR 
Time scales Hydro-gauging stations

NSE PBIAS NSE PBIAS 

Luolicun 0.708 31.841 0.428 –4.260 Monthly 

Maduwang 0.718 28.640 0.372 –14.401 

Luolicun 0.151 31.840 0.339 –4.523 Annual 

Maduwang 0.182 28.587 0.370 –14.783 

 

5.2  Model simulations with CFSR weather data 

For the SWAT model hydrological simulation, CFSR weather data and conventional weather 
data had some features in common, but the differences were more obvious (Figures 3–8 and 
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Table 2). For example: (1) The simulated streamflow using CFSR weather data and observed 
streamflow had a highly (0.001<P<0.01) or extremely significant (P<0.001) linear relation-
ship, but the R2 values at the two time scales were similar (R2

monthly>0.50, R2
annual>0.52). (2) 

NSEmonthly (Luolicun was 0.428, Maduwang was 0.372) were also higher than NSEannual 
(Luolicun was 0.339, Maduwang was 0.370). NSE values greater than 0 suggested that 
simulation results were within satisfactory thresholds. Nonetheless, both NSEmonthly and 
NSEannual were below 0.5, and the NSEannual values of CFSR simulations were higher than 
those of conventional weather simulations. (3) For the same hydrological station, the NSE-

monthly and NSEannual of simulations using CFSR weather data were almost the same, but they 
were less than 0 and the degree of deviation of simulations was far lower than for the simu-
lations produced using conventional weather data. A negative PBIAS value indicated an 
overestimation. The SWAT model based on CFSR weather data performed well in hydro-
logical simulations, but sometimes overestimated streamflow. Compared with annual simu-
lations, monthly simulations were more accurate. If model calibration is performed, CFSR 
reanalysis data will be more applicable in the Bahe River Basin. 
 

 
 

Figure 7  Regression analysis between monthly observed and simulated streamflows 

 

 
 

Figure 8  Regression analysis between annual observed and simulated streamflows 

 

5.3  Comparison of simulated results based on the two sets of weather data 

(1) Model evaluation criteria 
According to the standard evaluation of model efficiency, the results above indicate that 

the conventional weather data in the SWAT model produced better simulations than the 
CFSR weather data overall. However, in terms of hydrological simulations, CFSR weather 
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data performed better than conventional weather data at annual time intervals, as did the 
PBIAS values. 

(2) Simulation of water balance components 
Figure 9 shows that the use of the two types of weather data in the estimation of water 

balance produced consistent results in the Bahe River Basin, but the CFSR weather data re-
sulted in a higher estimated value at each stage of the water balance. For annual precipita-
tion, the value estimated by CFSR weather data (884.3 mm) was 109.4 mm higher than the 
value from the conventional precipitation station (774.9 mm).Actual evapotranspiration (ET) 
and the surface runoff contribution to streamflow (SUR_Q) were not obviously different 
between simulations using conventional and CFSR weather data. Runoff simulated by CFSR 
weather data indicated a higher groundwater contribution to streamflow (GW_Q) and a 
higher lateral flow contribution to streamflow (LAT_Q) than conventional weather data. In 
addition, the water yield (WYLD) value simulated by CFSR weather data was 106.3 mm 
higher than in the simulation using conventional weather. We need to understand why the 
CFSR simulation results for base and peak flow were overestimated. 

 

 
 

Figure 9  Water balance components for the conventional and Climate Forecast System Reanalysis (CFSR) 
weather data simulations in the Bahe River Basin (Rainfall, average annual precipitation; PET, potential 
evapotranspiration; ET, actual evapotranspiration; WYLD, water yield (= SUR_Q + LAT_Q+GW_Q-TLOSS); 
SUR_Q, surface runoff contribution to streamflow; GW_Q, groundwater contribution to streamflow; LAT_Q, 
lateral flow contribution to streamflow; SW, soil water content; PERC, water percolating passed the root zone; 
Q-TLOSS, transmission loss) 

 
(3) Simulation of actual evapotranspiration 
Figure 10 shows the average monthly actual evapotranspiration in the Bahe River Basin 

simulated by the SWAT model in 2001–2012. In terms of actual evapotranspiration, both 
simulation results were almost the same (a difference of just 35.2 mm), and the two curves 
were also extended with a similar regularity, displaying a “Λ”-shaped pattern throughout the 
year. In particular, the conventional weather simulation gave higher estimates than the CFSR 
weather simulation from January to June, but the opposite happened from July to December. 

(4) Simulation of average monthly streamflow 
From Figure 11, it can be seen that there are two high peak values of flow in the basin, 

which occurred in May and September, respectively. Although both types of weather data 
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could simulate the change of flood season well, they underestimated the peak flow in May. It 
was found that CFSR weather data could satisfactorily simulate the peak flow in September, 
but compared with the observed and simulated streamflows obtained using the conventional 
weather data, the CFSR weather data overestimated the runoff in July and August.This was 
mainly because the rainfall simulation of the CFSR reanalysis data was about 52.85 and 
28.33% higher than the observed rainfall in July and August (Figure 10). It was also the 
main reason why CFSR precipitation was higher than the observed rainfall at annual time 
scales. The runoff processes simulated by the two types of weather data from January to 
May were almost the same, but their values were significantly underestimated compared to 
the observed runoff. 

 

 
 

Figure 10  Average monthly actual evapotranspiration simulated with conventional and Climate Forecast System 
Reanalysis (CFSR) weather data in the Bahe River Basin 

 

 
 

Figure 11  Average monthly streamflow hydrograph simulated with conventional and Climate Forecast System 
Reanalysis (CFSR) weather data in the Bahe River Basin 
 

5.4  Attribution analysis and CFSR weather data revisal 

For the runoff simulation of the SWAT model, when the conventional weather simulations 
were compared with the CFSR weather data simulations from multiple evaluation criteria, 
some issues still remained. 

(1) In the hydrological simulation without model calibration, for the R2 and NSE values of 
the runoff simulation, the annual simulation using conventional weather data produced lower 
values than the monthly simulations. This was mainly due to the many precipitation stations 
operating in the flood season (from April to October) in the Bahe River Basin (Table 1). For 
this reason, annual precipitation was underestimated compared to the actual value. However, 
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this situation could be improved by calibrating the model parameters. 
(2) Rainfall is an important factor in the process of runoff generation and flow concentra-

tion. The average annual rainfall (884.3 mm) estimated by the CFSR simulation was 14.11% 
more than that recorded at conventional precipitation stations (774.9 mm). In terms of 
changes in rainfall, there were no significant differences during the other months, except for 
July and August for which rainfall amounts were far higher than those recorded at conven-
tional precipitation stations. In terms of water balance, CFSR rainfall made a large contribu-
tion to base flow, lateral flow and water yield. This was an important reason why CFSR 
simulations overestimated the annual flows, and simulated higher monthly base and peak 
flows. Fortunately, CFSR weather data can effectively compensate for the inadequacies of 
conventional weather data. It is likely that CFSR weather data will have the potential for a 
broad application in hydrological predictions. 

CFSR weather data is a product based on conventional ground observation data, satellite 
remote sensing data, and highly advanced and coupled atmospheric-oceanic-surface model-
ing components, and it has a high degree of space-time resolution (Dile and Srinivasan, 
2014). Therefore, there must be a certain relationship between estimated and observed pre-
cipitation data (Hu et al., 2013; Worqlul et al., 2014; Blacutt et al., 2015). There have been 
many studies that have revised observed weather data (Ye et al., 2007), but few investigators 
have conducted revisions of global climate reanalysis data or weather satellite data. Studies 
of reanalysis weather data revisions are still at an exploratory stage. In some related studies 
(Zhao et al., 2010; Fuka et al., 2014; Dile and Srinivasan, 2014; Worqlul et al., 2014; Yu and 
Mu, 2015; Blacutt et al., 2015), the investigators did not consider the revision of CFSR 
weather data. Some researchers have focused on the statistical characterization of CFSR and 
conventional weather data, but they have not proposed a method of data revision. Some re-
searchers have considered that revised CFSR weather data could be better used in hydro-
logical models, but some problems exist with their proposed revisal methods (Table 3). 

Based on previous studies, we selected various CFSR stations and their adjacent  
 

Table 3  Advances in methods used to revise reanalysis data in recent years 

Researcher Year Revising data or not Revisal method Notes 

Dile et al. 2014 No – 

Fuka et al. 2014 No – 

They introduced Climate Forecast System Reanalysis 
(CFSR) data into a Soil Water and Assessment Tool (SWAT) 
model, but did not undertake a revision. 

Worqlul et 
al. 

2014 No – They found that the estimates of Multi-Sensor Precipitation 
Estimate–Geostationary (MPEG) and CFSR data conformed 
to the actual value, but CFSR overestimated or underesti-
mated precipitation at some stations. 

Blacutt et 
al. 

2015 No – They focused on the contrast between the statistical charac-
teristics of CFSR and conventional weather data, ignoring 
their relevance at a monthly scale. 

Zhao et al. 2015 No – They used a monadic linear regression to analyze Tropical 
Rainfall Measuring Mission (TRMM) satellite data and 
observed precipitation data and found that the degree of 
fitting was relatively high. However, they did not give the 
fitting equation for the stations investigated. 

Yu et al. 2015 Yes Error ratio 
method 

They defined a correction coefficient (measured annual 
precipitation/CFSR annual precipitation), but the modified 
scale was large. 
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conventional precipitation stations to conduct a regression analysis at monthly and annual 
scales, respectively. By comparing the fitting effects of different functional models, we found 
that the R2 value of a power exponent model at a monthly time scale was the highest. From 
Figure 12, it was evident that the fitting at five stations was very poor, with low R2 values 
(0.15–0.53). However, monthly R2 values were greater than 0.96 (P<0.001), indicating that 
CFSR rainfall and observed precipitation had an extremely significant power exponent rela-
tion. The different stations had different power exponent fitting equations and R2 values. R2 
values in high altitude stations (>1100 m) were slightly larger than in low altitude stations 
(<700 m). The percentage error lines of the scatter diagram in Figure 12 show that when 
monthly CFSR precipitation at high altitude stations was greater than 100 mm, the percentage 
 

 
 

Figure 12  Annual and monthly precipitation fitting between observed rainfall stations and Climate Forecast 
System Reanalysis (CFSR) stations 
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error displayed an increasing trend. However, to achieve the same trend, precipitation at low 
altitude stations only needed to exceed 35 mm. Furthermore, we calculated the multi-year 
average monthly precipitation for five CFSR stations and 12 observed rainfall stations, re-
spectively, and after fitting, we found that they equally well satisfied a power exponent rela-
tion. The fitting equation was as follows: 

 0.8875 21.4789 ( =0.98, 0.001)y x R P ＜  (3) 

where x is the average monthly precipitation for a CFSR station, and y is the average 
monthly precipitation for a conventional precipitation station. This equation is based on the 
fitting of multi-year average monthly precipitation data, and needs to be more stable to re-
flect the relationship between the two types of weather data at monthly time scales. Using 
this equation, the monthly precipitation from CFSR weather data will be more accurate. The 
R2 value of this power exponent equation was higher than that of the monadic linear equa-
tion proposed by Zhao et al. (2015), which provides a reference method for the revision of 
CFSR rainfall data. 

5.5  The performance of revised CFSR weather data 

There was an extremely significant power exponent relationship between the precipitation 
from CFSR stations and observed rainfall in the Bahe River Basin. To some extent, CFSR 
weather data can compensate for the shortcomings of conventional weather data in base flow 
and flood simulations. Runoff in the basin is not only associated with total rainfall, but is 
also related to the distribution of rainfall intensity (Zhou et al., 2005). Compared with the 
daily observed precipitation, CFSR daily rainfall data causes problems such as the overesti-
mation of rainfall days or torrential rain intensity, which results in problems with the accu-
racy of the data and its applicability to certain regions. So how can we solve these problems? 
We conjecture that if the CFSR precipitation data is revised by the fitting equation in Figure 12, 
the errors associated with CFSR weather data may be reduced. We can then input the revised 
CFSR rainfall data to the SWAT model, with the other conditions unchanged, and operate 
the model again to produce a more satisfactory simulation result. 

To clearly and intuitively demonstrate the difference in the simulation results before and 
after the revision of CFSR weather data, we undertook a comparison of the monthly runoff 
simulation at Maduwang hydrological station from 2001 to 2003 (Figure 13).From the scat-
ter plots in Figure 13, it can be seen that the simulation was clearly improved after the revi-
sion. To put this in perspective, before revision, the R2 value was 0.8223, the NSE value was 
0.807, and the PBIAS value was 1.270. After revision, the R2 value was 0.8516, the NSE 
value was 0.850, and the PBIAS value was –5.018. The discharge hydrograph displayed 
several changes before and after the revision of CFSR weather data. For example, after revi-
sion, CFSR precipitation data improved the base flow, reduced the small flood peak flow 
(e.g., in July 2001, August and September 2002), and increased the big flood peak flow (e.g., 
in April 2001, June 2002, April and September 2003) to make it closer to the observed peak 
value. This confirmed that the revision of CFSR precipitation data produced a better hydro-
logical simulation in the Bahe River Basin, and also improved the efficiency of the SWAT 
model. At the same time, it also confirmed that the data revision method presented in for-
mula (3) was effective. 
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Figure 13  Contrast in simulation results (2001–2003) before and after the revision of Climate Forecast System 
Reanalysis (CFSR) weather data at Maduwang hydrological station 
 

6  Conclusions and discussion 

We investigated the applicability of CFSR weather data for hydrological simulation in the 
Bahe River Basin. The main results were as follows. (1) CFSR and conventional weather 
data had their own advantages and disadvantages for hydrological simulation using the 
SWAT model. We found that the NSE value of the simulation results was low (0.33< 
NSE<0.5), while the performance was improved when using the SWAT model with revised 
CFSR weather data (Figure 13). From the overall evaluation results, conventional weather 
data still had some advantages in runoff simulation, but revised CFSR weather data might be 
a good option for areas with a lack of observed data. (2) Simulation results driven by the two 
types of weather data were different at different time scales. Streamflows simulated by con-
ventional weather data were lower than observed streamflows, with a PBIAS value between 
28.5 and 31.9. Streamflows simulated by CFSR weather data were higher than observed 
streamflows, with a PBIAS value between –14.8 and –4.26. The main reason for this was 
that some rainfall stations were only used in the flood season, which would lead to a lower 
observed rainfall. However, CFSR daily rainfall data had a longer duration and a stronger 
rainfall intensity, and therefore it could simulate a higher base flow and peak flow just in 
terms of water balance. After analysis and comparison, some CFSR stations underestimated 
rainfall in the flood season and annual rainfall in some wet years, which led directly to a 
reduction in surface runoff, and caused an underestimation of runoff in some years (Sep-
tember of 2003, 2005, 2009, and 2005). This was determined by the system error and data 
quality of CFSR weather data, but also indicated the necessity of revising CFSR weather 
data. (3) Overall, there was an extremely significant power exponent relationship between 
observed rainfall data (y) and CFSR rainfall data (x), which could be expressed as y = 1.4789 
x0.8875 (R2 = 0.98, P<0.001), but the fitting equation and R2 value for each pair of stations 
were different. After the revision of CFSR weather data, it was found that the R2 value in-
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creased from 0.8223 to 0.8516, the NSE value increased from 0.807 to 0.850, and the accu-
racy of base flow and peak flow simulation was also improved. To some extent, this com-
pensated for the deficiencies of simulations by conventional weather data and unrevised 
CFSR weather data. 

CFSR weather data has many advantages over conventional weather data in that it not 
only provides a complete set of climatic data, but also has the flexibility to be applied to 
different hydrological models. In addition, it has the advantages of high space-time resolu-
tion, easy data collection, and reducing the cost of study. In terms of hydrological simulation, 
CFSR weather data could be a valuable option for some areas lacking observed data (Dile 
and Srinivasan, 2014). Because of terrain, the type of climate forecast model used, and sys-
tem errors, CFSR reanalysis data for daily rainfall and rainy days were overestimated in the 
wet period. This meant that it was not possible to use CFSR weather data for hydrological 
simulations without data quality control and an applicability evaluation analysis. A prelimi-
nary attempt was undertaken in this study in terms of revision of CFSR rainfall data, which 
found a good power exponent relationship between CFSR and observed rainfall data. The 
method used to revise CFSR reanalysis data and a comparison of the effects on the data be-
fore and after revision were also studied and discussed. However, due to space constraints, 
we presented only a preliminary discussion of the method used to revise CFSR reanalysis 
data. Moreover, the weather input data of the SWAT model also includes daily temperature, 
daily wind speed, daily relative humidity and daily solar radiation, and there may be quanti-
tative relations between these factors and observed data. There may be a more scientific and 
effective method for the revision of CFSR weather data. These issues need to be investigated 
in the future work. 
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