Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (4): 497-517.doi: 10.1007/s11442-021-1855-7
• Research Articles • Previous Articles Next Articles
FAN Zemeng1,2,3
Received:
2020-10-19
Accepted:
2021-01-22
Online:
2021-04-25
Published:
2021-06-25
About author:
Fan Zemeng, PhD, specialized in ecological modelling and system simulation. E-mail: fanzm@lreis.ac.cn
Supported by:
FAN Zemeng. Spatial identification and scenario simulation of the ecological transition zones under the climate change in China[J].Journal of Geographical Sciences, 2021, 31(4): 497-517.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The identification criterion of ecological transition zone (ETZ) types"
Code | ETZ Type | MAB (℃) | TAP (mm) | PER |
---|---|---|---|---|
1 | Transition zone between aeolian area and nival area (Aeolian-Nival) | >0.375 | <125 | <0.25 |
2 | Transition zone between aeolian area, periglacial area, and nival area (Aeolian-Peri-Nival) | <0.75 | >125 | >0.25 |
3 | Transition zone between aeolian area, frigorideserta, and periglacial area (Aeolian-Fri-Peri) | >0.75 | <125 | <0.50 |
4 | Transition zone between periglacial area and nival area (Peri-Nival) | >0.75 | <250 | <0.25 |
5 | Transition zone between frigorideserta, periglacial area, and alpine cold steppe (Fri-Peri-AlpColdSte) | <1.50 | >125 | >0.50 |
6 | Transition zone between periglacial area, nival area, and alpine cold meadow (Peri-Nival-AlpColdMea) | <1.50 | >250 | >0.25 |
7 | Transition zone between alpine cold desert, alpine cold steppe, and frigorideserta (AlpColdDes-AlpColdSte-Fri) | >1.50 | <125 | <1.00 |
8 | Transition zone between alpine cold steppe, alpine cold meadow, and periglacial area (AlpColdSte-AlpColdMea-Peri) | >1.50 | <250 | <0.50 |
9 | Transition zone between alpine cold meadow, alpine rain tundra, and nival area (AlpColdMea-AlpRainTundra-Nival) | >1.50 | <500 | <0.25 |
10 | Transition zone between alpine cold desert, alpine cold steppe, and boreal dry scrub (AlpColdDes-AlpColdSte-BorealDryScr) | <3.00 | >125 | >1.00 |
11 | Transition zone between alpine cold steppe, alpine cold meadow, and boreal moist forest (AlpColdSte-AlpColdMea-BorealMoistFor) | <3.00 | >250 | >0.50 |
12 | Transition zone between alpine cold meadow, alpine rain tundra, and boreal wet forest (AlpColdMea-AlpRainTundra-BorealWetFor) | <3.00 | >500 | >0.25 |
13 | Transition zone between boreal desert, boreal dry scrub, and alpine cold desert (BorealDes-BorealDryScr-AlpColdDes) | >3.00 | <125 | <2.00 |
14 | Transition zone between boreal dry scrub, boreal moist forest, and alpine cold steppe (BorealDryScr-BorealMoistFor-AlpColdSte) | >3.00 | <250 | <1.00 |
15 | Transition zone between boreal moist forest, boreal wet forest and alpine cold meadow (BorealMoistFor-BorealWetFor-AlpColdMea) | >3.00 | <500 | <0.50 |
16 | Transition zone between boreal wet forest, boreal rain forest, and alpine rain tundra (BorealWetFor-BorealRainFor-BorealRainTundra) | >3.00 | <1000 | <0.25 |
17 | Transition zone between boreal desert, boreal dry scrub, and cool temperate desert scrub (BorealDes-BorealDryScr-CoolTemDesScr) | <6.00 | >125 | >2.00 |
18 | Transition zone between boreal dry scrub, boreal moist forest, and cool temperate steppe (BorealDryScr-BorealMoistFor-CoolTemSte) | <6.00 | >250 | >1.00 |
19 | Transition zone between boreal moist forest, boreal wet forest, and cool temperate moist forest (BorealMoistFor-BorealWetFor-CoolTemMoistFor) | <6.00 | >500 | >0.50 |
20 | Transition zone between boreal wet forest, boreal rain forest, and cool temperate wet forest (BorealWetFor-BorealRainFor-CoolTemWetFor) | <6.00 | >1000 | >0.25 |
21 | Transition zone between cool temperate desert, cool temperate desert scrub, and boreal desert (CoolTemDes-BorealRainFor-CoolWetFor) | >6.00 | <125 | <4.00 |
22 | Transition zone between cool temperate desert scrub, cool temperate steppe, and boreal dry scrub (CoolTemDesScr-CoolTemSte-BorealDryScr) | >6.00 | <250 | <2.00 |
23 | Transition zone between cool temperate steppe, cool temperate moist forest, and boreal moist forest (CoolTemSte-CoolTemMoistFor-BorealMoistFor) | >6.00 | <500 | <1.00 |
24 | Transition zone between cool temperate moist forest, cool temperate wet forest, and boreal wet forest (CoolTemMoistFor-CoolTemWetFor-BorealWetFor) | >6.00 | <1000 | <0.50 |
25 | Transition zone between cool temperate wet forest, cool temperate rain forest, and boreal rain forest (CoolTemWeFor-CoolTemRainFor-BorealRainFor) | >6.00 | <2000 | <0.25 |
26 | Transition zone between cool temperate desert, cool temperate desert scrub, and warm temperate desert (CoolTemDes-CoolTemDesScr-WarmTemDes) | <12.00 | >125 | >4.00 |
27 | Transition zone between cool temperate desert scrub, cool temperate steppe, and warm temperate thorn steppe (CoolTemDesScr-CoolTemSte-WarmTemThornSte) | <12.00 | >250 | >2.00 |
28 | Transition zone between cool temperate steppe, cool temperate moist forest, and warm temperate dry forest (CoolTeSte-CoolTemMoistFor-WarmTemDryFor) | <12.00 | >500 | >1.00 |
29 | Transition zone between cool temperate moist forest, cool temperate wet forest, and warm temperate moist forest (CoolTemMoistFor-CoolTemWetFor-WarmTemMoistFor) | <12.00 | >1000 | >0.50 |
30 | Transition zone between cool temperate wet forest, cool temperate rain forest, and warm temperate wet forest (CoolTemWetFor-CoolTemRainFor-Warm TemWetFor) | <12.00 | >2000 | >0.25 |
31 | Transition zone between warm temperate desert, warm temperate desert scrub, and cool temperate desert (WarmTemDes-WarmTemDesScr-CoolTemDes) | >12.00 | <125 | <8.00 |
32 | Transition zone between warm temperate desert scrub, warm temperate thorn steppe, and cool temperate desert scrub (WarmTemDesScr-WarmTemThornSte-CoolTemDesScr) | >12.00 | <250 | <4.00 |
33 | Transition zone between warm temperate thorn steppe, warm temperate dry forest, and cool temperate steppe (WarmTemthornDesScr-WarmTemDryFor-CoolTemSte) | >12.00 | <500 | <2.00 |
34 | Transition zone between warm temperate dry forest, warm temperate moist forest, and cool temperate moist forest (WarmTemDryFor-WarmTemMoistFor-CoolTemMoistFor) | >12.00 | <1000 | <1.00 |
35 | Transition zone between warm temperate moist forest, warm temperate wet forest and cool temperate wet forest (WarmTemMoistFor-WarmTemWetFor- CoolTemWetFor) | >12.00 | <2000 | <0.50 |
36 | Transition zone between warm temperate wet forest, warm temperate rain forest, and cool temperate rain forest (WarmTemWetFor-WarmTemRainFor- CoolTemRainFor) | >12.00 | <4000 | <0.25 |
37 | Transition zone between subtropical desert, subtropical desert scrub, and tropical desert scrub (SubtroDes-SubtroDesScr-TroDesScr) | <24.00 | >125 | >8.00 |
38 | Transition zone between subtropical desert scrub, subtropical thorn steppe, and tropical thorn forest (SubtroDesScr-SubtroThornSte-TroThornFor) | <24.00 | >250 | >4.00 |
39 | Transition zone between subtropical thorn woodland, subtropical dry forest, and tropical very dry forest (SubtroThornWood-SubtroDryFor-TroVeryDryFor) | <24.00 | >500 | >2.00 |
40 | Transition zone between subtropical dry forest, subtropical moist forest, and tropical dry forest (SubtroDryFor-SubtroMoistFor-TroDryFor) | <24.00 | >1000 | >1.00 |
41 | Transition zone between subtropical moist forest, subtropical wet forest, and tropical moist forest (SubtroMoistFor-SubtroWetFor-TroMoistFor) | <24.00 | >2000 | >0.50 |
42 | Transition zone between subtropical wet forest, subtropical rain forest, and tropical wet forest (SubtroWetFor-SubtroRainFor-TroWetFor) | <24.00 | >4000 | >0.25 |
43 | Transition zone between tropical desert, tropical desert scrub, and subtropical desert (TroDes-TroDesScr-SubtroDes) | >24.00 | <125 | <16.00 |
44 | Transition zone between tropical desert scrub, tropical thorn woodland, and subtropical desert (TroDesScr-TroDesThornwood-SubtroDesScr) | >24.00 | <250 | <8.00 |
45 | Transition zone between tropical thorn woodland, tropical very dry forest, and subtropical thorn woodland (TroThornWood-TroVeryDryFor-SubtroThornWood) | >24.00 | <500 | <4.00 |
46 | Transition zone between tropical very dry forest, tropical dry forest, and subtropical dry forest (TroVeryDryFor-TroDryFor-SubtroDryFor) | >24.00 | <1000 | <2.00 |
47 | Transition zone between tropical dry forest, tropical moist forest, and subtropical moist forest (TroDryFor-TroMoistFor-SubtroMoistFor) | >24.00 | <2000 | <1.00 |
48 | Transition zone between tropical moist forest, tropical wet forest, and subtropical wet forest (TroMoistFor-TroWetFor-SubtroWetFor) | >24.00 | <4000 | <0.50 |
49 | Transition zone between tropical wet forest, tropical rain forest, and subtropical wet forest (TroWetFor-TroRainFor-SubtroWetFor) | >24.00 | <8000 | <0.25 |
Table 2
Areas in different ecological transition zones (ETZs) under the three scenarios of RCP2.6, RCP4.5, and RCP8.5 during the periods from T0 to T3 (km2)"
ETZ type code | T0 | RCP 2.6 | RCP 4.5 | RCP 8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | ||
1 | 0 | 18 | 11 | 28 | 33 | 20 | 16 | 19 | 12 | 4 |
2 | 0 | 331 | 319 | 186 | 359 | 234 | 60 | 358 | 44 | 8 |
3 | 0 | 112 | 61 | 44 | 99 | 82 | 32 | 106 | 36 | 6 |
4 | 4133 | 2523 | 1929 | 2252 | 2249 | 1362 | 1255 | 2311 | 1251 | 177 |
5 | 69 | 1733 | 1621 | 1066 | 2043 | 1487 | 444 | 1937 | 235 | 21 |
6 | 67207 | 10165 | 5417 | 5630 | 9968 | 2705 | 2324 | 9085 | 2328 | 1271 |
7 | 0 | 496 | 569 | 85 | 494 | 503 | 38 | 462 | 33 | 0 |
8 | 21710 | 11833 | 8575 | 10436 | 11382 | 6306 | 5947 | 10986 | 6176 | 1778 |
9 | 50942 | 61529 | 54199 | 57642 | 56865 | 39831 | 35050 | 58659 | 30123 | 3972 |
10 | 6226 | 8108 | 7560 | 4602 | 7505 | 7651 | 3534 | 6888 | 1899 | 51 |
11 | 42813 | 72193 | 62699 | 63182 | 77481 | 51897 | 33686 | 74401 | 29872 | 9700 |
12 | 51665 | 60798 | 74726 | 76468 | 56264 | 81194 | 91293 | 57836 | 86511 | 64255 |
13 | 3698 | 2938 | 2566 | 1301 | 3330 | 2810 | 891 | 3097 | 568 | 9 |
14 | 33304 | 43970 | 35350 | 28835 | 44576 | 26912 | 22438 | 39653 | 26194 | 20468 |
15 | 53039 | 104570 | 121523 | 125735 | 105814 | 129326 | 145756 | 109206 | 147273 | 124791 |
16 | 20394 | 10 | 16 | 14 | 14 | 1 | 27 | 14 | 15 | 414 |
17 | 14482 | 16502 | 13437 | 13794 | 17491 | 11940 | 11067 | 15377 | 10001 | 3115 |
18 | 31289 | 45109 | 46366 | 43487 | 39986 | 50052 | 53911 | 40208 | 57198 | 32904 |
19 | 52387 | 135375 | 135381 | 167223 | 152001 | 164383 | 160644 | 151677 | 152096 | 182743 |
20 | 5537 | 0 | 0 | 0 | 0 | 21 | 21 | 0 | 15 | 14 |
21 | 13194 | 22047 | 18090 | 14887 | 20233 | 9779 | 5739 | 17244 | 4532 | 2311 |
22 | 63353 | 42135 | 42346 | 47085 | 45189 | 44690 | 46499 | 47416 | 45579 | 28390 |
23 | 148436 | 108981 | 102719 | 96813 | 104815 | 91829 | 77895 | 106336 | 86948 | 58513 |
24 | 21484 | 2006 | 4495 | 2412 | 1909 | 2212 | 5104 | 1702 | 1580 | 9054 |
25 | 186 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | 130080 | 145120 | 136429 | 143718 | 143769 | 105773 | 102151 | 150962 | 92610 | 23052 |
27 | 49453 | 107082 | 126616 | 131613 | 116791 | 144363 | 139982 | 120822 | 144384 | 119965 |
28 | 206067 | 247976 | 236233 | 227930 | 215464 | 268572 | 267315 | 215277 | 230023 | 200860 |
29 | 37587 | 5908 | 7822 | 2878 | 204 | 1386 | 3071 | 133 | 315 | 1645 |
30 | 17 | 43 | 32 | 32 | 39 | 11 | 3 | 41 | 3 | 0 |
31 | 17491 | 107649 | 119337 | 105099 | 92396 | 114786 | 145654 | 104675 | 152720 | 101876 |
32 | 3540 | 21099 | 32599 | 39582 | 23460 | 70216 | 104171 | 26351 | 115379 | 175955 |
33 | 98325 | 19043 | 29874 | 32358 | 27524 | 50384 | 46884 | 28507 | 102668 | 167583 |
34 | 221686 | 226182 | 188416 | 212098 | 239735 | 163580 | 154365 | 225159 | 132460 | 132566 |
35 | 15214 | 6769 | 3878 | 4046 | 6482 | 2097 | 1362 | 6260 | 1291 | 16 |
37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 884 |
38 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
39 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
40 | 65438 | 40014 | 39494 | 36285 | 48298 | 89004 | 109617 | 66368 | 237548 | 515481 |
41 | 25166 | 364 | 3349 | 1005 | 3 | 2304 | 5937 | 0 | 2991 | 7498 |
47 | 18348 | 39697 | 55697 | 54925 | 41424 | 85862 | 134610 | 42064 | 157828 | 317434 |
Table 3
Trends in the spatial shift (km) of mean center in ecological transition zones (ETZs) under the RCP2.6 scenario"
ETZ type code | T0-T1 | T1-T2 | T2-T3 | |||
---|---|---|---|---|---|---|
Shift distance | Shift direction | Shift distance | Shift direction | Shift distance | Shift direction | |
1 | 575.89 | Southeast | 158.44 | West | ||
2 | 36.46 | North | 364.35 | Southeast | ||
3 | 524.49 | Northwest | 440.09 | Southeast | ||
4 | 313.37 | West | 45.65 | Northwest | 33.72 | West |
5 | 163.57 | Northeast | 204.43 | Northwest | 80.98 | Southeast |
6 | 75.23 | South | 111.08 | Northwest | 34.18 | Southwest |
7 | 62.35 | East | 183.79 | Northwest | ||
8 | 344.76 | West | 9.82 | Northeast | 34.16 | South |
9 | 65.01 | North | 66.15 | West | 3.16 | Northeast |
10 | 114.76 | Northwest | 102.64 | Northwest | 80.54 | Northwest |
11 | 133.99 | South | 90.37 | Northwest | 25.27 | South |
12 | 265.35 | Northeast | 75.64 | West | 10.24 | East |
13 | 221.60 | West | 33.91 | Northwest | 23.62 | West |
14 | 226.46 | Southwest | 72.05 | Northwest | 153.18 | Northwest |
15 | 171.44 | Southeast | 110.42 | West | 36.23 | Southeast |
16 | 2827.93 | Northeast | 251.73 | Southwest | 251.45 | Northeast |
17 | 289.66 | Southwest | 134.86 | West | 218.66 | West |
18 | 447.75 | South | 64.87 | Southwest | 127.80 | North |
19 | 119.67 | Southeast | 150.92 | Southwest | 197.31 | South |
21 | 86.68 | Southeast | 56.18 | Southwest | 97.37 | Southwest |
22 | 981.11 | Southwest | 167.08 | Southwest | 30.74 | Northeast |
23 | 533.87 | Southwest | 66.24 | West | 309.09 | Northeast |
24 | 2268.19 | Northeast | 843.93 | Southwest | 1032.88 | Northeast |
26 | 54.23 | Southwest | 18.27 | West | 9.99 | Southeast |
27 | 101.50 | Northeast | 38.75 | Northwest | 167.87 | East |
28 | 216.51 | Northeast | 101.74 | Northeast | 72.23 | Northeast |
29 | 160.22 | West | 20.78 | West | 46.98 | North |
30 | 766.46 | Southeast | 13.12 | South | 0.00 | |
31 | 259.19 | Southeast | 95.16 | Southeast | 44.37 | Northwest |
32 | 839.21 | North | 415.56 | Southeast | 112.89 | Northwest |
33 | 294.23 | Southwest | 48.46 | Northwest | 21.06 | Southeast |
34 | 220.07 | Southwest | 52.50 | North | 19.88 | Northwest |
35 | 378.48 | East | 35.47 | Southeast | 9.45 | Southeast |
40 | 488.65 | Northwest | 48.12 | Northeast | 381.42 | South |
41 | 641.45 | Northeast | 216.49 | Northeast | 169.64 | Northeast |
47 | 29.03 | Northwest | 61.20 | North | 2.36 | South |
Table 4
Trends in the spatial shift (km) of mean center in ecological transition zones (ETZs) under the RCP4.5 scenario"
ETZ type code | T0-T1 | T1-T2 | T2-T3 | |||
---|---|---|---|---|---|---|
Shift distance | Shift direction | Shift distance | Shift direction | Shift distance | Shift direction | |
1 | 293.08 | East | 123.63 | South | ||
2 | 36.08 | Northeast | 279.36 | Southeast | ||
3 | 473.97 | Northwest | 494.86 | Southeast | ||
4 | 320.13 | West | 52.11 | Northwest | 57.99 | West |
5 | 170.54 | East | 203.39 | Northwest | 70.2 | Southeast |
6 | 87.43 | South | 237.81 | West | 161.8 | Northwest |
7 | 120.74 | Northwest | 104.33 | South | ||
8 | 321.52 | West | 28.5 | North | 112.16 | Northwest |
9 | 64.65 | North | 115.89 | Northwest | 71.13 | Northwest |
10 | 170.76 | Northwest | 119.2 | Northwest | 33.71 | West |
11 | 131.38 | South | 114.57 | Northwest | 101.63 | Northwest |
12 | 268.45 | Northeast | 149.39 | West | 95.55 | West |
13 | 226.55 | West | 28.13 | North | 54.75 | West |
14 | 217.42 | Southwest | 248.67 | West | 175.08 | Northwest |
15 | 213.48 | Southeast | 120.03 | Northwest | 119.29 | West |
16 | 2827.64 | Northeast | 2225.08 | Southwest | 60.36 | South |
17 | 384.24 | West | 372.57 | West | 72.11 | Southwest |
18 | 325.97 | Southwest | 234.82 | South | 52.36 | South |
19 | 174.34 | South | 432.43 | Southwest | 308.11 | Southwest |
20 | 0.28 | Northeast | ||||
21 | 69.1 | South | 377.76 | Southwest | 412.93 | Southwest |
22 | 919.58 | Southwest | 332.35 | Southwest | 150.7 | Southwest |
23 | 445.81 | Southwest | 260.71 | Southwest | 155.94 | Southwest |
24 | 2650.17 | Northeast | 179.94 | Southwest | 1561.57 | Southwest |
26 | 63.85 | West | 82.43 | West | 57.92 | Southwest |
27 | 306.92 | East | 146.99 | Northwest | 140.7 | Northwest |
28 | 320.71 | Northeast | 191.07 | Northeast | 24.79 | Northwest |
29 | 153.5 | Northwest | 214.07 | West | 103.68 | West |
30 | 768.54 | Southeast | 19.08 | North | 24.07 | North |
31 | 235.48 | Southeast | 346.37 | East | 67.52 | Southeast |
32 | 743.09 | North | 664.54 | Southeast | 20.01 | North |
33 | 274.56 | Southwest | 99.58 | Northwest | 89.56 | Northwest |
34 | 322.29 | Southwest | 137.42 | Northeast | 76.99 | Northeast |
35 | 384.46 | East | 105.23 | Southeast | 94.5 | Southeast |
40 | 556.84 | West | 253.32 | Northeast | 108.94 | Northeast |
41 | 1017.64 | Northeast | 58.91 | Southeast | 7.72 | Northeast |
47 | 34.71 | Northwest | 136.54 | Northeast | 74.47 | North |
Table 5
Trends in the spatial shift (km) of mean center in ecological transition zones (ETZs) under the RCP8.5 scenario"
ETZ type code | T0-T1 | T1-T2 | T2-T3 | |||
---|---|---|---|---|---|---|
Shift distance | Shift direction | Shift distance | Shift direction | Shift distance | Shift direction | |
1 | 122.27 | Southeast | 333.54 | West | ||
2 | 930.5 | Southeast | 285.74 | Southeast | ||
3 | 297.21 | Southeast | 81.38 | East | ||
4 | 326.75 | West | 136.14 | Northwest | 64.26 | South |
5 | 173.46 | East | 246.25 | Southeast | 840.32 | Southeast |
6 | 86.9 | South | 445.58 | Northwest | 133.04 | Northwest |
7 | 295.09 | Southeast | ||||
8 | 333.53 | West | 147.15 | Northwest | 78.14 | West |
9 | 67.49 | North | 185.05 | Northwest | 150.35 | Northwest |
10 | 189.19 | Northwest | 76.72 | West | 74.34 | South |
11 | 137.95 | South | 239.1 | Northwest | 265.65 | Northwest |
12 | 280.61 | Northeast | 257.8 | West | 290.64 | West |
13 | 224.04 | West | 79.49 | Southwest | 50.82 | Northwest |
14 | 259.6 | Southwest | 386.82 | Northwest | 113.5 | Northwest |
15 | 196.98 | Southeast | 202.81 | Northwest | 299.93 | Northwest |
16 | 2827.64 | Northeast | 2282.75 | Southwest | 206.86 | South |
17 | 479.18 | West | 346.49 | Southwest | 49.96 | West |
18 | 326.78 | Southwest | 349.86 | South | 428.34 | Southwest |
19 | 231.84 | South | 727.43 | Southwest | 656.35 | West |
20 | 1.12 | South | ||||
21 | 100.83 | South | 1140.32 | Southwest | 89.01 | Northwest |
22 | 956.6 | Southwest | 508.54 | Southwest | 719.47 | Southwest |
23 | 389.8 | Southwest | 791.86 | Southwest | 1331.83 | Southwest |
24 | 2649.15 | Northeast | 744.07 | Southwest | 1838.76 | Southwest |
26 | 64.76 | West | 206.18 | West | 427.11 | West |
27 | 289.31 | Northeast | 278.89 | Northwest | 378.4 | West |
28 | 364.48 | Northeast | 312.33 | Northeast | 176.63 | North |
29 | 153.47 | Northwest | 267.16 | West | 138.46 | North |
30 | 767.04 | Southeast | 39.75 | North | ||
31 | 260.29 | Southeast | 388.81 | East | 189.04 | East |
32 | 720.01 | North | 631 | Southeast | 250.86 | Northwest |
33 | 280.88 | Southwest | 215.3 | Northwest | 137.05 | North |
34 | 349.58 | Southwest | 165.45 | North | 953.92 | Northeast |
35 | 401.18 | East | 232.65 | Southeast | 202.82 | Southeast |
40 | 510.16 | West | 418.01 | Northeast | 128.65 | Northeast |
41 | 13.76 | Northwest | ||||
47 | 36.96 | Northwest | 233.08 | Northeast | 102.5 | North |
1 |
Bestelmeyer B T, Wiens J A, 2001. Local and regional-scale responses of ant diversity to a semiarid biome transition zone. Ecography, 24:381-392.
doi: 10.1111/eco.2001.24.issue-4 |
2 |
Biermann F, 2007. ‘Earth system governance’ as a crosscutting theme of global change research. Global Environmental Change-Human Policy Dimension, 17(3/4):326-337.
doi: 10.1016/j.gloenvcha.2006.11.010 |
3 | Breshears D D, Cobb N S, Rich P M et al., 2005. Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 102(42):15144-15148. |
4 |
Caneva G, Bartoli F, Savo V et al., 2016. Combining statistical tools and ecological assessments in the study of biodeterioration patterns of stone temples in Angkor (Cambodia). Scientific Reports, 6:32601.
doi: 10.1038/srep32601 pmid: 27597658 |
5 | Castri F, Hansen A J, Holland M M, 1988. A New Look at Ecotones. Biology International, Special Issue 17. Paris: International Union of Biological Sciences. |
6 |
Chapin II I F S, Zavaleta E S, Eviner V T et al., 2000. Consequences of changing biodiversity. Nature, 405:234-242.
pmid: 10821284 |
7 | Clements F C, 1905. Research Methods in Ecology. Lincoln: University Publishing Corporation. |
8 |
Danz N P, Frelich LE, Reich P B et al., 2013. Do vegetation boundaries display smooth or abrupt spatial transitions along environmental gradients? Evidence from the prairie-forest biome boundary of historic Minnesota, USA. Journal of Vegetation Science, 24:1129-1140.
doi: 10.1111/jvs.12028 |
9 |
Fan Z M, Bai R Y, Yue T X, 2019. Spatio-temporal distribution of vascular plant species abundance on Qinghai-Tibet Plateau. Journal of Geographical Sciences, 29(10):1625-1636.
doi: 10.1007/s11442-019-1667-1 |
10 |
Fan Z M, Fan B, 2019. Shifts of the mean center of potential vegetation ecosystems under future climate change in Eurasia. Forests, 10(10):873.
doi: 10.3390/f10100873 |
11 |
Fan Z M, Li J, Yue T X, 2013a. Land-cover changes of biome transition zones in Loess Plateau of China. Ecological Modelling, 252(1):129-140.
doi: 10.1016/j.ecolmodel.2012.07.039 |
12 |
Fan Z M, Li J, Yue T X et al., 2015. Scenarios of land cover in karst area of southwestern China. Environmental Earth Sciences, 74:6407-6420.
doi: 10.1007/s12665-015-4223-z |
13 |
Fan Z M, Zhang X, Li J et al., 2013b. Land-cover changes of national nature reserves in China. Journal of Geographical Sciences, 23(2):258-270.
doi: 10.1007/s11442-013-1008-8 |
14 |
Feddema J J, Oleson K W, Bonan G B et al., 2005. The importance of land-cover change in simulating future climates. Science, 310(5754):1674-1678.
doi: 10.1126/science.1118160 |
15 |
Ferro I, Morrone J J, 2014. Biogeographical transition zones: A search for conceptual synthesis. Biological Journal of the Linnean Society, 113:1-12.
doi: 10.1111/bij.2014.113.issue-1 |
16 | Gao H W, 1994. Advancement of theoretical research in ecotone. Chinese Journal of Ecology, 13(1):32-38. (in Chinese) |
17 |
Gosz J R, 1993. Ecotone hierarchies. Ecological Application, 3(3):369-376.
doi: 10.2307/1941905 |
18 |
Guan K Y, Pan M, Li H B et al., 2015. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 8:284-289.
doi: 10.1038/ngeo2382 |
19 | Holland M M, 1988. SCOPE/M AB technical consultations on landscape boundaries: Report on an ACOPE/MAB Workshop on Ecotones. Biology International, 17:47-106. |
20 |
Li S J, Sun Z G, Tan M H, 2018. Changing patterns in farming-pastoral ecotones in China between 1990 and 2010. Ecological Indicators, 89:110-117.
doi: 10.1016/j.ecolind.2018.01.067 |
21 |
Loehle C, 2018. Disequilibrium and relaxation times for species responses to climate change. Ecological Modelling, 384:23-29.
doi: 10.1016/j.ecolmodel.2018.06.004 |
22 | Ma S J, 1990. A Perspective of Modern Ecology. Beijing: Science Press. (in Chinese) |
23 |
Marín V H, 2007. Toward conceptual cohesiveness: A historical analysis of the theory and utility of ecological boundaries and transition zones. Ecosystems, 10:462-476.
doi: 10.1007/s10021-007-9036-9 |
24 |
Marshall C J, Liebherr J K, 2000. Cladistic biogeography of the Mexican transition zone. Journal of Biogeography, 27(1):203-216.
doi: 10.1046/j.1365-2699.2000.00388.x |
25 |
Mayle F E, Beerling D J, Gosling W D et al., 2004. Responses of Amazonian ecosystems to climate and atmospheric carbon dioxide changes since the Last Glacial Maximum. Philosophical Transactions of the Royal Society B: Biological Sciences, 359:499-514.
doi: 10.1098/rstb.2003.1434 |
26 |
Mayle F E, Burbridge R, Killeen T J, 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science, 290(22):2291-2294.
doi: 10.1126/science.290.5500.2291 |
27 |
Nicholas A M M, Franklin D C, Bowman D M J S, 2011. Floristic uniformity across abrupt boundaries between Triodia hummock grassland and Acacia shrubland on an Australian desert sandplain. Journal of Arid Environments, 75:1090-1096.
doi: 10.1016/j.jaridenv.2011.06.016 |
28 | Niu W Y, 1989. The discriminatory index with regard to the weakness, overlapness, and breadth of ecotone. Acta Ecologica Sinica, 9(2):97-105. (in Chinese) |
29 |
Pauli H, Gottfried M, Dullinger S et al., 2012. Recent plant diversity changes on Europe’s mountain summits. Science, 336(20):353-355.
doi: 10.1126/science.1219033 |
30 | Peteet D, 2000. Sensitivity and rapidity of vegetational response to abrupt climate change. Proceedings of the National Academy of Sciences of the United States of America, 97(4):1359-1361. |
31 |
Reich P B, Sendall K M, Rice K et al., 2015. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Climate Change, 5(2):148-152.
doi: 10.1038/nclimate2497 |
32 |
Rich R L, Stefanski A, Montgomery R A et al., 2015. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change Biology, 21(6):2334-2348.
doi: 10.1111/gcb.12855 pmid: 25640748 |
33 |
Sarneel J M, Huig N, Veen G F et al., 2014. Herbivores enforce sharp boundaries between terrestrial and aquatic ecosystems. Ecosystems, 17(8):1426-1438.
doi: 10.1007/s10021-014-9805-1 |
34 | Shi W J, Liu Y T, Shi X L, 2017. Quantitative methods for detecting the impacts of climate change on the fluctuation of farming-pastoral ecotone boundaries in northern China. Acta Geographica Sinica, 72(3):407-419. (in Chinese) |
35 |
Smith T B, Wayne R K, Girman D J et al., 1997. A role for ecotones in generating rainforest biodiversity. Science, 276(20):1855-1857.
doi: 10.1126/science.276.5320.1855 |
36 |
van Vuuren D P, Edmonds J, Kainuma M et al., 2011. The representative concentration pathways: An overview. Climatic Change, 109:5-31.
doi: 10.1007/s10584-011-0148-z |
37 |
Wang X Y, Li Y, Chen Y P et al., 2018. Temporal and spatial variation of extreme temperatures in an agropastoral ecotone of northern China from 1960 to 2016. Scientific Reports, 8:8787.
doi: 10.1038/s41598-018-27066-0 |
38 | Williamsa A P, Allen C D, Millar C I et al., 2010. Forest responses to increasing aridity and warmth in the southwestern United States. Proceedings of the National Academy of Sciences of the United States of America, 107(50):21289-21294. |
39 |
Wuyts B, Champneys A R, House J I, 2017. Amazonian forest-savanna bistability and human impact. Nature Communication, 8(1):15519.
doi: 10.1038/ncomms15519 |
40 | Xiao Q G, Chen W Y, Du P et al., 1997. Monitoring the ecological transect in East Asia monsoon region by meteorological satellite remote sensing. Acta Botanica Sinica, 39(9):826-830. (in Chinese) |
41 |
Yarrow M M, Salthe S N, 2008. Ecological boundaries in the context of hierarchy theory. BioSystems, 92(3):233-244.
doi: 10.1016/j.biosystems.2008.03.001 |
42 |
Yue T X, Fan Z M, Liu J Y et al., 2005. Changes of major terrestrial ecosystems in China since 1960. Global and Planetary Change, 48(4):287-302.
doi: 10.1016/j.gloplacha.2005.03.001 |
43 |
Yue T X, Fan Z M, Liu J Y, 2006. Scenarios of major terrestrial ecosystems in China. Ecological Modelling, 199(3):363-376.
doi: 10.1016/j.ecolmodel.2006.05.026 |
44 |
Yue T X, Zhao N, Liu Y et al., 2020. A fundamental theorem for eco-environmental surface modelling and its applications. Science China Earth Sciences, 63(8):1092-1112.
doi: 10.1007/s11430-019-9594-3 |
45 |
Yue T X, Zhao N, Fan ZM et al., 2016. CMIP5 downscaling and its uncertainty in China. Global and Planetary Change, 146:30-37.
doi: 10.1016/j.gloplacha.2016.09.003 |
46 | Yue T X, 2011. Surface Modelling: High Accuracy and High Speed Methods. New York: CRC Press. |
[1] | HUANG Lin, NING Jia, ZHU Ping, ZHENG Yuhan, ZHAI Jun. The conservation patterns of grassland ecosystem in response to the forage-livestock balance in North China [J]. Journal of Geographical Sciences, 2021, 31(4): 518-534. |
[2] | ZHANG Xiaoping, LIN Meihan, WANG Zhenbo, JIN Fengjun. The impact of energy-intensive industries on air quality in China’s industrial agglomerations [J]. Journal of Geographical Sciences, 2021, 31(4): 584-602. |
[3] | ZHANG Xinghang, ZHANG Baiping, WANG Jing, YU Fuqin, ZHAO Chao, YAO Yonghui. North-south vegetation transition in the eastern Qinling-Daba Mountains [J]. Journal of Geographical Sciences, 2021, 31(3): 350-368. |
[4] | JIN Fengjun, YAO Zuolin, CHEN Zhuo. Development characteristics and construction prospects for a multi-integrated economic zone in the South China Sea Region [J]. Journal of Geographical Sciences, 2021, 31(3): 403-422. |
[5] | WEI Wei, GUO Zecheng, SHI Peiji, ZHOU Liang, WANG Xufeng, LI Zhenya, PANG Sufei, XIE Binbin. Spatiotemporal changes of land desertification sensitivity in northwest China from 2000 to 2017 [J]. Journal of Geographical Sciences, 2021, 31(1): 46-68. |
[6] | MA Bin, ZHANG Bo, JIA Lige. Spatio-temporal variation in China’s climatic seasons from 1951 to 2017 [J]. Journal of Geographical Sciences, 2020, 30(9): 1387-1400. |
[7] | LIU Xiaojing, LIU Dianfeng, ZHAO Hongzhuo, HE Jianhua, LIU Yaolin. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China [J]. Journal of Geographical Sciences, 2020, 30(9): 1419-1435. |
[8] | WU Li, SUN Xiaoling, SUN Wei, ZHU Cheng, ZHU Tongxin, LU Shuguang, ZHOU Hui, GUO Qingchun, GUAN Houchun, XIE Wei, KE Rui, LIN Guiping. Evolution of Neolithic site distribution (9.0-4.0 ka BP) in Anhui, East China [J]. Journal of Geographical Sciences, 2020, 30(9): 1451-1466. |
[9] | ZHU Wenbo, ZHANG Jingjing, CUI Yaoping, ZHU Lianqi. Ecosystem carbon storage under different scenarios of land use change in Qihe catchment, China [J]. Journal of Geographical Sciences, 2020, 30(9): 1507-1522. |
[10] | YE Chao, LI Simeng, ZHANG Zhao, ZHU Xiaodan. A comparison and case analysis between domestic and overseas industrial parks of China since the Belt and Road Initiative [J]. Journal of Geographical Sciences, 2020, 30(8): 1266-1282. |
[11] | WANG Xueqin, LIU Shenghe, QI Wei. Mega-towns in China: Their spatial distribution features and growth mechanisms [J]. Journal of Geographical Sciences, 2020, 30(7): 1060-1082. |
[12] | YANG Fan, HE Fanneng, LI Meijiao, LI Shicheng. Evaluating the reliability of global historical land use scenarios for forest data in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1083-1094. |
[13] | LIU Ruiqing, XU Hao, LI Jialin, PU Ruiliang, SUN Chao, CAO Luodan, JIANG Yimei, TIAN Peng, WANG Lijia, GONG Hongbo. Ecosystem service valuation of bays in East China Sea and its response to sea reclamation activities [J]. Journal of Geographical Sciences, 2020, 30(7): 1095-1116. |
[14] | FANG Chuanglin, WANG Zhenbo, LIU Haimeng. Beautiful China Initiative: Human-nature harmony theory, evaluation index system and application [J]. Journal of Geographical Sciences, 2020, 30(5): 691-704. |
[15] | CHEN Mingxing, LIANG Longwu, WANG Zhenbo, ZHANG Wenzhong, YU Jianhui, LIANG Yi. Geographical thoughts on the relationship between ‘Beautiful China’ and land spatial planning [J]. Journal of Geographical Sciences, 2020, 30(5): 705-723. |
|