全文下载排行

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部
  • 最近1个月下载排行
  • 最近1年下载排行

Please wait a minute...
  • 全选
    |
  • 研究论文
    ZHANG Li, LEI Jun, WANG Changjian, WANG Fei, GENG Zhifei, ZHOU Xiaoli
    地理学报(英文版). 2022, 32(10): 1886-1910. https://doi.org/10.1007/s11442-022-2028-z
    PDF全文 (12902) HTML (68)   可视化   收藏

    This essay combines the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) nighttime light data and the Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data into a “synthetic DMSP” dataset, from 1992 to 2020, to retrieve the spatio-temporal variations in energy-related carbon emissions in Xinjiang, China. Then, this paper analyzes several influencing factors for spatial differentiation of carbon emissions in Xinjiang with the application of geographical detector technique. Results reveal that (1) total carbon emissions continued to grow, while the growth rate slowed down in the past five years. (2) Large regional differences exist in total carbon emissions across various regions. Total carbon emissions of these regions in descending order are the northern slope of the Tianshan (Mountains) > the southern slope of the Tianshan > the three prefectures in southern Xinjiang > the northern part of Xinjiang. (3) Economic growth, population size, and energy consumption intensity are the most important factors of spatial differentiation of carbon emissions. The interaction between economic growth and population size as well as between economic growth and energy consumption intensity also enhances the explanatory power of carbon emissions’ spatial differentiation. This paper aims to help formulate differentiated carbon reduction targets and strategies for cities in different economic development stages and those with different carbon intensities so as to achieve the carbon peak goals in different steps.

  • XIONG Ying, ZHANG Fang
    地理学报(英文版). 2021, 31(6): 819-838. https://doi.org/10.1007/s11442-021-1873-5

    In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors, the urban surface temperature patterns of Changsha in 2000, 2009 and 2016 are retrieved based on multi-source spatial data (Landsat 5 and Landsat 8 satellite image data, POI spatial big data, digital elevation model, etc.), and 12 natural and human factors closely related to urban thermal environment are quickly obtained. The standard deviation ellipse and spatial principal component analysis (PCA) methods are used to analyze the effect of urban human residential thermal environment and its influencing factors. The results showed that the heat island area increased by 547 km2 and the maximum surface temperature difference reached 10.1℃ during the period 2000-2016. The spatial distribution of urban heat island was mainly concentrated in urban built-up areas, such as industrial and commercial agglomerations and densely populated urban centers. The spatial distribution pattern of heat island is gradually decreasing from the urban center to the suburbs. There were multiple high-temperature centers, such as Wuyi square business circle, Xingsha economic and technological development zone in Changsha County, Wangcheng industrial zone, Yuelu industrial agglomeration, and Tianxin industrial zone. From 2000 to 2016, the main axis of spatial development of heat island remained in the northeast-southwest direction. The center of gravity of heat island shifted 2.7 km to the southwest with the deflection angle of 54.9° in 2000-2009. The center of gravity of heat island shifted to the northeast by 4.8 km with the deflection angle of 60.9° in 2009-2016. On the whole, the change of spatial pattern of thermal environment in Changsha was related to the change of urban construction intensity. Through the PCA method, it was concluded that landscape pattern, urban construction intensity and topographic landforms were the main factors affecting the spatial pattern of urban thermal environment of Changsha. The promotion effect of human factors on the formation of heat island effect was obviously greater than that of natural factors. The temperature would rise by 0.293℃ under the synthetic effect of human and natural factors. Due to the complexity of factors influencing the urban thermal environment of human settlements, the utilization of multi-source data could help to reveal the spatial pattern and evolution law of urban thermal environment, deepen the understanding of the causes of urban heat island effect, and clarify the correlation between human and natural factors, so as to provide scientific supports for the improvement of the quality of urban human settlements.

  • ZHANG Mingyu, CHEN Qiuxiao, ZHANG Kewei
    地理学报(英文版). 2021, 31(9): 1365-1380. https://doi.org/10.1007/s11442-021-1901-5

    In the past 40 years, cultivated land has faced the continued anthropogenic interference, which has become a significant issue for cultivated land preservation during rapid urbanization. The purpose of this research was to reveal the spatio-temporal evolutionary characteristics of cultivated land and the correlation between rural population variation and farmland change in China. Fifty county-level administrative units in Zhejiang Province were selected as the study area wherein spatio-temporal evolution comparative analysis for every 5 years from 2000 to 2015 was conducted. This study used the pool method to estimate the impacts of the rural population variation, average slope, average elevation, rural residential disposable income, primary industry proportion, and road density on farmland utilization efficiency from the spatial perspective, which is represented by landscape metrics including the mean patch size, edge density, area weighted mean shape index, and area weighted mean patch fractal dimension. This study showed that the cultivated land landscape index continued to rise after 2000 and then started decreasing after 2010, indicating a reduction in human interference after 2010. The spatial variation of rural population of all county-level administrative units decreased from 2000 to 2010, and 62% of them began to increase after 2010. The regression analysis results showed that the spatial variation of rural population was significantly and negatively correlated with the cultivated land landscape while the rural residential disposable income, average slope and primary industry proportion were all significantly and positively related to the cultivated land landscape index. The results implied that the loss of the agricultural labor force and the difficulty of sloping farmlands adapting to mechanized farming were unconducive to farmland utilization efficiency improvement, and the increase in nonagricultural activities in rural areas would increase the difficulty of cultivated land preservation. Our analysis suggests that local governments should improve the production efficiency of fragmented land or strengthen the construction control of housing and facilities in rural areas according to their regional urbanization development situation.

  • 研究论文
    ZHU Wenchao, JIANG Zhimeng, CEN Luyu, WU Hao
    地理学报(英文版). 2023, 33(2): 266-288. https://doi.org/10.1007/s11442-023-2082-1

    High-intensity land use and resource overloaded-induced regional land use spatial pattern (LUSP) are essential and challenging for high-quality development. The empirical studies have shown that a scientific land uses spatial layout, and the supporting system should be based on a historical perspective and require better considering the double influence between the current characteristics and future dynamics. This study proposes a comprehensive framework that integrates the resource environment carrying capacity (RECC) and land use change (LUC) to investigate strategies for optimizing the spatial pattern of land use for high-quality development. China’s Zhengzhou city was the subject of a case study whose datasets include remote sensing, spatial monitoring, statistics, and open sources. Three significant results emerged from the analysis: (1) The RECC has significant spatial differentiation but does not follow a specific spatial law, and regions with relatively perfect ecosystems may not necessarily have better RECC. (2) From 2020 to 2030, the construction land and farmland will fluctuate wildly, with the former increasing by 346.21 km2 and the latter decreasing by 295.98 km2. (3) The study area is divided into five zones, including resource conservation, ecological carrying, living core, suitable construction, and grain supply zones, and each one has its LUSP optimization orientation. This uneven distribution of RECC reflects functional defects in the development and utilization of LUSP. In addition, the increase in construction land and the sharp decline of farmland pose potential threats to the sustainable development of the study area. Hence, these two elements cannot be ignored in the future high-quality development process. The findings indicate that the LUSP optimization based on dual dimensions of RECC and LUC is more realistic than a single-dimension solution, exhibiting the LUSP optimization’s effectiveness and applicability.

  • 河流与地貌特征研究专辑
    ZHOU Shengnan, SHI Qi, YANG Hongqiang, ZHANG Xiyang, LIU Xiaoju, TAN Fei, YAN Pin
    地理学报(英文版). 2021, 31(11): 1655-1674. https://doi.org/10.1007/s11442-021-1916-y

    Giant clam shell mining (GCSM), a unique phenomenon occurring at remote coral reefs in the southern South China Sea (SCS), forms striking scars on the reef flats and damages the reef flat substrate. Through image analyses at three times (2004.02.02, 2014.02.26, and 2019.04.10) and in situ surveys at Ximen Reef, a representative site that has experienced GCSM, we quantified the GCSM-generated substrate damage and the corresponding recovery. GCSM was estimated to have occurred sometime between 2012 and 2014, causing reduction in live coral subarea and formation of micro-relief as trenches and mounds. GCSM-generated damage was restricted to the reef flat. After GCSM, coral and algae subarea increased, and the trenches and mounds tended to be filled and eroded, representing a natural recovery of the substrate. The legal prohibition on human disturbances at the coral reefs contributed to substrate recovery at Ximen Reef. This case also implied that recovery of the other coral reefs that suffered from GCSM is possible.

  • GUO Mengyao, SHE Dunxian, ZHANG Liping, LI Lingcheng, YANG Zong-Liang, HONG Si
    地理学报(英文版). 2021, 31(8): 1123-1139. https://doi.org/10.1007/s11442-021-1888-y

    This study uses two forms of the Palmer Drought Severity Index (PDSI), namely the PDSI_TH (potential evapotranspiration estimated-by the Thornthwaite equation) and the PDSI_PM (potential evapotranspiration estimated by the FAO Penman-Monteith equation), to characterize the meteorological drought trends during 1960-2016 in the Loess Plateau (LP) and its four subregions. By designing a series of numerical experiments, we mainly investigated various climatic factors' contributions to the drought trends at annual, summer, and autumn time scales. Overall, the drying trend in the PDSI_TH is much larger than that in the PDSI_PM. The former is more sensitive to air temperature than precipitation, while the latter is the most sensitive to precipitation among all meteorological factors. Increasing temperature results in a decreasing trend (drying) in the PDSI_TH, which is further aggravated by decreasing precipitation, jointly leading to a relatively severe drying trend. For the PDSI_PM that considers more comprehensive climatic factors, the drying trend is partly counteracted by the declining wind speed and solar radiation. Therefore, the PDSI_PM ultimately shows a much smaller drying trend in the past decades.

  • 河流与地貌特征研究专辑
    ZHOU Yi, YANG Caiqin, LI Fan, CHEN Rong
    地理学报(英文版). 2021, 31(11): 1575-1597. https://doi.org/10.1007/s11442-021-1912-2

    In China's Loess Plateau severe gully erosion (LPGE) region, the shoulder-line is the most intuitive and unique manifestation of the loess landform, which divides a landform into positive and negative terrains (PNTs*The spatial combination model of PNTs is of great significance for revealing the evolution of the loess landform. This study modeled and proposed the Surface Nibble Degree (SND), which is a new index that reflects the comparison of the areas of PNTs. Based on 5 m DEMs and matched high-resolution remote sensing images, the PNTs of 172 complete watersheds in the LPGE were extracted accurately, and the SND index was calculated. The spatial distribution trend of SND was discussed, and the relationship between SND and the factors that affect the evolution mechanism of regional landform was explored further. Results show that: (1) The SND can be calculated formally. It can quantify the development of the loess landform well*2) The SND of the LPGE has evident spatial differentiation that increases from southwest to northeast. High values appear in Shenmu of Shaanxi, Shilou of Shanxi, and northern Yanhe River, whereas the low values are mainly distributed in the southern loess tableland and the inclined elongated ridge area of Pingliang in Gansu and Guyuan in Ningxia*3) In the Wuding River and Yanhe River, the SND decreases with the increase in flow length (FL*In the North-Luohe River and Jinghe River, the SND increases with FL*4) SND is significantly correlated with gully density and sediment modulus and moderately correlated with hypsometric integral. As for the mechanism factors analysis, the relationship between loess thickness and SND is not obvious, but SND increased first and then decreased with the increase of precipitation and vegetation in each geographical division, and we found that the land use type of low coverage grassland has greater erosion potential.

  • Seth SCHINDLER, Mustafa Kemal BAYIRBAĞ, GAO Boyang
    地理学报(英文版). 2021, 31(5): 747-762. https://doi.org/10.1007/s11442-021-1869-1

    This article contributes to a small but growing body of multi-sited and multi-scalar research on the Belt and Road Initiative. We focus on relations at the national, regional and international scales, and present original research from China and Turkey, to show how the Istanbul-Ankara high-speed railway has served as a testing ground for China’s Belt and Road Initiative (BRI). Its construction was initially funded by the European Investment Bank, but it is now part of the backbone of the Turkish Government’s Middle Corridor plan which enhances west-east connectivity and integration with the Caucasus and Central Asia. We show that in contrast to multinational corporations from the OECD that seek to remain footloose, Chinese state-owned enterprises (SOEs) seek to adapt to, apprehend and ultimately shape local institutions. In the case of Turkey this proved difficult given its institutional alignment with the European Union. Thus, while the railway project was completed successfully by a consortium led by a Chinese SOE, Turkey’s dynamic and complex regulatory environment discourages Chinese SOEs in the infrastructure sector. We conclude that the Turkish and Chinese governments are currently pursuing complementary territorial visions yet their cooperation is project-based and pragmatic.

  • NIU Fangqu, JIANG Yanpeng
    地理学报(英文版). 2021, 31(8): 1171-1186. https://doi.org/10.1007/s11442-021-1891-3

    Since the implementation of the economic reform and opening up policy in 1978, China has miraculously created long-term high-speed economic growth, but has also had to face the problem of excessive consumption of resources as well as an intensification of environmental pollution. As a result, China is now facing a slowdown in development. China must maintain a certain speed of development to realize its goal of being a powerful nation, and becoming a developed country by 2050. To this end, China is facing a transformation of its economic development. There is a need to agree on an expected economic growth rate, along with the corresponding development modes or means of regulation in the medium- and long-term periods. This study developed a systematic-dynamic model to simulate the coupling relationship between economic growth, development modes, and the environmental supply system, and explored the possible options for future economic growth as well as the resource use and environmental protection requirements (the main factors). The results showed that to achieve the development goal of becoming a developed country by 2050, while maintaining a good ecological environment, the suitable growth rate for China's economy is 3.8%-6.3%. Within this range, a growth rate of 3.8%-4.4% was found to be relatively safe, while a growth rate of 4.4%-6.3% required further technical progress. This study provides an early warning in regard to China's environmental and development status. The study was a response to the “Future Earth” framework document and, in terms of development speed, it developed a theoretical system for the determination of resource and environmental carrying capacity (RECC).

  • WANG Shaojian, CUI Zitian, LIN Jingjie, XIE Jinyan, SU Kun
    地理学报(英文版). 2022, 32(1): 44-64. https://doi.org/10.1007/s11442-022-1935-3

    Urban resilience is an emerging research topic of urban studies, and its essence is described by the ability of cities to resist, recover, and adapt to uncertain disturbances. This paper constructs a “Size-Density-Morphology” urban ecological resilience evaluation system, uses a coupling coordination degree model to measure the degree of coupling coordination between urbanization and ecological resilience in the Pearl River Delta from 2000 to 2015, and conducts an in-depth discussion on its spatiotemporal characteristics. The results show the following. (1) From 2000 to 2015, the urbanization level of cities in the study area generally increased while the level of ecological resilience declined. The coupling coordination degree between the two systems decreased from basic coordination to basic imbalance. (2) In terms of spatial distribution, the coupling coordination degree between urbanization and ecological resilience of cities presented a circular pattern that centered on the cities at the estuary of the Pearl River and increased toward the periphery. (3) Ecological resilience sub-systems played variable roles in the coupling coordination between urbanization and ecological resilience. Specifically, size resilience mainly played a reverse blocking role; the influence of morphology resilience was generally positive and continued to increase over time; the effect of density resilience was positive and continued to decline and further became negative after falling below zero. The main pathways for achieving coordinated and sustainable development of future urbanization and ecological resilience in the Pearl River Delta include: leading the coordinated development of regions with new urbanization, improving ecological resilience by strictly observing the three areas and three lines, adapting to ecological carrying capacity, and rationally arranging urban green spaces.

  • CHEN Mingxing, XIAN Yue, WANG Pengling, DING Zijin
    地理学报(英文版). 2021, 31(9): 1328-1348. https://doi.org/10.1007/s11442-021-1895-z

    Global large-scale urbanization and climate change have become indisputable scientific facts yet are unresolved issues, and are a common concern for mankind. The relationship between these two topics is unclear and it is not known how to deal appropriately at the scientific level with climate change in the process of urbanization. Further exploration of the science, management and practice, are needed to achieve global and regional sustainable development. This paper first considers the basic facts concerning mass urbanization and climate change and summarizes the interactions and possible mechanisms of urbanization and climate change. Urbanization leads to the heat island effect, an uneven distribution of precipitation and extreme weather, together with a local-regional-global multi-scale superposition effect, which aggravates the consequences of global climate change. The impact of climate change on urbanization is mainly manifested in aspects such as changes of energy consumption, mortality, and the spread of infectious diseases, sea level rise, extreme weather damage to infrastructure, and water shortages. This paper also briefly reviews relevant international research programs and action coalitions and puts forward an analysis framework of multi-dimensional sustainable urbanization which can adapt to and mitigate climate change, from the perspective of the four key dimensions—population, land use, economy, and society. It is imperative that we strengthen the interdisciplinary activities involving the natural and social sciences, take urbanization and other human activities into consideration of the land - atmosphere system, and explore the human-land-atmosphere coupling process. The adaptation and mitigation from the perspective of human activities, as represented by urbanization, might be the most critical and realistic way to deal with climate change.

  • WANG Jiaoe, DU Fangye, WU Mingquan, LIU Weidong
    地理学报(英文版). 2021, 31(5): 681-698. https://doi.org/10.1007/s11442-021-1865-5

    Modern railway projects, characterized by “natural monopoly”, large investment, and far-reaching influences, are highly dependent on the institutional and cultural environments in China. The countries along the Belt and Road are characterized by weak institutions, unstable politics, and poor technology foundations, which are largely different from China. These factors are severe obstacles to international technology transfer. By summarizing the experiences from the Mombasa-Nairobi Standard-Gauge Railway (SGR) project, this study proposes a framework for embedded technology transfer with a technology-institution-culture nexus. The results indicate that technology localization, including technology standards, management mode, and industrial chain, should be realized in the process of technology transfer. Then, the host government ought to overhaul its institutional and policy framework to support the infrastructure projects. Moreover, the cultural conflicts between the transferor and transferee should be taken seriously. This experience could provide references for other international infrastructure technology transfers.

  • 河流与地貌特征研究专辑
    HUANG Sheng, XIA Jun, ZENG Sidong, WANG Yueling, SHE Dunxian
    地理学报(英文版). 2021, 31(11): 1598-1614. https://doi.org/10.1007/s11442-021-1913-1

    Lake water level is an essential indicator of environmental changes caused by natural and human factors. The water level of Poyang Lake, the largest freshwater lake in China, has exhibited a dramatic variation for the past few years, especially after the completion of the Three Gorges Dam (TGD*However, there is a lack of more accurate assessment of the effect of the TGD on the Poyang Lake water level (PLWL) at finer temporal scales (e.g., the daily scale*Here, we used three machine learning models, namely, an Artificial Neural Network (ANN), a Nonlinear Autoregressive model with eXogenous input (NARX), and a Gated Recurrent Unit (GRU), to simulate the daily lake level during 2003-2016. We found that machine learning models with historical memory (i.e., the GRU model) are more suitable for simulating the PLWL under the influence of the TGD. The GRU-based results show that the lake level is significantly affected by the TGD regulation in the different operation stages and in different periods. Although the TGD has had a slight but not very significant impact on the yearly decline of the PLWL, the blocking or releasing of water at the TGD at certain moments has caused large changes in the lake level. This machine-learning-based study sheds light on the interactions between Poyang Lake and the Yangtze River regulated by the TGD.

  • GAO Jixi, LIU Xiaoman, WANG Chao, WANG Yong, FU Zhuo, HOU Peng, LYU Na
    地理学报(英文版). 2021, 31(9): 1245-1260. https://doi.org/10.1007/s11442-021-1896-y

    It is important to quantitatively analyze the effects of protection of important ecological spaces in China to ensure national ecological security. By considering changes in the ecological land, this study examines the effects of protecting three types of important natural ecological spaces in China from 1980 to 2018. Moreover, considering important ecological spaces and their surroundings yields differences in the effects of protection between internal and external spaces, where this can provide a scientific basis for the categorization and zoning of China’s land. The results show the following: (1) In 2018, the ratio of ecological land to important natural ecological spaces accounted for 92.64%. This land had a good ecological background that reflects the developmental orientation of important ecological spaces. (2) From 1980 to 2018, the area of ecological land in important ecological spaces shrank but the rate of reduction was lower than the national average, which shows the positive effect of regulating construction in natural ecological spaces. The restorative effects of ecological projects to convert farmland into forests and grasslands have been prominent. The expanded ecological land is mainly distributed in areas where such projects have been implemented, and the reduced area is concentrated in grain-producing areas of the Northeast China Plain and agricultural oases of Xinjiang. In the future, the government should focus on strengthening the management and control of these areas. (3) The area ratio of ecological land was the highest in national nature reserves. The rate of reduction in its area was the lowest and the trend of reduction was the smallest in national nature reserves, which reflects differences in the status of ecological protection among different spaces. (4) The ratio of ecological land to important ecological spaces was higher than that in the surrounding external space, and the rate of reduction in it was lower. Thus, the effects of internal and external protection had clear differences in terms of gradient.

  • WEI Xueqiong, LI Yuanfang, GUO Yu, CHEN Tiexi, LI Beibei
    地理学报(英文版). 2021, 31(9): 1381-1400. https://doi.org/10.1007/s11442-021-1902-4

    As one of the most critical impact factors of global change, historical land-use change is an indispensable input in climate and environment simulations. To better understand the cropland change in the Guanzhong area, gazetteers, statistics, and survey data were collected as data sources. Methods of registered tax-paying cropland data collection, selection of time points, and data interpolation and calibration were used to reconstruct changes in the cropland area. The cropland area data at the county level were allocated to 1 km×1 km grid cells. The total cropland area in the Guanzhong area was influenced by changes in population, wars, natural disasters, and land-use types, and it fluctuated from 1650 to 2016. From 1780 to 1830, the cropland expanded in the northern and western parts of Guanzhong area, and the cropland in the north of Qinling Mountains increased slightly. The spatial pattern of cropland reached its maximum range in 1980, and the cropland area declined in the whole study area, especially in the cities of Xi’an and Xianyang in 2016. The comparison between HYDE 3.2 and the data obtained in this study showed that the grid cells of HYDE 3.2 exhibit lower values of cropland area fractions in the Guanzhong Basin and higher values in high-altitude areas around the Guanzhong Basin as compared to those in this study.

  • 研究论文
    YOU Zhen, SHI Hui, FENG Zhiming, XIAO Chiwei
    地理学报(英文版). 2022, 32(11): 2189-2204. https://doi.org/10.1007/s11442-022-2043-0

    Recent years have witnessed rapid and widespread economic growth in regions involved in China’s Belt and Road Initiative (BRI), mainly due to the construction of six economic corridors. This paper aims to quantify the levels of six economic corridors according to the socioeconomic development levels in the BRI regions. Here, a gridded socioeconomic development index was first created, and a dividing line was drawn to reveal the distribution characteristics of socioeconomic development in the BRI regions. A classification method was then applied to identify local development levels. Finally, we created an economic corridor development index (ECDI) to evaluate the progress of six economic corridors. The results reveal spatial heterogeneity within the socioeconomic groups of BRI regions, which can be roughly divided into offshore (or Part A, 50.54%) and inland (or Part B, 49.46%) areas. Although both parts comprise roughly the same area, over 95% of the population is located in offshore regions. The China-Mongolia-Russia Economic Corridor has the highest development index due to a stable political environment and long-running cooperation. The China-Pakistan Economic Corridor suffers from the lowest ECDI but with strong development potential. Our methods can provide critical reference and practice for the future evaluation of the level of regional development. The results of this study can offer policymakers some insight into reducing socioeconomic inequality in the BRI regions.

  • 研究论文
    WU Shaohong, CHAO Qingchen, GAO Jiangbo, LIU Lulu, FENG Aiqing, DENG Haoyu, ZUO Liyuan, LIU Wanlu
    地理学报(英文版). 2023, 33(3): 429-448. https://doi.org/10.1007/s11442-023-2090-1

    Climate change will bring huge risks to human society and the economy. Regional climate change risk assessment is an important basic analysis for addressing climate change, which can be expressed as a regional system of comprehensive climate change risk. This study establishes regional systems of climate change risks under the proposed global warming targets. Results of this work are spatial patterns of climate change risks in China, indicated by the degree of climate change and the status of the risk receptors. Therefore, the risks show significant spatial differences. The high-risk regions are mainly distributed in East, South, and central China, while the medium-high risk regions are found in North and southwestern China. Under the 2°C warming target, more than 1/4 of China’s area would be at high and medium-high risk, which is more severe than under the 1.5°C warming target, and would extend to the western and northern regions. This work provides regional risk characteristics of climate change under different global warming targets as a foundation for dealing with climate change.

  • ZHANG Huijie, AN Li, BILSBORROW Richard, CHUN Yongwan, YANG Shuang, DAI Jie
    地理学报(英文版). 2021, 31(6): 899-922. https://doi.org/10.1007/s11442-021-1877-1

    Payments for Ecosystem Services (PES) programs have been implemented in both developing and developed countries to conserve ecosystems and the vital services they provide. These programs also often seek to maintain or improve the economic wellbeing of the populations living in the corresponding (usually rural) areas. Previous studies suggest that PES policy design, presence or absence of concurrent PES programs, and a variety of socioeconomic and demographic factors can influence decisions of households to participate or not in the PES program. However, neighborhood impacts on household participation in PES have rarely been addressed. This study explores potential neighborhood effects on villagers’ enrollment in the Grain-to-Green Program (GTGP), one of the largest PES programs in the world, using data from China’s Fanjingshan National Nature Reserve. We utilize a fixed effects logistic regression model in combination with the eigenvector spatial filtering (ESF) method to explore whether neighborhood size affects household enrollment in GTGP. By comparing the results with and without ESF, we find that the ESF method can help account for spatial autocorrelation properly and reveal neighborhood impacts that are otherwise hidden, including the effects of area of forest enrolled in a concurrent PES program, gender and household size. The method can thus uncover mechanisms previously undetected due to not taking into account neighborhood impacts and thus provides an additional way to account for neighborhood impacts in PES programs and other studies.

  • Leandro Ismael de Azevedo LACERDA, José Augusto Ribeiro da SILVEIRA, Celso Augusto Guimarães SANTOS, Richarde Marques da SILVA, Alexandro Medeiros SILVA, Thiago Victor Medeiros do NASCIMENTO, Edson Leite RIBEIRO, Paulo Vitor Nascimento de FREITAS
    地理学报(英文版). 2021, 31(10): 1529-1552. https://doi.org/10.1007/s11442-021-1910-4

    Urban forests play an important role in the thermal comfort and overall life of local populations in large- and medium-sized cities. This study analyzes urban forest loss and maps land use and land cover (LULC) changes between 1991 and 2018 by evaluating the use of urban planning instruments for the mitigation of urban forest loss in João Pessoa, Brazil. For this purpose, satellite-derived LULC images from 1991, 2006, 2010 and 2018 and data on urban forest loss areas obtained using the Google Earth Engine were used. In addition, this paper also discusses the instruments used for integrated urban planning, which are (a) the legal sector, responsibility and nature; (b) the urban expansion process; and (c) the elements of urban infrastructure. The results show a clear shift in land use in the study area. The major changes in LULC classes occurred in urban areas and herbaceous vegetation, while the greatest loss was in arboreal/shrub vegetation. Thus, an increase in the pressure to occupy zones intended for environmental preservation could be estimated. Our results showed similar accuracies with other studies and more spatial details. The characteristics of the patterns, traces, and hotspots of urban expansion and forest cover loss were explored. We highlighted the potential use of this proposed framework to be applied and validated in other parts of the world to help better understand and quantify various aspects of urban-related problems such as urban forest loss mapping using instruments for integrated urban planning and low-cost approaches.

  • YAO Junqiang, MAO Weiyi, CHEN Jing, DILINUER Tuoliewubieke
    地理学报(英文版). 2021, 31(9): 1283-1298. https://doi.org/10.1007/s11442-021-1898-9

    The Xinjiang region of China is among the most sensitive regions to global warming. Based on the meteorological and hydrological observation data, the regional wet-to-dry climate regime shifts in Xinjiang were analyzed and the impacts of climatic shift on the eco-hydrological environment of Xinjiang were assessed in this study. The results showed that temperature and precipitation in Xinjiang have increased since the mid-1980s, showing a warming-wetting trend. However, drought frequency and severity significantly increased after 1997. The climate of Xinjiang experienced an obvious shift from a warm-wet to a warm-dry regime in 1997. Since the beginning of the 21st century, extreme temperatures and the number of high temperature days have significantly increased, the start date of high temperature has advanced, and the end date of high temperature has delayed in Xinjiang. In addition, the intensity and frequency of extreme precipitation have significantly increased. Consequently, regional ecology and water resources have been impacted by climatic shift and extreme climate in Xinjiang. In response, satellite-based normalized difference vegetation index showed that, since the 1980s, most regions of Xinjiang experienced a greening trend and vegetation browning after 1997. The soil moisture in Xinjiang has significantly decreased since the late 1990s, resulting in adverse ecological effects. Moreover, the response of river runoff to climatic shift is complex and controlled by the proportion of snowmelt to the runoff. Runoff originating from the Tianshan Mountains showed a positive response to the regional wet-to-dry shift, whereas that originating from the Kunlun Mountains showed no obvious response. Both climatic shift and increased climate extremes in Xinjiang have led to intensification of drought and aggravation of instability of water circulation systems and ecosystem. This study provides a scientific basis to meet the challenges of water resource utilization and ecological risk management in the Xinjiang region of China.

  • 研究论文
    GAO Peichao, XIE Yiru, SONG Changqing, CHENG Changxiu, YE Sijing
    地理学报(英文版). 2023, 33(2): 222-244. https://doi.org/10.1007/s11442-023-2080-3

    Henan, China, is likely the most populous agricultural province worldwide. It is China’s major grain-producing area, with a continuously increasing population (96 million), which is greater than 93% of countries worldwide. However, this province has been experiencing unprecedented urbanization recently due to national policies and measures, such as a plan to build the capital city of Henan into a national center, resulting in severe conflicts in land use that endanger food security regionally and globally. To facilitate decision-making on this problem, we explored the detailed urban-rural development of Henan by modeling these land-use conflicts. Conventional modeling of a region’s urban-rural development is to navigate trade-offs (a) solely between different land-use types (b) by assuming that each type provides a single service (e.g., croplands produce all the food), and (c) under a polynomial regression-based projection of population. In contrast, we considered both land-use type and intensity, resulting in a detailed land system for Henan. By introducing the concept of land system services (e.g., food production), we established a many-to-many relationship between land system classes and services. These allowed us to carry out the most comprehensive modeling of Henan’s urban-rural development under eighteen combined scenarios of population growth and land-use policies on food production. The modeling results of these scenarios provide a solid basis for making decisions regarding Henan’s urban-rural development. We also revealed the influence mechanism of population growth, land-use policies, and their combinations, highlighting the benefits of securing food production by agricultural intensification rather than merely expanding the area of cropland.

  • 研究论文
    TENG Jialing, TIAN Jing, YU Guirui
    地理学报(英文版). 2021, 31(7): 965-976. https://doi.org/10.1007/s11442-021-1880-6

    Arbuscular mycorrhizal fungi (AMF) are universally mutualistic symbionts that colonize the fine roots of most vascular plants. However, the biogeographical patterns and driving factors of AMF diversity of plant roots in grasslands are not well investigated. In this study, we used high-throughput sequencing techniques and bioinformatics to evaluate the AMF richness of 333 individual plant roots in 21 natural grassland ecosystems in northern China, including the Loess Plateau (LP), the Mongolian Plateau (MP), and the Tibetan Plateau (TP). The AMF richness showed a significant parabolic trend with increasing longitude. In regional situations, the AMF richness in the grasslands of the MP (60.4 ± 1.47) was significantly higher than those of the LP (46.4 ± 1.43) and TP (44.3 ± 1.64). Plant traits (including plant families, genera, and functional groups) explained the most variation in the AMF richness across China’s grasslands, followed by energy and water; soil properties had the least effects. The results showed the biogeographical patterns of the AMF richness and the underlying dominant factors, providing synthetic data compilation and analyses in the AMF diversity in China’s grasslands.

  • LI Wenlong, KUANG Wenhui, LYU Jun, ZHAO Zhonghua, ZHANG Boyuan
    地理学报(英文版). 2021, 31(6): 859-877. https://doi.org/10.1007/s11442-021-1875-3

    The theory on the cyclic adaptation between society and ecosystems sheds new light on the evolution and internal structure of human-environment systems. This paper introduces the risk index (RI) and adaptation capacity index (ACI) to evaluate the rural human-environment system. An evaluation index system for the adaptability of rural human-environment systems is configured in the context of climate change and policy implementation. On this basis, the stages, features, dominant control factors, and evolution mechanism were examined vis-à-vis the adaptability of the rural human-environment system in Darhan Muminggan Joint Banner from 1952 to 2017. The main results are as follows: (1) The evolution of the rural human-environment system can be divided into three stages, namely, the reorganization and rapid development stage (1952-2002) with population, cultivated land, livestock and degraded grassland increasing by 260%, 13%, 134% and 16.33%, respectively. The rapid to stable development stage (2003-2010) with population increasing by 2.8%; cultivated land, livestock and degraded grassland decreasing by 2.3%, 13.6% and 10.7%, respectively. The stable to release stage (2011-2017) with population, cultivated land, livestock and degraded grassland decreasing by 2.6%, 0.2%, 10.6% and 3.8%, respectively. (2) With the passage of time, the ACI of the rural human-environment system first increased slightly (-0.016-0.031), followed by a slight decline (0.031-0.003), and culminating in a rapid increase (0.003-0.088). In terms of spatial patterns, adaptability is high in the middle, moderate in the north, and low in the south. (3) The evolution of adaptability in the rural human-environment system was mainly controlled by the per capita effective irrigation area (22.31%) and the per capita number of livestock (23.47%) from 1990 to 2000, the desertified area (25.06%) and the land use intensity (21.27%) from 2000 to 2005, and the per capita income of farmers and herdsmen (20.08%) and the per capita number of livestock (18.52%) from 2010 to 2007. (4) Under the effects of climate change and policy interventions, the cyclic adaptation of the rural human-environment system was propelled by the interactions between two kinds of subjects: farmers and herdsmen on the one hand and rural communities on the other hand. The interaction affects the adaptive behavior of the two kinds of subjects, which in turn drives the cyclic evolution of the system. As a result, the system structure and functions developed alternatively between coordinated and uncoordinated states. Small-scale adaptive behaviors of farmers and herdsmen have a profound impact on the evolution of the rural human-environment system.

  • WANG Xue, LI Xiubin
    地理学报(英文版). 2021, 31(8): 1222-1242. https://doi.org/10.1007/s11442-021-1894-0

    Understanding the manifestations and underlying drivers of agricultural land use change in China is of great importance for both domestic and global food security. However, little is known about the holistic pattern of agricultural land use change across China, especially from the perspective of intensity since the evidence has been gathered mainly through case studies at local levels. This study conducts a systemic review of agricultural land use change and its underlying drivers in China by aggregating 169 relevant case studies from 123 publications. The cases related to intensification and disintensification, which are the two types of agricultural land use change, are generally equal, accounting for 50% of the total number of cases. Intensification and disintensification can be further divided into the same three categories: expansion/contraction of agricultural land, changes in agricultural land use activities and changes in land management intensity. Demographic, economic, technological, and institutional drivers, together with location factors, are frequently noted as significant underlying drivers, while sociocultural drivers and farm(er) characteristics are less frequently recognized. Finally, three major land use change trajectories are summarized mainly concerning rising labor costs and the concomitant increase in off-farm employment, the ecological improvement policy, and advances in agricultural technology.

  • FAN Zemeng, LI Saibo, FANG Haiyan
    地理学报(英文版). 2021, 31(10): 1403-1418. https://doi.org/10.1007/s11442-021-1903-3

    Land cover change has presented clear spatial differences in the New Eurasian Continental Bridge Economic Corridor (NECBEC) region in the 21st century. A spatiotemporal dynamic probability model and a driving force analysis model of land cover change were developed to analyze explicitly the dynamics and driving forces of land cover change in the NECBEC region. The results show that the areas of grassland, cropland and built-up land increased by 114.57 million ha, 8.41 million ha and 3.96 million ha, and the areas of woodland, other land, and water bodies and wetlands decreased by 74.09 million ha, 6.26 million ha, and 46.59 million ha in the NECBEC region between 2001 and 2017, respectively. Woodland and other land were mainly transformed to grassland, and grassland was mainly transformed to woodland and cropland. Built-up land had the largest annual rate of increase and 50% of this originated from cropland. Moreover, since the Belt and Road Initiative (BRI) commenced in 2013, there has been a greater change in the dynamics of land cover change, and the gaps in the socio-economic development level have gradually decreased. The index of socio-economic development was the highest in western Europe, and the lowest in northern Central Asia. The impacts of socio-economic development on cropland and built-up land were greater than those for other land cover types. In general, in the context of rapid socio-economic development, the rate of land cover change in the NECBEC has clearly shown an accelerating trend since 2001, especially after the launch of the BRI in 2013.

  • CAI Xingran, LI Zhongqin, ZHANG Hui, XU Chunhai
    地理学报(英文版). 2021, 31(10): 1469-1489. https://doi.org/10.1007/s11442-021-1907-z

    The glacier is a crucial freshwater resource in arid and semiarid regions, and the vulnerability of the glacier change is intimately linked to regional ecological services and socio-economic sustainability. Taking the Tianshan Mountains region in China as an example, a basic framework for studying the vulnerability of glacier change was constructed so as to address factors such as physical geography, population status, socio-economic level, agricultural development, and social services. The framework was based on key dimensions, that is, exposure, sensitivity, and adaptability, and this constituted a targeted evaluation index system. We examined the spatial structure and spatial autocorrelation of the glacier change vulnerability using ArcGIS and GeoDa software. The influence and interaction of natural, social, economic, population and other factors on glacier change adaptability was examined using the GeoDetector model. The results suggested the following: (1) The vulnerability level decreased from the western region to the eastern region with significant differences between the two regions. The eastern region had the lowest vulnerability, followed by the central region, and then western region which had the highest vulnerability. (2) Significant positive and negative correlations were found between exposure, sensitivity, and adaptability, indicating that the areas with high exposure and high sensitivity to glacier change tended to have a low adaptive capacity, which led to high vulnerability, and vice versa. (3) The spatial heterogeneity regarding the ability to cope with glacier change reflected the combined effects of the natural, social, economic, and demographic factors. Among them, factors such as the production value of secondary and tertiary industries, the urban population, urban fixed-asset investment, and the number of employees played major roles regarding the spatial heterogeneity of glacier change.

  • LIU Zhilin, DING Yinping, JIAO Yuanmei
    地理学报(英文版). 2021, 31(10): 1490-1506. https://doi.org/10.1007/s11442-021-1908-y

    Following climate change, changes in precipitation patterns and food security are major challenges faced by humans. However, research on how these changes in precipitation pattern impacts food supply is limited. This study aims to elucidate this impact and response mechanisms using precipitation data of a climate change-sensitive confluence zone of the southwest and southeast monsoons in Yunnan Province from 1988 to 2018. The results revealed that the precipitation pattern could be divided into three periods: abundant precipitation (Stage I, from 1988 to 2004), decreased precipitation (Stage II, from 2005 to 2015), and drought recovery (Stage III, from 2016 to 2018). Following the transition from Stage I to Stage II and from Stage II to Stage III, the area of precipitation changed significantly, accounting for 15.07%, 13.87%, and 16.53% of Yunnan’s total area, for Stages I, II, and III, respectively. At the provincial level, a significant positive correlation was observed between precipitation and food production (r = 0.535, P < 0.01), and the correlation coefficient between precipitation and grain yield was higher than that between precipitation and meat and milk production. Based on a precipitation-grain yield transect and breakpoint detection method, key precipitation thresholds affecting grain yield were estimated as 700 and 1500 mm, respectively; when precipitation was < 700, 700-1500, and ≥1500 mm, the correlation coefficients between precipitation and grain yield were 0.448 (P < 0.01), 0.370 (P < 0.01), and -0.229 (P > 0.05), respectively. Based on the precipitation thresholds, Yunnan Province can be divided into precipitation surplus, precipitation equilibrium, and precipitation deficit regions, corresponding countermeasures to stabilize grain yield were proposed for each of these regions. The threshold effect of precipitation on grain yield is controlled by molecular-level water-crop mechanisms, in which reactive oxygen species, a by-product of plant aerobic metabolism, plays a key regulatory role.

  • XU Lidan, DENG Xiangzheng, JIANG Qun’ou, MA Fengkui
    地理学报(英文版). 2021, 31(12): 1715-1736. https://doi.org/10.1007/s11442-021-1919-8

    To realize efficient and sustainable poverty alleviation, this study firstly investigated the identification of multidimensional poverty and relative poverty, and then explored relevant poverty alleviation pathways. Poverty levels in 31 provinces including the autonomous regions and municipalities of China were identified at the county level using the average nighttime light index (ANLI), county multidimensional development index (CMDI), and a method combining multidimensional poverty index and relative poverty standards. Poverty alleviation pathways for poverty-stricken counties were explored from the aspects of industry, education, tourism and agriculture. The results revealed that nearly 60% of counties in China were primarily under relative poverty, most of which were corresponded to light relative poverty. In terms of ANLI and CMDI, 63% and 79% of the national poverty-stricken counties, as of 2018, could be identified, suggesting that CMDI had a higher performance for identifying poverty at the county level. In terms of poverty alleviation pathways, 414, 172, 442, and 298 poverty-stricken counties were receptive to industry poverty alleviation, education poverty alleviation, tourism poverty alleviation, and agriculture poverty alleviation, and 61% of counties had more poverty-causing factors, implying that multidimensional poverty alleviation is suitable in most of the counties.

  • 研究论文
    LIANG Xinyuan, JIN Xiaobin, HAN Bo, SUN Rui, XU Weiyi, LI Hanbing, HE Jie, LI Jin
    地理学报(英文版). 2022, 32(6): 1001-1019. https://doi.org/10.1007/s11442-022-1982-9

    As the world’s largest developing country, the ability of China’s agricultural resource utilization to effectively support the current and future food security goals has been affected by a variety of factors (e.g., transformed supply channels, tightening international situation and frequent emergencies) in recent years and has attracted extensive attention from the academic community subject to multiple factors. This study uses literature review, statistical analysis, and spatial analysis methods to systematically explore China’s food security situation in the context of farmland resource constraints. It is found that the demand-side pressures such as demographic changes, social class differentiation, and dietary structure adjustments derived from economic growth and rapid urbanization have placed extremely high expectations on food supply. However, the quantitative restrictions, utilization ways, and health risks of farmland resources on the supply side constitute a huge hidden concern that affects the stability of food production. Although China’s farmland protection system is undergoing a transition from focusing on quantity management to sustainable use, the matching and coordinating demand pressure and supply capacity for food security is unbalanced. Therefore, facing uncertain future development scenarios, policymakers should focus on building a resilient space for China’s farmland protection to withstand the interference of major emergencies. The existing farmland protection space policy can be integrated by establishing a national farmland strategic reserve system (based on resilient space), and further development of targeted use control measures for zoning, grading, and classification will help realize sustainable China’s farmland resources use.

  • SONG Weixuan, HUANG Qinshi, GU Yue, HE Ge
    地理学报(英文版). 2021, 31(12): 1757-1774. https://doi.org/10.1007/s11442-021-1921-1

    Residential segregation is a dual process of socio-spatial differentiation in residents and spatio-temporal heterogeneity in dwelling. However, most of the existing studies are established from the single perspective of urban residents based on demographic data, which is difficult to reveal the dynamics and complex spatial reconstruction within and between cities. With the characteristics of both stability and timeliness, the rapidly changing housing market is one of the processes and results of socio-spatial reconfiguration, and it is undoubtedly a better lens to observe residential segregation. This paper adopts methods such as multi-group segregation index, multi-scalar segregation profiles, and decomposition of segregation index, with Nanjing and Hangzhou as case cities, and establishes multi-scalar segregation profiles and comparative models based on three geographical scales of census tract, block and grid, and different residential types. A quantitative study was conducted on the degree and pattern of multi-scalar residential segregation in Nanjing and Hangzhou from 2009 to 2018. The paper found that the spatial segregation index is an improvement of the non-spatial segregation index. There are differences between Nanjing and Hangzhou in the evolution process of residential segregation. Nanjing has a higher degree of spatial differentiation as a whole, among which spatial components have a more significant impact.