
J. Geogr. Sci. 2023, 33(3): 449-463 
DOI: https://doi.org/10.1007/s11442-023-2091-0 

© 2023    Science Press    Springer-Verlag 

An overall consistent increase of global aridity  
in 1970–2018 

LUO Dengnan1, *HU Zhongmin2,3, DAI Licong2, HOU Guolong1, DI Kai1,  
LIANG Minqi1, CAO Ruochen4, ZENG Xiang1 
1. School of Geography, South China Normal University, Guangzhou 510631, China; 
2. Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, 

Hainan University, Haikou 570228, China; 
3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong, 

China; 
4. International Institute for Earth System Sciences, Nanjing University, Nanjing 210023, China 
 

Abstract: Climate change is expected to introduce more water demand in the face of dimin-
ishing water supplies, intensifying the degree of aridity observed in terrestrial ecosystems in 
the 21st century. This study investigated spatiotemporal variability within global aridity index 
(AI) values from 1970–2018. The results revealed an overall drying trend (0.0016 yr-1, p<0.01), 
with humid and semi-humid regions experiencing more significant drying than other regions, 
including those classified as arid or semi-arid. In addition, the Qinghai-Tibet Plateau has 
gotten wetter, largely due to the increases in precipitation (PPT) observed in that region. 
Global drying is driven primarily by decreasing and increasing PPT and potential evapotran-
spiration (PET), respectively. Decreases in PPT alone or increases in PET also drive global 
aridification, though to a lesser extent. PPT and increasing potential evapotranspiration (PET), 
with increasing PET alone or decreasing PPT alone. Slightly less than half of the world’s land 
area has exhibited a wetting trend, largely owing to increases in regional PPT. In some parts 
of the world, the combined effects of increased PPT and decreased PET drives wetting, with 
decreases in PET alone explaining wetting in others. These results indicate that, without 
consideration of other factors (e.g., CO2 fertilization), aridity may continue to intensify, espe-
cially in humid regions. 
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1  Introduction 

Increasing aridity, a manifestation of climate change, is a serious threat to ecosystems 
(Huang et al., 2016b; Zhao et al., 2020; Hu et al., 2022). Declining rainfall has resulted in 
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the expansion of the area classified as arid or semi-arid (Dai, 2012; Sheffield et al., 2012; 
Huang et al., 2016a), and the frequency and intensity of droughts are projected to increase as 
global change continues (Strzepek et al., 2010; Asadi Zarch et al., 2015). This expansion of 
aridity is the result of an imbalance between water supply and demand. Empirically based 
models predict that the intensity and duration of drought will increase due to the increase in 
potential evaporation rate driven by rising temperatures and regional decreases in precipita-
tion (Dai, 2012). This will make the impacted terrestrial ecosystems more vulnerable and 
sensitive to climate change (Lian et al., 2021; Zeng et al., 2022). In order to understand how 
terrestrial ecosystems may change in response to climate change, it is crucial to assess vari-
ability in dryness across the biosphere and the factors driving it. 

An aridity index (AI) is a widely used metric that quantifies aridity. Scientists have de-
veloped various AIs based on meteorological factors such as temperature, precipitation, 
and potential evapotranspiration (PET) (Necula et al., 1998; Arora, 2002; Li et al., 2019). 
The AI proposed by the Food and Agriculture Organization (FAO) of the United Nations is 
defined as the ratio of precipitation to PET (Allen et al., 1998). It is clear, simple, and 
practical to use and is effectively used in assessments of aridity (Greve et al., 2019; Zhou 
et al., 2020). 

Many studies have used the FAO AI to assess aridity in different regions. For example, 
Huang et al. (2016b) found that the expansion of drylands occurs mainly in semi-arid re-
gions around the world due to decreasing values of AI in these regions. Mu et al. (2013) 
found that the Asia-Pacific region experienced more frequent and intense drought events 
from 2000 to 2011. Dryness in Iraq increased significantly from 1980 to 2011, with drought 
severity increasing since 1997 owing to a reduction in precipitation and an increase in tem-
perature (Şarlak and Mahmood Agha, 2018). Although a few studies have reported interan-
nual variability in the aridity of humid regions (Ullah et al., 2022), most have focused either 
on drylands (Mu et al., 2013; Asadi Zarch et al., 2015; Huang et al., 2016a; Pan et al., 2021) 
or on regions in close proximity to the studies’ authors (Huo et al., 2013; Zhao et al., 2017; 
Li et al., 2019; Tsiros et al., 2020). Additionally, most previous studies have focused on the 
temporal dynamics of AI values at an annual scale based on global mean AI (Dai, 2012; Ul-
lah et al., 2022). However, AI values change seasonally, and how these changes vary across 
different continents and climate regions is poorly understood. For example, Dai (2012) and 
Ullah (2022) investigated temporal trends in aridity at the global scale, but whether supply 
(precipitation) or demand (PET) drives AI dynamics remains unclear. An understanding of 
the factors driving these changes is important for predicting future changes in AI. Therefore, 
it is urgent to have a better developed understanding of the spatiotemporal dynamics of and 
dominant factors driving aridity in humid regions. 

Here we use data for precipitation (PPT) and PET from the Climatic Research Unit (CRU) 
v4.03 product dataset to calculate FAO AI to clarify the spatial-temporal variabilities in cli-
mate dryness at the global scale. We selected 1970 as the starting year because it approxi-
mates the beginning of two trends: an acceleration in global warming and increasingly fre-
quent global drought (Visbeck et al., 2001; Dai, 2012). This study aims to answer the fol-
lowing questions: 1) How has global climate aridity changed on seasonal and annual scales 
over the past five decades (1970–2018) and how has it varied across climate regions and 
continents? 2) What are the dominant factors controlling variability in AI? 
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2  Data and methods 

2.1  Data 

The PPT and PET data used in this study were produced by CRU (http://www.cru.uea. 
ac.uk/cru/data/hrg) at the University of East Anglia in the United Kingdom. The CRU da-
taset was aggregated from records with a spatial resolution of 0.5°×0.5° that were collected 
monthly from 1901–2018. The accuracy of the CRU dataset has been confirmed inde-
pendently (Van Der Schrier et al., 2013; Harris et al., 2020). PET data is calculated by the 
Penman-Monteith equation suggested by the FAO (Harris et al., 2020). As described above, 
FAO AI is defined as the ratio of annual precipitation to annual potential evapotranspiration: 
 /AI PPT PET=  (1) 
where PPT and PET are the annual precipitation (mm) and the annual potential evapotran-
spiration (mm), respectively. The larger the value of AI, the wetter the climate. Dryness can 
be divided into 5 levels by AI value: humid (AI≥0.65), semi-humid (0.5≤AI<0.65), 
semi-arid (0.2≤AI<0.5), arid (0.05≤AI<0.2), and extreme arid (AI<0.05) (Huang et al., 
2016a; Zhou et al., 2018). 

2.2  Data analysis 

The CRU TS v4.03 dataset was used to calculate values of AI from 1970 to 2018. A linear 
regression model was used to calculate the trend values of AI, PPT and PET. The 
Thiel-Sen’s trend analysis and Mann-Kendall tests were applied to assess significance of 
trends in AI over 1970–2018. Finally, the contribution of meteorological factors to AI varia-
bilities was quantified for each pixel. The effect of latitude on pixel area was taken into ac-
count when calculating global average values by projecting the raster data with EASE-Grid 
2.0 Global (https://nsidc.org/data/user-resources/help-center/guide-ease-grids).  
Linear regression 

Regression statistics were used to calculate the trend for the annual average time series of 
AI globally and for each continent except Antarctica. Eq. (3) shows the univariate linear re-
gression model of AI: 

 i iY at b= +  (2) 
where Yi represents the variable (AI, PPT and PET) for a given yeari, a represents the linear 
trend of the variable, ti is the year, and b is the intercept. Positive values of a indicate that 
the variable increases over time; negative values indicate decreasing values. 
Sen’s slope and Mann-Kendall test 

Theil-Sen median trend analysis is a robust non-parametric statistical calculation method. 
Sen’s slope is calculated as follows: 

 
,j ix x

Median j i
j i

β
− 

= ∀ > − 
  (3) 

where β represents Sen’s trend, xi and xj represent the value of the time series at time i and 
time j, respectively, 1970≤i≤j≤2018. A positive value of β indicates an upward trend in 
the time series; A β value of 0 indicates no obvious trend; A negative value of β indicates a 
downward trend in the time series. Trend estimation was improved by calculating the medi-
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an slope of the combination of n(n–1)/2. 
The Mann-Kendall test is a non-parametric statistical test recommended by the World 

Meteorological Organization and is widely applied in the assessment of aridity (Ahmed et al., 
2019; Cao and Zhou, 2019), precipitation (Ahmed et al., 2019), potential evapotranspiration 
(Cao and Zhou, 2019), etc. The Mann-Kendall trend test statistic S is calculated as follows: 
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where x represents AI, PPT or PET. 
Mann and Kendall demonstrated that when n≥8, E(S)=0, variance can be calculated by: 
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where n is the number of values in the time series, m is the number of repeated data groups 
in the sequence, and tk is the number of repeated values in the k-th repeated data group. 

When n≥10, the statistic S is approximately normally distributed. To test significance, 
we used the test statistic Z, which is calculated as follows: 
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In this study, the length of the time series is 49 years, so Z is used for bilateral trend test-
ing. At a given significance level α, we identify the critical value Z1-α/2 in the normal distri-
bution table. When β>0 and |Z|≤Z1-α/2, the time series is increasing but the trend is 
non-significant; when β>0 and |Z|>Z1-α/2, the time series is increasing and the trend is signif-
icant; when β=0, no significant trend exists in time series; when β<0 and |Z|≤Z1-α/2, the time 
series declines but the trend is non-significant; when β<0 and |Z|>Z1-α/2, the time series 
shows a significantly decreasing trend. 

3  Results 

3.1  Temporal trends and spatial patterns of AI from 1970–2018 

Globally, dry areas (AI<0.5) are primarily distributed across middle and low latitudes, in-
cluding North Africa, southwest North America, central Asia, and Australia. Major hyper 
arid areas (AI<0.05) are typically located in areas classified as deserts, such as the 
Taklimakan Desert, the Sahara Desert, and the Rub al Khali Desert (Figure 1a). The total 
area of drylands with AI<0.65 is 44.87×106 km2. Hyper arid regions occupy an area of 8.20
×106 km2 (Figure 1b). 
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Figure 1  Multi-year mean of AI from 1970–2018 (a. Global distribution of AI; b. Total land cover associated 
with different aridity regimes) 

 

AI shows an overall decreasing trend from 1970–2018 (0.0016 yr-1, p<0.01), suggesting 
that the climate has been getting drier over the past five decades (Figure 2a). Annual precip-
itation exhibits a slight increasing trend with high inter-annual variability (p=0.15). In con-
trast, PET shows a significant increasing trend (p<0.01) with a rate of increase of 0.0592 
mm yr-1, almost three times faster than rate of PPT increase (0.017 mm yr-1) (Figures 2b and  

 
Figure 2  Trends in global averages for AI (a), PPT (b), and PET (c) from 1970–2018 (R2 is the coefficient of 
determination) 
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2c). These results suggest that decreasing values of AI are mostly due to increasing water 
demand (i.e., PET). 

AI decrease significantly over 1970–2018 (p<0.05) for all continents except Europe (Fig-
ure 3). AI values associated with Oceania and South America show the largest rates of 
change, both decreasing at 0.015 per decade, suggesting a severe increase in aridity across 
these two continents (Figures 3a–3f). Increasing aridity in these regions was associated with 
increasing PET (p<0.01) and decreasing PPT (Figures 3k and 3l). Although PPT increased in 
Africa and Asia, these increases were overwhelmingly offset by strongly increasing PET, 
resulting in the increasing aridity observed in these regions (Figures 3g, 3h, 3m and 3n).  

 

 
Figure 3  Inter-annual variability and temporal trends in AI, PPT, and PET across different continents  
(AF: Africa; AS: Asia; EU: Europe; NA: North America; OC: Oceania; SA: South America) 
 

Trends observed in AI values show high spatial heterogeneity. For example, AI has de-
creased over the last five decades in Australia, Eastern Asia, Northern Africa, Southern Af-
rica, Southern America, southwestern North America, around the Mediterranean, and north-
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ern Greenland, accounting for 52.53% (10.9% at p<0.05 and 15.23% at p<0.1) of global land 
area (Figure 4a). Previous studies have confirmed that aridity has been worsening in North-
ern Africa (Lickley and Solomon, 2018). Although precipitation over 60.09% of the global 
area (17.99% at p<0.1) increased over the period investigated (Figure 4b), the positive con-
tribution to climate wetness is overwhelmingly offset by the increase in PET. Globally, PET 
has increased in all regions except Southeast Asia, western South America, and central and 
northern North America, and accounts for 81.74% of global land area (p<0.05) (Figure 4c). 
These results suggest that the decreasing AI is mainly driven by the increasing water demand 
(i.e., PET). 

 

 
Figure 4  Spatial variability and trends in AI (a), PPT (b), and PET (c) across the globe. –– and – denote a sig-
nificant (p<0.05) and non-significant (p>0.05) decline, respectively. ‘0’ indicates no obvious trend and + and ++ 
denote a non-significant and significant increase, respectively. The black and gray bars denote significance at the 
95% and 90% confidence levels, respectively. Black points indicate significance at the 95% confidence level. 
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Overall, AI exhibited an overall decrease across all seasons except for spring in Asia and 
spring and summer in South America, suggesting that increasing dryness is a global trend 
(Figure 5a). Although PPT increased in all regions except Oceania, South America, and Af-
rica in the spring (Figure 5b), this is overwhelmingly offset by the increase observed in PET 
(Figure 5c), leading to an overall AI decrease in Africa, Asia, Europe and North America. 
Furthermore, the combination of decreased PPT and increased PET has resulted in greater 
dryness in Oceania and South America.  

 

 

Figure 5  Trends in AI, PPT, and PET in different seasons (Spring: March to May; Summer: June to August; 
Autumn: September to November). Far northern areas are covered with ice in the winter, so this season is ignored. 
* and ** represent the significance at the 95% and 99% confidence level, respectively.  

 
We found that both annual and seasonal values of AI exhibited overall decreases in humid 

and semi-humid regions except in humid regions at springtime (Figure 6a). Surprisingly, AI 
in the humid regions displayed the most obvious decreasing trend (0.025 per decade), fol-
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lowed by the semi-humid and semi-arid regions. However, AI in arid regions showed slight 
increases in autumn and over the whole year, suggesting the emergence of a wetting trend. 
In comparison, PPT displays greater variability across different climate regions. Annual PPT 
in humid, semi-humid, and semi-arid regions shows overall increases, but PPT decreases in 
humid regions during the autumn. The largest decreases in AI were observed in hyper-arid 
regions at springtime (Figure 6b). PET increased both annually and seasonally, with in-
creases in spring and summer greater than those in the autumn or the whole year (Figure 6c). 

 

 

Figure 6  Seasonal trends in AI, PPT and PET across different climate regions, demonstrating the same pattern 
as those illustrated in Figure 5 

 

3.2  Factors driving temporal trends in AI 

Increasing aridity is observed at the global scale, with 52.53% of land area exhibiting a dry-
ing trend. This pattern is mainly driven by decreasing PPT and increasing PET (accounting 
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for 30.91%), with some of the pattern resulting from increases in PET alone (accounting for 
18.51%) or decreases in PPT alone (accounting for 3.11%). In comparison, areas experienc-
ing wetting trends account for 47.35% of land area globally. Wetting is the result of increas-
ing PPT (accounting for 32.43%), the combined effects of increasing PPT and decreasing 
PET (accounting for 10.82%), and decreasing PET (accounting for 4.10%) (Figure 7). Dry-
ness in tropical rainforests is mainly caused by the combined effects of the decreasing PPT 
and increasing PET, whereas the humidification of the Qinghai-Tibet Plateau is mainly in-
duced by increasing PPT.  
 

 
Figure 7  Spatial distribution of dry and wet conditions at the global scale. In areas experiencing increased arid-
ity, –+ denotes that dryness results from the combined effects of PPT and PET, ++ and –– denote that the dryness 
is derived from increased PET or decreased PPT, respectively. “No” denotes no significant drying or wetting trend. 
In areas experiencing wetting, +– denotes that wetting results from the combined effects of PPT and PET, ++ and 
–– denote that wetness results from increased PPT or decreased PET, respectively. The histogram on the left 
shows the proportions of drying and wetting. 

4  Discussion 

4.1  Trends in global AI over 1970–2018 

We found that AI has decreased at the global scale from 1970–2018, owing to increasing 
PET (Figure 5), which has ultimately resulted in an overall increase in global aridity. This 
finding is consistent with previous studies, in which increasing aridity is reported in arid 
regions (Dai, 2012; Huang et al., 2016a, 2016b). Although decreasing values of AI are ob-
served in most areas, some places, such as East Africa, Russia, Southeast Asia, north of 
North America, and Qinghai-Tibet Plateau, exhibit increases. Increasing global temperatures 
are accelerating increases observed in PET, which results in accelerating aridification. 
However, increases in PET do not necessarily mean that vegetation will experience higher 
degrees of water stress. Some studies have found that values of vegetation indices such as 
the Normalized Difference Vegetation Index (NDVI) have increased in drylands since the 
1980s (Fensholt et al., 2012; Donohue et al., 2013; Swann et al., 2016). These increases in 
NDVI may be attributed to higher water use efficiency induced by increased atmospheric 
CO2, potentially alleviating the negative effects of increasing aridity on vegetation (Yang et 
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al., 2016). It should be noted that increasing global temperatures will also increase vapor 
pressure deficit (VPD) (Ficklin and Novick, 2017), potentially further increasing PET and 
exacerbating aridity in the future (Swann et al., 2016).  

We observed a trend of severe autumn drought in Europe, which is consistent with the 
findings by Spinoni et al. (2017). This seasonal drought may be due to the influence of nat-
ural variability such as ENSO (Muñoz-Díaz and Rodrigo, 2005; Pieper et al., 2020). More-
over, we find that the trend of decreasing AI observed in humid and semi-humid regions, 
especially in tropical rainforest areas, is more obvious than that observed in arid or semi-arid 
areas. Similarly, projections by De Oliveira et al. (2018) indicated that the Amazon Basin 
will get drier, and precipitation in the Amazon is predicted to decrease with global warming 
(Li et al., 2021). Most previous studies have focused mainly on arid and semi-arid areas (Dai, 
2012; Cook et al., 2014; Huang et al., 2016b), with little consideration given to humid and 
semi-humid regions (Ullah et al., 2022). In light of our findings, it is important to pay more 
attention to humid and semi-humid regions in the future, especially in the context of inten-
sifying aridity. The drying trend in humid and semi-humid regions can be attributed to the 
faster increases observed in PET relative to those observed in PPT, which attenuates the ef-
fect of increased PPT on AI. Moreover, land-atmosphere interactions and human activity are 
additional factors promoting this trend. These results suggest that the conversion of humid 
and semi-humid climates to arid or semi-arid climates may be an additional consequence of 
climate change. (Huang et al., 2019). In addition, it is worth mentioning that the wetting 
trend observed in the Qinghai-Tibet Plateau may be ascribed to increasing PPT (Figure 4) 
resulting from greening vegetation and the Indian monsoon in the region (Wu et al., 2007; Li 
et al., 2020).  

4.2  Factors driving trends in AI from 1970–2018 

Our findings illustrate that global drying trends are mainly the result of increasing PET. 
Although PPT in Africa and Asia exhibited slight increases, enhanced rainfall is over-
whelmingly offset by large increases in PET, ultimately resulting in increased aridity across 
these continents. Importantly, decreasing PPT and increasing PET in central and eastern 
Australia may result in intensifying drying and more frequent wildfires in these regions 
(Nohan et al., 2016; Brando et al., 2019).  

Climate change not only intensifies the hydrological cycle, but also increases interannual 
variability, regional and seasonal differences in precipitation, (Zhou et al., 2021) and the 
frequency of extreme precipitation events across the globe (IPCC, 2021). Climate change 
also has a profound impact on atmospheric circulation, weakening the West African and East 
Asian monsoons (Huang et al., 2016a) to decrease PPT in northern African and southeastern 
China. This results in drier conditions in these areas (Figures 4a and 4b). In addition, ab-
normal sea surface temperatures (SST) have strengthened local circulation (Chang et al., 
2000). For instance, the frequency of positive IOD (Indian Ocean Dipole) values has in-
creased significantly in the past 50 years, resulting in a wetter East Africa and a drier south-
ern Australia (Saji et al., 1999; Saji and Yamagata, 2003). However, the Qinghai-Tibet Plat-
eau and eastern China have experienced slightly increased wetting, especially in the autumn 
months (Li et al., 2020). Wetting in the Qinghai-Tibet Plateau is mainly ascribed to increas-
ing PPT (Li et al., 2010; Feng et al., 2020). Drying observed in the Amazon tropical rain-
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forest is caused primarily by the combined effects of decreased PPT and increased PET. In 
terms of AI, the importance of PPT has decreased as changes to PET have intensified (Dai, 
2012; Huang et al., 2017; Pan et al., 2021), especially in Oceania and South America (Fig-
ures 5 and 7). In general, increasing global temperatures greatly increase PET and reduce 
precipitation, further intensifying aridification (Van Der Schrier et al., 2013). 

We find that the trend toward dryness observed in humid and semi-humid regions is more 
obvious than that observed in arid or semi-arid areas. In contrast, many arid areas, including 
southern India, the east coast of Africa, and central and western Australia, are getting wetter 
(Figure 4). Increases in wetness are due to increasing PPT. Previous studies have found that 
changes in SST in the Indian Ocean promote changes in regional atmospheric circulation, 
increasing the potential for further increases in PPT in these areas (Saji et al., 1999; Saji and 
Yamagata, 2003; Cherchi and Navarra, 2013). Furthermore, enhancement of the southwest 
summer monsoon (Huang et al., 2016a) and the continuing intensification of human activity 
(Hoerling et al., 2010) could promote additional increases in PPT in southern India.  

Our findings have important implications for understanding aridity and ecosystem re-
sponse to aridity under continuous and substantial warming. The trend of increasing dryness 
observed in humid and semi-humid regions (e.g., tropical rainforests) is of particular con-
cern. Furthermore, persistent increases in aridity will likely result in more frequent wildfires 
and heat waves (Brando et al., 2019; Bastos et al., 2020), which could impose additional 
stress on humid and semi-humid ecosystems. Further research is needed to investigate the 
effects of other factors (e.g., CO2, solar radiation, etc.) on spatiotemporal patterns of aridifi-
cation. 

5  Conclusions 

Our results show an overall decrease in values of the global aridity index from 1970–2018 
owing to increasing water demand (i.e., PET), suggesting that the global climate has gotten 
drier over the past five decades. Annually, aridity has increasing rapidly across all continents, 
and humid and semi-humid regions have experienced disproportionate increases in dryness. 
Seasonally, all continents have exhibited increasing aridity in autumn, with humid and 
semi-humid regions experiencing particularly high rates of autumnal aridification. Further-
more, diverging from historical patterns, the decreases in AI values observed in humid and 
semi-humid regions are greater than those in arid or semi-arid regions. At the same time, 
hyper-arid regions continue to get drier. Overall, the drying trend observed is primarily 
caused by increasing PET. We expect aridification to continue to intensify concomitant with 
increasing global PET, especially in humid and semi-humid regions 

Data availability statement 

The precipitation and potential evapotranspiration were downloaded from the Climate 
Change Research Group of East Anglia University in the United Kingdom (CRU v4.03) 
(http://www.cru.uea.ac.uk/cru/data/hrg). 
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