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Abstract: Identifying the dynamics of the eco-efficiency of cultivated land use (ECLU) is im-
portant to balance food security and environmental protection. The Yangtze River Economic 
Belt (YREB) is a vital region of national strategic development in China. However, the spa-
tio-temporal characteristics and typical patterns of the ECLU in the YREB remain unclear. 
This study aims to reveal the spatio-temporal characteristics of the ECLU by using the su-
per-efficiency slack-based measure (SBM) and a spatial autocorrelation model. The typical 
patterns of the ECLU were classified based on a decision tree algorithm. The results indicate 
that the overall ECLU increased from 0.78 to 0.87 from 2000 to 2019, dropping sharply in 
2003 before rising again. Different reaches had similar trends. The local indicators of spatial 
association (LISA) cluster reflect that the spatial distributions of high-high and low-low ag-
glomeration varied dramatically among these years. The ECLU was divided into three typical 
patterns considering the restriction of agrochemicals and water resources (RAW), cultivated 
land and agrochemicals (RCA), as well as technology (RT). Most cities belonged to the low 
ECLU category in RT pattern. Fully understanding the spatio-temporal characteristics and 
classification of the ECLU will provide a reference for decision-makers to improve the ECLU 
in different regions. 

Keywords: ecological efficiency; cultivated land use; super-efficiency SBM; carbon emissions; classification; 
Yangtze River Economic Belt, China 

1  Introduction 

Cultivated land is important to society as it provide food and ecosystem services (Arowolo 
et al., 2018; Lai et al., 2020). In China, there is only 7.5% cultivated land of the world, but 
feeds the population accounts for 22% of the world (Kuang et al., 2020). In 2021, the na-
tional grain yield reached 683 million tons, having achieved continuous growth in the past 
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eighteen years (NBSC, 2022). In the face of the rapidly increasing grain yield, the protection 
of cultivated land and the environment is under great stress (Lu et al., 2019; Zhang et al., 
2019; Zhao et al., 2021) mainly as a result of intense agricultural activities (Tsoraeva et al., 
2020). An increase in grain yield is generally related to an excessive agricultural input of 
pesticides, agricultural films, fertilizers, and agricultural mechanization, for example (Liu et 
al., 2020; Zou et al., 2020). The National Soil Pollution Survey Bulletin documented that 
19.40% of the cultivated land in China (around 23.6 million hectares) has been polluted 
(Ministry of Environmental Protection and Ministry of Land and Resources, 2014). Accord-
ing to The Second National Pollution Source Census Bulletin, in 2017, China’s agricultural 
machinery emissions of nitrogen oxides reached 1.89 million tons, around 1.42 million tons 
of plastic films were used, and the residual plastic films accumulated over numerous years 
amounted to 1.18 million tons (Ministry of Ecology and Environment of the People’s Re-
public of China, 2020). These have been the prominent causes of the degradation of culti-
vated land (Liu et al., 2022). Accordingly, the cultivated land use has gradually become 
“three-high mode” (high consumption, pollution, and emissions). This unsustainable land 
use has persisted for a long time, resulting in an increasing waste of natural resources and 
significant environmental pollution. 

The concept of “eco-efficiency” has been considered in recent decades to measure the en-
vironmental costs of socioeconomic activities (Caiado et al., 2017; Rybaczewska-Błażejo-
wska and Gierulski, 2018), was first proposed by Schalteegger and Sturm (1990). Nowadays, 
it has been widely used in many fields such as industry (Han et al., 2021; Liu et al., 2021), 
tourism (Liu et al., 2017; Peng et al., 2017), energy use (Peng et al., 2020), and agriculture 
(Godoy-Durán et al., 2017; Deng and Gibson, 2019; Coluccia et al., 2020). Notably, some 
recent studies have combined the socioeconomic and ecological efficiency of cultivated land 
use (Liu et al., 2020; Wang et al., 2022). These studies mainly focused on the spa-
tio-temporal dynamics and influential factors of the eco-efficiency of cultivated land use 
(ECLU) (Liu et al., 2021; Yang et al., 2021; Yin et al., 2022), the relationship between the 
ECLU and urbanization (Hou et al., 2019; Liu et al., 2022) at different scales (e.g., provin-
cial, watershed, and individual city). Several methods can be used to calculate eco-efficiency, 
such as data envelopment analyses (DEA), stochastic frontier analyses (SFA), life cycle as-
sessment (LCA), slack-based measure (SBM), and super-efficiency SBM (Vásquez-Ibarra et 
al., 2020; Luo et al., 2022). The SBM is a derivative model of DEA, and the super-effi-
ciency SBM deals with the measurement error problem effectively with the value is over 1, 
which cannot be achieved with traditional DEA model (Ma et al., 2022). Therefore, the su-
per-efficiency SBM has been widely applied to measure eco-efficiency (Chen et al., 2021). 
However, most previous studies have only proposed policy recommendations to improve the 
ECLU (Hou et al., 2019; Ke et al., 2022). Few studies have divided the ECLU into different 
patterns according to the input factors of the cultivated land to improve the ECLU of the 
regions through precise improvements of different input factors for these patterns. 

The Yangtze River Economic Belt (YREB) is an important area due to its contribution to 
economic development, ecosystem services, and food production in China (Wang et al., 
2020). The area is also subject to intense conflicts between economic development, agricul-
tural production, and environmental protection (Zhang and Chen, 2021). The government 
began attempting to mitigate this conflict and promote environmental protection in 1998 
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following a severe flooding event of the Yangtze River, which causing serious casualties and 
crop damage (Lyu et al., 2018). This study aims to investigate the spatio-temporal charac-
teristics of the ECLU in the YREB from 2000 to 2019, and accordingly classify its typical 
patterns related to input factors. Specifically, an index system to measure ECLU is estab-
lished by considering the input factors, and expected and unexpected output ones. Subse-
quently, the spatio-temporal characteristics of the ECLU can be revealed with the su-
per-efficiency SBM and a spatial autocorrelation model. Finally, the typical patterns of the 
ECLU can be identified based on the classification method of a decision tree algorithm. 

2  Methodology and data sources 

2.1  Study area 

The YREB extends from the west to the east of China. The region includes nine provinces, 
namely Sichuan, Guizhou, Yunnan, Hubei, Hunan, Jiangxi, Jiangsu, Zhejiang, Anhui, and 
the two municipalities of Chongqing and Shanghai (Figure 1). The YREB covers an area of 
approximately 2.05 million km2, hosts around two-fifths of the total population in China, 
and contributes over 40% of the GDP (Jin et al., 2018). The YREB became one of China’s 
strategic development regions for grain production and ecological protection after the Yang-
tze River Economic Belt Development Plan Outline was issued (Political Bureau of the Cen-
tral Committee of the Communist Party of China, 2016). However, the YREB faces severe 
resource and environmental problems due to human activities (Zhang et al., 2020). The 
overuse of fertilizers, pesticides, and agricultural films on cultivated land increases carbon 
emissions and aggravates environmental pressures (Sun et al., 2018; Luo et al., 2019; Zhou 
and Lei, 2020). Understanding the spatio-temporal characteristics and typical patterns of the 
ECLU is therefore crucial for the sustainability of the YREB. 
 

 
 

Figure 1  Administrative divisions and land uses in the Yangtze River Economic Belt (YREB) (2015) 
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The YREB is divided into three parts based on the natural resource endowment and soci-
oeconomic development: the upper, middle, and lower reaches (Table 1). The upper reaches 
are dominated by mountains and plateaus while the middle and lower reaches are dominated 
by plains (Cui et al., 2021). The level of socioeconomic development is highest in the lower 
reaches, followed by the middle reaches, and the upper reaches (Zhang et al., 2021).  

 
Table 1  Regional divisions in the Yangtze River Economic Belt (YREB) 

Reaches Provinces / Municipalities 

Upper  Provinces of Sichuan, Guizhou, Yunnan, and the municipality of Chongqing 

Middle Provinces of Hubei, Hunan, Jiangxi 

Lower Provinces of Jiangsu, Zhejiang, Anhui, and the municipality of Shanghai 

 

2.2  Definition of the eco-efficiency of cultivated land use 

The definition of eco-efficiency is constantly developing. Schmalleger and Sturm (1990) 
applied it in the enterprise sector and defined it as the ratio of the added economic value to 
the added environmental impact. The World Business Council for Sustainable Development 
(WBCSD) (1992) interpreted eco-efficiency as satisfying human production and life re-
source consumption while minimizing the resource input and environmental impact. Ac-
cording to the Organization for Economic Cooperation and Development (OECD) (1998), 
eco-efficiency refers to the maximization of human welfare while ensuring a smaller loss of 
resources and lesser impact on the environment. The core of eco-efficiency is therefore the 
ratio of the added value of economic and social to the added resource consumption and en-
vironmental impact. In this study, the ECLU involves maximizing the expected output and 
simultaneously minimizing the input factors and negative ecological influence over a pro-
cess of limited cultivated land use. Specifically, the ECLU consists of the input factors (re-
source, labor, capital, and technology), the expected output (the gross output value of agri-
culture and grain yield), and the unexpected output (carbon emissions).  

2.3  Methods 

2.3.1  Super-efficiency SBM model 

Stochastic frontier analyses (SFA) and Data envelopment analyses (DEA) are widely used to 
measure eco-efficiency. The difference between these two methods is that SFA applies to 
multi-input and single-output situations while DEA applies to multi-input and multi-output 
situations ones (Yang and Deng, 2019; Vásquez-Ibarra et al., 2020). DEA was proposed by 
Charnes (1978), but most of the traditional DEA models are based on radial and angle 
measurements which fail to fully consider the slack variable. Moreover, it does not consider 
the negative environmental effects caused by unexpected outputs (Yang et al., 2021). In this 
regard, Tone (2001) proposed the SBM model. The SBM model solves the problems of 
slack of input-output variables effectively (Zhou et al., 2018). In addition, the su-
per-efficiency SBM model obtains efficiency values exceeding 1 so that effective values are 
still comparable (Han et al., 2017). Therefore, this study adopted the super-efficiency SBM 
model to measure the ECLU in the study area. The model can be represented as: 
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where, assuming that n decision-making units (DMU) are considered, each DMU consists of 
input factors (m), expected outputs (s1), and unexpected outputs (s2); s–, sg and sb are the 
slack variables of input variables and λ is the weight vector.  

In this study, we used the MAXDEA8 software to construct the unified efficiency frontier 
from 2000 to 2019, assuming that the expected and unexpected output weight ratio was 1:1 
following Liu et al. (2021). The global reference method made the results comparable be-
tween these years. 

2.3.2  Spatial autocorrelation model 

The spatial autocorrelation model (global and local) is an essential instrument for correlating 
the research object and its position (Cliff and Ord, 1973). The global spatial autocorrelation 
mainly reflects the correlation of attribute values in the entire region, and local spatial auto-
correlation reveals the spatial heterogeneity (Fotheringham, 2009). Correspondingly, the 
Moran’s I and local indicators of spatial association (LISA) are commonly used to represent 
the global and local spatial autocorrelation (Anselin, 1995). The formulae for calculating the 
global autocorrelation and local spatial autocorrelation are as follows: 
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where I and Ii are global Moran’s I and LISA, respectively; n is the total number of regions; 
Xi and Xj are the value of the ECLU in regions i and j; X is the average of ECLU in each 
region; Wij is the spatial relation in regions i and j. Moreover, the values of Moran’s I and 
LISA are usually tested with the Z-test (Cliff, 1981): 
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where E(I), Var(I) and E(Ii), Var(Ii) represent the expected and variance of I and Ii, respec-
tively. 

In this study, the spatial correlation of the ECLU in the YREB from 2000 to 2019 was 
 



362  Journal of Geographical Sciences 

 

determined using the GeoDa software. The value of Moran’s I ranges from –1 to 1, repre-
senting a negative (closer to –1) or positive (closer to 1) spatial correlation. When the value 
is 0, there is no spatial correlation.  

2.3.3  The decision tree 

The decision tree extracts patterns by summarizing large data sets (Quinlan, 1986). It has the 
advantages of easy understanding of data sets and implementation of the information. The 
aim of using a decision tree is to employ the information gain as the test attribute (Myles et 
al., 2004): 
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where a is the attribute of sample D, Dv represents the v-th value in sample D, Ent(D) is the 
information entropy, and pk is the proportion of class k samples in the sample set. The 
smaller the Ent(D), the higher the purity of information. Each branch node selects the attrib-
ute that maximizes the information gain to divide the samples. 

In this study, the attributes of the decision tree were the cultivated land (farm crop sown 
areas), labor force (workers in the primary industry), agrochemicals (the amounts of fertiliz-
ers, pesticides, and agricultural films), water resources (effective irrigation areas), and tech-
nology (the total power of agricultural machinery). The ECLU was divided into high and 
low efficiency according to the average value of the ECLU which was 0.73, by C5.0 deci-
sion tree algorithm. 80% of the data set was used as the training set and 20% of the data set 
became the testing set to train and predict the decision tree. In the identified decision tree, 
we tried to select the branch containing each cultivated land input factor. The attribute value 
range of each node was the allocation of input factors in this pattern.  

2.3.4  Index system and data sources 

The index system of the ECLU includes the input factors, expected, and unexpected outputs 
(Table 2). The input factors include (1) resources (farm crop sown areas and effective irriga-
tion areas), (2) labor force (workers in the primary industry), (3) agrochemicals (the amounts 
of fertilizers, pesticides, agricultural films), and (4) technology (the total power of agricul-
tural machinery). The expected outputs are the economic output (gross output value of agri-
culture) and social output (grain yield). The unexpected output is the ecological influence 
(carbon emissions from cultivated land use).  

This study was conducted at a prefecture-level and comprised data from 126 cities. The 
data were acquired from the Statistical Yearbook and Statistical Bulletin on National Eco-
nomic and Social Development from 2001 to 2020. The smoothing data processing and av-
erage estimation methods were used to calculate for some missing data (the amounts of pes-
ticides and agricultural films in Sichuan, Guizhou, and Yunnan provinces). The areas of 
Tianmen, Xiantao, Qianjiang, and the Shenlongjia Forestry District in Hubei Province were 
excluded from the calculations due to data unavailability.  
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Table 2  The index system of the eco-efficiency of cultivated land use 

Types First-level indicators Secondary indicators Unit 

Input 

Resource 
Farm crop sown areas 103 ha 

Effective irrigation areas  103 ha 

Labor force Workers in the primary industry 104 persons 

Agrochemicals 

Fertilizers ton 

Pesticides ton 

Agricultural films ton 

Technology Total power of agricultural machinery 104 kW 

Expected output 
Economic Gross output value of agriculture  108 yuan 

Social Grain yield 104 ton 

Unexpected output Environmental Carbon emissions 104 ton 
 
The carbon emissions from cultivated land use were measured based on the carbon source 

and coefficient according to existing studies (Li et al., 2011; Kuang et al., 2020) and in-
cluded the following six aspects (Table 3). 

 
Table 3  Carbon source and coefficients of carbon emissions from cultivated land use 

Carbon source Coefficient Unit Source 

Fertilizer 0.8956 kg/kg West and Marland, 2002 

Machinery 0.18 kg/kW West and Marland, 2002 

Pesticide 4.9341 kg/kg Post and Kwon, 2000 

Agricultural film 5.18 kg/kg Li et al., 2011 

Farm crop sown area 3.126 kg/ha Li et al., 2011 

Effective irrigation area 20.476 kg/ha Li et al., 2011 
 

3  Results 

3.1  Spatio-temporal characteristic of the eco-efficiency of cultivated land use 

The overall value of the ECLU followed a fluctuating increasing trend, increasing from 0.78 
in 2000 to 0.87 in 2019 (Figure 2). Specifically, the overall value of the ECLU dropped 
sharply from 2000 to 2003, followed by a slight increase until 2017, before rising dramati-
cally from 2017 to 2019. Similar trends could be observed in the upper, middle, and lower 
reaches. In addition, the growth rates of the values of the ECLU from 2000 to 2019 were 
12.99% (overall), 5.49% (upper reaches), 5.13% (middle reaches), and 26.98% (lower 
reaches), respectively, indicating that the growth rate of the value of the ECLU in the lower 
reaches was the fastest. 

The value of the ECLU was the highest in the upper reaches, followed by the middle 
reaches, and finally the lower reaches. Moreover, the value of the ECLU in the upper reach-
es was higher than the overall, dropping from 2000 to 2011 and then rising from 2011 to 
2019; the highest and lowest values were 0.97 in 2019 and 0.68 in 2011. The values of the 
ECLU in the middle and lower reaches were lower than the overall value. The value of the 
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ECLU in the middle reaches dropped from 2000 to 2003 and then rose from 2003 to 2019; 
the highest and lowest values were 0.82 in 2019 and 0.60 in 2003. In the lower reaches, the 
value of the ECLU dropped from 2000 to 2003, and then rose from 2003 to 2018, followed 
by a slight decrease in 2019. The highest and lowest values in the lower reaches were 0.87 in 
2018 and 0.52 in 2003.  

 

 
 

Figure 2  The value of eco-efficiency of cultivated land use in the Yangtze River Economic Belt 
 

The number of cities with an effective ECLU (value over 1) showed that the overall val-
ues decreased first and then increased from 2000 to 2019, as well as the upper, middle, and 
lower reaches (Table 4). In 2000, 2005, and 2019, effective ECLU values were mainly rec-
orded in cities in the upper reaches with 59.26% (2000), 62.5% (2005) and 47.27% (2019), 
respectively. In cities in the lower reaches, effective ECLU values were mainly recorded 
from 2010 to 2015 with 50% (2010) and 55.56% (2015). 

 
Table 4  The number of cities with effective values of eco-efficiency of cultivated land use 

Year 
Region 

Overall Upper reaches Middle reaches Lower reaches 

2000 27 16 8 3 

2005 8 5 1 2 

2010 14 4 3 7 

2015 18 4 4 10 

2019 55 26 13 16 
 
The overall values of ECLU were classified into four levels based on the natural break 

method: low (0.32–0.60], medium-low (0.60–0.75], medium-high (0.75–0.90] and high 
(0.90–1.87] (Figure 3). The results showed that numerous cities with the medium-low and 
low ECLU, which were scattered in the overall of the YREB. The cities with medium-high 
and high ECLU values were mainly concentrated in the western and eastern upper reaches. 
Since 2010, the area of medium-high and high ECLU had increased in the middle and lower 
reaches.  
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Figure 3  Spatial characteristics of the eco-efficiency of cultivated land use in the Yangtze River Economic Belt 

3.2  Spatial correlation characteristics of the eco-efficiency of cultivated land use 

The global Moran’s I values of the ECLU in each year were all significant at a 1% level. 
The results were all greater than 0, showing a positive spatial autocorrelation in the YREB 
(Table 5). Moreover, the global Moran’s I decreased by 50.98% from 2000 to 2019, indicat-
ing that the spatial autocorrelation of the ECLU weakened during the later years of the study 
period. Particularly, a sharp decrease was observed in 2019, reflecting that the overall spatial 
pattern of the ECLU changed dramatically. 

 
Table 5  Global Moran’s I of the eco-efficiency of cultivated land use 

Year Moran’s I SD Z-Value 

2000 0.408*** 0.057 7.386 

2005 0.397*** 0.055 7.394 

2010 0.395*** 0.056 7.294 

2015 0.389*** 0.058 6.936 

2019 0.200*** 0.057 3.771 

Note: ***, **, * significant at 1%, 5% and 10% level 
 

The LISA cluster was further investigated to reveal the local characteristics of the ECLU 
in the YREB (Figure 4). The spatial patterns of the ECLU differed from each other signifi-
cantly. Overall, the majority of cities concentrated in High-High (H-H) and Low-Low (L-L) 
agglomerations, with a few cities in High-Low (H-L) and Low-High (L-H) agglomerations, 
reflecting a positive spatial autocorrelation. In 2000, the proportions of H-H and L-L ag-
glomerations were 15.09% and 19.84%, showing that the regional value was similar to the 
neighbor cities. The eastern upper reaches belonged to the H-H agglomerations, while the 
L-L agglomerations were located in the southern upper reaches and most of the lower 
reaches. Since 2010, the area of H-H agglomerations had reduced sharply and were sparsely 
distributed in a few cities in the upper, middle, and lower reaches. Since 2005, the area of 
L-L agglomerations in the upper and lower reaches had decreased. Simultaneously, the area 
of L-L agglomerations in the middle reaches had increased since 2015. 
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Figure 4  LISA cluster of the eco-efficiency of cultivated land use in the Yangtze River Economic Belt 

3.3  Typical patterns of the eco-efficiency of cultivated land use 

Three typical patterns were identified according to the classification results: “Restriction on 
agrochemicals and water resources” (RAW), “Restriction on cultivated land and agrochem-
icals” (RCA), and “Restriction on technology” (RT) (Figure 5).  

In the RAW pattern (Figure 5a), the cultivated land exceeded 398.53 × 103 ha, the labor 
force ranged from 28.25 × 104 to 77.74 × 104 persons, and the technology consumption for 
total power of agricultural machinery amounted to less than 591.70 × 104 kW. The ECLU 
was majorly influenced by agrochemicals or water resources. In the RCA pattern (Figure 5b), 
the labor force was more than 77.74 × 104 persons, the technology consumption for total 

 

 
 

Figure 5  Typical patterns of the eco-efficiency of cultivated land use in the Yangtze River Economic Belt 
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power of agricultural machinery was less than 591.70 × 104 kW, and the water resources 
ranged from 42.28 × 103 to 290.33 × 103 ha. The ECLU was largely influenced by cultivated 
land or agrochemicals. In the RT pattern (Figure 5c), the cultivated land exceeded 398.53 × 
103 ha, the labor force involved over 77.74 × 104 persons, agrochemicals amounted to less 
than 124061.34 tons, and the water resources ranged from 42.28 × 103 to 290.33 × 103 ha; 
technology was the only factor affecting the ECLU. 

According to the distribution of the typical patterns of the ECLU (Figure 6), 74 cities fit-
ted the typical classification. Most cities in the YREB belonged to the RT and RAW pattern, 
accounting for 55.41% and 25.68%, respectively. The proportions of low ECLU in each 
pattern were 5.41% (RAW pattern), 9.46% (RCA pattern), and 48.64% (RT pattern), indi-
cating that most cities belonged to the low ECLU class in the RT pattern. Specifically, the 
cities with the RT pattern were widely distributed in Yunnan, Sichuan, Guizhou (upper 
reaches), Hubei, Jiangxi, Hunan (middle reaches), and Anhui, Zhejiang, and Jiangsu (lower 
reaches). The cities with the RAW pattern were widely distributed in Sichuan (upper reach-
es), Hubei, Hunan, Jiangxi (middle reaches), and Anhui, Jiangsu, and Shanghai (lower 
reaches). The cities with RCA pattern were the fewest. Fourteen cities had RCA patterns, 
mainly distributed in Yunnan, Sichuan, Guizhou (upper reaches), Hubei, and Hunan (middle 
reaches).  

 

 
 

Figure 6  Distribution of typical patterns of eco-efficiency of cultivated land use in the Yangtze River Economic 
Belt 

4  Discussion 

4.1  Changes in the temporal characteristics 

This study found that the ECLU in the YREB increased from 2000 to 2019, consistent with 
the results of existing studies (Luo et al., 2020; Yang et al., 2021). Furthermore, the gap of 
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the ECLU in three reaches was decreasing and exhibiting an upward trend after 2003. The 
increase of the ECLU may have been due to the frequent implementation of cultivated land 
protection policies since 2003 (e.g., the most strictly implemented cultivated land protection 
system in 2005, the permanent essential farmland delineation in 2008, and the farmland 
protection and compensation policy in 2015) (Liu et al., 2017; Niu et al., 2019). This evi-
dences that the implementation of these policies significantly improved the ECLU.  

The growth rate of the ECLU in the lower reaches was the fastest from 2000 to 2019, in-
dicating that cultivated land use had improved in the lower reaches. The early cultivated 
land use in the lower reaches major depended on large-scale mechanical use and extensive 
land use, which gained considerable economic and social benefits, but often at the expense 
of the environment (Liu et al., 2020). With an emphasis on the ecological environment (Guo 
et al., 2021), the original extensive development model was gradually abandoned on a re-
gional scale, instead promoting low-carbon and intensively cultivated land use.  

4.2  Changes in the spatial correlation characteristics 

Previous studies have only measured the ECLU and explored its influence factors. In this 
study, considering the cities were not isolated (Zhou et al., 2019), the ECLU was influenced 
by adjacent cities. Hence, we explored the spatial correlation characteristics of the ECLU. 
The characteristics of local spatial autocorrelation showed that the ECLU in the YREB had a 
spatial proximity spillover effect. Therefore, when the ECLU values of neighbor cities were 
high (low), the region was more likely to become high (low) ECLU. The results showed that 
the areas of H-H and L-L agglomeration varied dramatically during the study period. Possi-
ble reasons behind this phenomenon included the differences in the speed of economic de-
velopment, cultivated land resource endowment, and natural environment in the upper, mid-
dle, and lower reaches. Therefore, the natural conditions, economic level, and planting pref-
erences of adjacent cities would impact the ECLU in the YREB. 

4.3  Characteristics of the typical patterns 

In addition, the input factors of cultivated land were treated as the attribute and the values of 
the ECLU as the category to train the decision tree and obtain three typical patterns. Each 
pattern had a corresponding path to mitigate the phenomenon of input factors mismatched. 
Specifically, in the RAW pattern, reducing the amounts of agrochemicals used or increasing 
the water resource input would contribute to improving the ECLU in different cities. Fur-
thermore, the ECLU values would be improved in the RCA pattern by increasing the culti-
vated land areas and reducing the agrochemicals input, or by keeping the technology con-
sumption for total power of agricultural machinery below 244.41 ×104 kW in the RT pattern. 
Moreover, it can be seen that the low ECLU values in the three patterns were mainly dis-
tributed in major grain-producing cities, which were under significant pressure from grain 
production (Xiao et al., 2021). The main grain-producing cities mainly use high input fac-
tors to increase planting income and yield (Zou et al., 2020). This method of cultivated land 
use achieved short-term and high-return economic benefits but reduced the ECLU. There-
fore, it was necessary to control the input factors within a reasonable range to improve the 
ECLU.  
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5  Conclusions 

This study used the super-efficiency SBM model to measure the ECLU in the YREB from 
2000 to 2019. The value of the ECLU reflected that the trends were similar overall, as well 
as in the upper, middle, and lower reaches, individually. Particularly, the value of the ECLU 
declined from 2000 to 2003, followed by a slight increase until 2017, before increasing from 
2017 to 2019. The growth rate in the lower reaches was the fastest. The number of cities 
with effective ECLU values decreased first and then increased from 2000 to 2019 in the up-
per, middle, and lower reaches of the region. The spatial characteristics of the ECLU 
showed that numerous cities with medium-low and low ECLU, which were scattered in the 
upper, middle, and lower reaches. The area of cities with medium-high and high ECLU val-
ues has increased in the middle reaches and lower reaches since 2010. 

Moreover, the spatial autocorrelation model was used to explore the spatial relation of the 
ECLU in different cities. The global Moran’s I showed that the ECLU values presented a 
positive spatial autocorrelation. There were significant differences between different cities 
for the local spatial autocorrelation of ECLU. Most cities concentrated in the H-H and L-L 
agglomerations. Therefore, cities with low ECLU values could break through restrictions 
and learn from cities with high ECLU values.  

In addition, the decision tree algorithm was used to divide the ECLU into three typical 
patterns: “Restriction on agrochemicals and water resources” (RAW pattern), “Restriction 
on cultivated land and agrochemicals” (RCA pattern) and “Restriction on technology” (RT 
pattern). Most cities belonged to the low ECLU category in the RT pattern and each of the 
patterns was mainly distributed in major grain-producing regions in the upper, middle, and 
lower reaches. Regions could consider the corresponding typical patterns to adjust their in-
put factor structure and improve their ECLU.  

The limitations in this study were as follows: first, the index system of the ECLU should 
be further refined. We only selected the grain yield and gross output values of agriculture as 
the expected output. However, the value of ecological services in cultivated land use should 
also be considered as an expected output (Liu et al., 2021; Zhang et al., 2021). In addition, 
non-point source pollution generated by cultivated land use should also be considered as 
unexpected output (Yin et al., 2022). Second, the value of carbon emissions was not accu-
rately calculated as the carbon emissions coefficient of cultivated land use did not consider 
regional differences. Therefore, the selection and optimization of the index to make the 
ECLU more accurately will be the focus of future research. 
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