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Abstract: Water use efficiency (WUE) is an important variable to explore coupled relation-
ships in carbon and water cycles. In this study, we first compared the spatial variations of 
annual gross primary productivity (GPP) and evapotranspiration (ET) using four GPP and ET 
products. Second, we selected the products closest to the flux towers data to estimate WUE. 
Finally, we quantitatively analyzed the impact of climate change and soil water content on 
WUE. The results showed that: (1) Four GPP and ET products provided good performance, 
with GOSIF-GPP and FLDAS-ET exhibiting a higher correlation and the smallest errors with 
the flux tower data. (2) The spatial pattern of WUE is consistent with that of GPP and ET, 
gradually decreasing from the northeast to the southwest. Higher WUE values appeared in 
the northeast forest ecosystem, and lower WUE values occurred in the western Gobi Desert, 
with a value of 0.28 gC m‒2 mm‒1. The GPP and ET products showed an increasing trend, 
while WUE showed a decreasing trend (55.15%) from 2001 to 2020. (3) The spatial rela-
tionship between WUE and driving factors reveal the variations in WUE of Inner Mongolia are 
mainly affected by soil moisture between 0 and 10 cm (SM0–10cm), vapor pressure deficit 
(VPD), and precipitation, respectively. (4) In arid regions, VPD and precipitation exhibit a 
major influence on WUE. An increase in VPD and precipitation has a negative and positive 
effect on WUE, with threshold values of approximately 0.36 kPa and 426 mm, respectively. (5) 
In humid regions, SM0–10cm, VPD, SM10–40cm, and SM40–100cm exert a significant im-
pact on WUE, especially SM0–10cm, and weakens with increasing soil depths, these differ-
ences may be related to physiological structure and living characteristics of vegetation types 
in different climate regimes. Our results emphasize the importance of VPD and soil moisture 
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in regional variability in WUE. 

Keywords: gross primary productivity (GPP); evapotranspiration (ET); water use efficiency (WUE); climate 
change; soil water content 

1  Introduction 

Water use efficiency (WUE) is defined as the ratio of ecosystem gross primary productivity 
(GPP) and evapotranspiration (ET), it reflects the coupling of carbon and water cycles in 
terrestrial ecosystems (Huang et al., 2017; Li et al., 2018c; Yang et al., 2020; Zhao et al., 
2020). As an effective indicator for assessing ecological sustainable development, WUE as-
sociates carbon and water exchange processes between terrestrial ecosystems and the at-
mosphere, as well as quantifying how much water an ecosystem uses relative to carbon as-
similation (Zhu et al., 2015; Du et al., 2019; Guo et al., 2019a; 2019b; Xu et al., 2020; Zhao 
et al., 2021), it is crucial to global ecosystem functions, ecosystem services, and ecosystem 
feedbacks to climate change (Niu et al., 2011; Li et al., 2018c; Liu et al., 2019; Xu et al., 
2020). Therefore, a better insight into the variations and regulating mechanisms of WUE 
would help to achieve regional sustainable development and water resource utilization. 

Currently, there are several methods available to estimate WUE, namely eddy covariance 
(EC), process-oriented ecosystem models (Huang et al., 2016; Yang et al., 2016), and satel-
lite-based remote sensing (Zhang et al., 2015; Zou et al., 2020). Thereinto EC is the standard 
estimation method with the highest accuracy, but it is limited to the smaller regional scales 
(Brummer et al., 2012). Models methods depend on the input data and considered parame-
ters and can effectively provide long-term dynamics of WUE over larger regional scales. 
There are large uncertainties in the model inputs and parameters (Zou et al., 2020). Recently, 
many studies have employed GPP and ET remote sensing products to estimate WUE (Du et 
al., 2019; Zou et al., 2020). Satellite remote sensing provides a variety of ET and GPP 
products with different temporal and spatial characteristics, such as the Moderate-Resolution 
Imaging Spectroradiometer (MODIS) (Running et al., 2004), the Breathing Earth System 
Simulator (BESS) (Ryu et al., 2011; Jiang and Ryu, 2016), and the Global Land Surface 
Satellite (GLASS) products (Yuan et al., 2010). However, these products show great varia-
tion due to their different model algorithms, input parameters, and sensors (Li et al., 2021b). 
Therefore, it is necessary to evaluate the accuracy of GPP and ET products before estimating 
WUE. 

Previous studies have reported that ecosystem WUE may be affected by biotic and abiotic 
factors such as leaf area index (LAI), precipitation, vapor pressure deficit (VPD), solar radi-
ation, and temperature (Sun et al., 2018; Guo et al., 2019a; Wu et al., 2019; Wang et al., 
2020; Zhao et al., 2021). The influence of environmental factors on WUE differs under var-
ying temporal and spatial scales with climate conditions (Song et al., 2017; Du et al., 2019). 
In arid and semi-arid regions, Sun et al. (2018) and Bai et al. (2020) noted that the variabil-
ity of WUE was influenced by precipitation. Xu et al. (2021) found that WUE in arid and 
semi-arid regions of China was positively correlated with precipitation and temperature, 
while Liu et al. (2019) found that variations in WUE are mostly affected by soil moisture in 
most regions. Zhang et al. (2022) reported that groundwater depth plays an important role in 
spatial variations of WUE in arid and semi-arid regions. Given the above studies, it is still 
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disputed as to what are the major factors forcing variations in WUE under the background of 
climate change. 

The arid, semi-arid, and sub-humid regions of China form an ecological fragile belt, while 
Inner Mongolia, located in northern China, is a typical inland arid and semi-arid region (Mu 
et al., 2013; Luo et al., 2021). Grassland is one of the widely distributed ecosystems in Inner 
Mongolia, which play a pivotal role in the global carbon-water cycle and climate systems 
(Yu et al., 2020; Guo et al., 2021). However, recently the grassland environment has expe-
rienced serious damage, such as vegetation degradation, land desertification, and shrinking 
lakes (John et al., 2013; Tao et al., 2015; Huang et al., 2021), which seriously threaten eco-
system function and socioeconomic development. WUE is a vital property of ecosystem 
function and an important basis for promoting the sustainable development of regional eco-
systems (Du et al., 2019; Guo et al., 2019a; Liu et al., 2019). However, few studies have 
focused on WUE variability and its driving mechanisms in fragile ecosystems. Therefore, in 
this work, we take Inner Mongolia as the study region and quantitatively assess the effects of 
driving factors (climatic change and soil water content) on WUE variations. Specifically, our 
objectives are: (1) to compare the spatiotemporal patterns of four GPP and ET products, and 
select products that have good consistency with the flux towers observations data to estimate 
WUE, (2) to analyze the spatiotemporal variations and trends in WUE, (3) to discuss the 
impact of climatic factors and soil water content to variations in WUE, and (4) to determine 
the threshold of the key factors that control changes in WUE. 

2  Materials and methods 

2.1  Study area 

Inner Mongolia (37°24'‒53°23'N, 97°12'‒126°04'E) is located along the northern border of 
China. Its landscape consists mainly of high plains, and the terrain slopes downward from 
west to east, with an average altitude of above 1000 m (Figure 1a). Inner Mongolia is an 
important portion of the Eurasian grasslands (Dai et al., 2016; Li et al., 2018a). Grassland is 
the major vegetation type of Inner Mongolia, with the different types varying from east to 
west as forest (11.27% of the total area), meadow steppe (10.31%), typical steppe (18.85%), 
desert steppe (14.50%), and the Gobi Desert (18.92%), as presented in Figure 1b. Vegetation 
type data were obtained from a 1:1,000,000 scale vegetation map of Inner Mongolia and 
rasterized to a spatial resolution of 0.083°. Inner Mongolia has a temperate continental cli-
mate, with an annual average temperature ranging between ‒3.15 and 9.8℃ and annual pre-
cipitation between 50 and 550 mm based on meteorological stations from 2001 to 2020. We 
used the humidity region definition from China’s eco-geographical region map of the Insti-
tute of Geographic Sciences and Natural Resources Research. According to the annual arid-
ity index (AI), the study area can be divided into humid (AI<1), sub-humid (1<AI<1.49), 
semi-arid (1.5<AI<4), and arid zones (AI≥4) from east to west. In this study, humid regions 
include humid and sub-humid zones with an annual aridity index of less than 1.49, while 
arid regions refer to arid and semi-arid zones with an annual aridity index greater than 1.5 
(Figure 1b).  
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Figure 1  Spatial distributions of annual average temperature and annual precipitation (a), and different vegeta-
tion types, flux tower observation stations, meteorological stations, and ecological climatic zones (b) of Inner 
Mongolia 

 

2.2  Data sources 

2.2.1  GPP products 

In this study, we employed four GPP products: the global OCO-2-based solar-induced chlo-
rophyll fluorescence product (GOSIF), Global Land Surface Satellite (GLASS), Breathing 
Earth System Simulator (BESS), and the Moderate Resolution Imaging Spectroradiometer 
(MODIS) products (Table 1). These four GPP products have been widely used for evaluating 
carbon sinks and monitoring the vegetation productivity of regional and even global terres-
trial ecosystems. 

(1) GOSIF-GPP 
Li and Xiao (2019) based on linear relationships between SIF and GPP to generate a new 

global GPP product, that is “GOSIF-GPP” (http://data.globalecology.unh.edu/). This product 
provides 8-daily GPP values with a 0.05° spatial resolution from 2001 to 2020. This product 
is widely used for the evaluation of vegetation productivity (Li and Xiao, 2019a; 2019b). 

(2) GLASS-GPP 
The GPP data are produced from the GLASS product generation system, which employs 

an improved algorithm for the light use efficiency model (EC-LUE), with a spatial resolu-
tion of 0.05° and a temporal resolution of 8 days from 1982 to 2018. This data was produced 
by National Earth System Science Data Center, National Science & Technology Infrastruc-
ture of China (http://www.geodata.cn) (Yuan et al., 2010). 

(3) BESS-GPP 
The BESS GPP dataset was generated from a complex process-based model and driven by 

multiple modules, which are coupled atmospheric and canopy radiative transfers, canopy 
photosynthesis, transpiration, and energy balance (Ryu et al., 2011; Jiang and Ryu, 2016). 
The BESS data was obtained from the Environmental Ecology Lab of Seoul National Uni-
versity (http://environment.snu.ac.kr/data/), with a spatial resolution of 0.05° and temporal 
resolutions of daily from 2000 to 2017.  

(4) MODIS-GPP 
The MODIS GPP products (MOD17A2H) adopted a light use efficiency model algorithm 

using MODIS vegetation indices as input surface vegetation information, with an 8-day 



MEI Li et al.: Water use efficiency and its driving factors in Inner Mongolia from 2001 to 2020 173 

 

composite and a 500 m resolution from 2001 to 2020 (Running et al., 2004). This product is 
provided by the National Aeronautics and Space Administration (NASA) (https://ladsweb. 
modaps.eosdis.nasa.gov/). The MODIS product was resampled to a 0.05º spatial resolution 
using the nearest neighbor methods. 

 

Table 1  Major information on four GPP products is used herein 

GPP Prod-
ucts 

Spatial and tem-
poral resolution Units Year Data source References 

GOSIF 0.05°, 8 days gC m‒2d‒1 2000–2020 http://data.globalecology.unh.edu/ Li and Xiao, 2019a; 
2019b 

BESS 0.05°, daily gC m‒2d‒1 2000–2017 http://environment.snu.ac.kr/data 
Ryu et al., 2011; 
Jiang and Ryu, 2016 

GLASS 0.05°, 8 days gC m‒2d‒1 1982–2018 http://glass.umd.edu Yuan et al., 2010 

MOD17A2 500 m, 8 days kgC m‒28d‒1 2001–2020 https://ladsweb.modaps.eosdis.nasa.gov/ Running et al., 2004 

 
2.2.2  ET products 

In this study, we employed four long-time series gridded ET products, namely the Global 
Land Evaporation Amsterdam Model version 3.5a (GLEAM 3.5a), Famine Early Warning 
Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), Global Land 
Data Assimilation System (GLDAS), and the Moderate Resolution Imaging Spectroradiom-
eter (MODIS) products (Table 2).  

(1) GLEAM-ET 
The GLEAM remote sensing product is derived from modified Priestley-Taylor algo-

rithms that separately estimate the different components of ET (i.e., soil evaporation, tran-
spiration, and interception loss). In addition, GLEAM provides surface and root-zone soil 
moisture, potential evaporation, and evaporative stress conditions (Miralles et al., 2011; 
Martens et al., 2017). This set of algorithms produces two datasets (GLEAM 3.5a and 3.5b), 
while in this study, the evaporation estimates from the GLEAM 3.5a datasets were used 
(https://www.gleam.eu/), which spans from 1981 to 2020 and has a spatial resolution of 
0.25° and a temporal resolution of daily. 

(2) FLDAS-ET 
The FLDAS products (https://daac.gsfc.nasa.gov/) are based on multiple meteorological 

inputs or use existing land surface models, generated ensembles of soil moisture, ET, and 
other variables (McNally et al., 2017). The monthly ET datasets cover the period 1982–2020 
with a spatial resolution of 0.1°.  

(3) GLDAS-ET 
The ET data provided by GLDAS is generated by integrating satellite products and 

ground observational data using advanced land surface modeling and data assimilation tech-
niques (Rodell et al., 2004). Currently, GLDAS has three versions, i.e., GLDAS-2.0, 
GLDAS-2.1, and GLDAS-2.2. GLDAS-2.0 is forced entirely with the Princeton meteoro-
logical input data. GLDAS-2.1 product with a 3-hour temporal resolution is forced by a 
combination of model and observational data. GLDAS-2.2 product use data assimilation 
(DA). We selected the GLDAS-2.2 product with a 0.25° spatial resolution and daily tem-
poral coverage for the period from 2003–2020, and the GLDAS-2.0 data to cover the period 
from 2001 to 2003 (https://daac.gsfc.nasa.gov/). 

 



174  Journal of Geographical Sciences 

 

(4) MODIS-ET 
The MODIS ET (MOD16A2) products for the period 2001–2020 were downloaded from 

NASA (https://ladsweb.modaps.eosdis.nasa.gov/), and are estimated based on the Pen-
man-Monteith model, which uses meteorological reanalysis data and vegetation property 
dynamics retrieved from MODIS as input variables (Mu et al., 2007; Mu et al., 2011). This 
is an 8-day cumulative MODIS ET dataset with a 1 km spatial resolution. To make them 
comparable, the four ET products were resampled to a 0.05° spatial resolution, and their 
units were uniformly converted into mm/d. 

 
Table 2  Major information of the four ET products used herein 

ET Products Spatial and tem-
poral resolution Units Year Data source References 

GLEAM3.5a 0.25°, daily mm d‒1 1981–2020 https://www.gleam.eu/ Miralles et al., 2011; 
Martens et al., 2017 

FLDAS 0.1°, monthly kg m‒2s‒1 1982–2020 https://daac.gsfc.nasa.gov/ McNally et al., 2017 

GLDAS2.0 
GLDAS2.2 

0.25°, daily kg m‒2s‒1 2000–2003               
2004–2020 https://daac.gsfc.nasa.gov/ Rodell et al., 2004 

MOD16A2 1 km, 8-daily kg m‒28d‒1 2001–2020 https://ladsweb.modaps.eosdis.nasa.gov/ 
Mu et al., 2007; 
2011 

 
2.2.3  Flux tower observations data 

We compiled three flux towers observations data in Inner Mongolia obtained from 
FLUXNET2015 (http://fluxnet.fluxdata.org/) and ChinaFlux (http://www.chinaflux.org/), 
respectively, namely Duolun grassland (D01), Duolun Degraded Meadow, and Inner Mon-
golia sites (Figure 1c and Table S1). Grasslands are these site major vegetation types. The 
flux towers continuously recorded measurements of net ecosystem exchange (NEE), eco-
system respiration (ER), latent heat flux (LE), and GPP over different time scales. The ob-
served GPP is named GPP_NT_VUT_MEAN (GPP=ER-NEE) in the dataset (Wu et al., 
2019; Xu et al., 2020; Yang et al., 2020). However, the observed ET was usually reflected 
with latent heat flux (Wang et al., 2018). To obtain daily observed ET (mm d‒1), need to be 
converted from the daily EC latent heat flux (LE, W m‒2) from the two flux tower sites using 
the following equation (Li et al., 2018b; Ma et al., 2018): 

 
LEET
λ

=   (1) 

where λ is the latent heat of vaporization of water (2.45 MJ kg−1). 

2.2.4  Climate data 

Climatic factors are important variables that affect the photosynthesis and transpiration of 
plants (Zhao et al., 2021). To explore the impact of climate change on the WUE, the precip-
itation, vapor pressure deficit (VPD), temperature, and wind speed data were used in this 
study. The monthly wind speed was extracted from the FLDAS products. The daily precipi-
tation, temperature, and VPD come from 118 meteorological stations distributed across In-
ner Mongolia and were provided by the China Meteorological Data Network 
(http://data.cma.cn) for the period 2001–2020. Climate data were interpolated to a 
0.05°×0.05° spatial resolution by the kriging methods. 
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2.2.5  Soil water content data 

As a critical source of water for maintaining physiological activity, the dynamics of soil 
moisture can influence vegetation features such as phenology, productivity, and ET (Luo et 
al., 2021; Cleverly et al., 2016). Therefore, the most recently developed FLDAS soil mois-
ture products for four different layers, namely 0–10 cm (SM0–10cm), 10–40 cm 
(SM10–40cm), 40–100 cm (SM40–100cm), and 100–200 cm (SM100–200cm), and terres-
trial water storage (TWS) were chosen in this study. The TWS for the period 2001–2020 was 
derived from the GLDAS (https://daac.gsfc.nasa.gov/). To avoid spatial resolution mismatch, 
all gridded products were resampled to a spatial resolution of 0.05°.  

A set of nine variables, including climate factors, and soil water content, were selected as 
the drivers of the changes in WUE for the period 2001–2020 (Table 3). 

 
Table 3  Variables as the drivers of the changes in WUE for Inner Mongolia 

Variable 
class Variable name and unit Spatial and temporal 

resolution Data source 

Climate 
factors 

Precipitation (mm) 0.05°, daily China Meteorological Data Network 
(http://data.cma.cn) 

Temperature (℃) 0.05°, daily China Meteorological Data Network 
(http://data.cma.cn) 

Vapor pressure deficit (kPa) 0.05°, daily China Meteorological Data Network 
(http://data.cma.cn) 

Wind speed (m/s) 0.1°, monthly FLDAS products (https://daac.gsfc.nasa.gov/) 

Soil water 
content 

Soil moisture 0–10 cm (m3 m‒3) 0.1°, monthly FLDAS products (https://daac.gsfc.nasa.gov/) 

Soil moisture 10–40 cm (m3 m‒3) 0.1°, monthly FLDAS products (https://daac.gsfc.nasa.gov/) 

Soil moisture 40–100 cm (m3 m‒3) 0.1°, monthly FLDAS products (https://daac.gsfc.nasa.gov/) 

Soil moisture 100–200 cm (m3 m‒3) 0.1°, monthly FLDAS products (https://daac.gsfc.nasa.gov/) 

Terrestrial water storage (mm) 0.25°, daily GLDAS product (https://daac.gsfc.nasa.gov/) 

 

2.3  Methods 

2.3.1  Ecosystem water use efficiency 

WUE (gC m−2 mm‒1) was defined as the ratio of GPP (gC m‒2 yr‒1) to ET (mm yr‒1) at the 
ecosystem scale (Huang et al., 2016; Ma et al., 2019; Yang et al., 2020; Li et al., 2021a; Tao 
et al., 2022): 

 GPPWUE
ET

=  (2) 

when WUE is greater than 1, the water loss is less than the carbon assimilation, while for 
WUE is less than 1, the water loss is greater than the carbon assimilation. 

2.3.2  Vapor pressure deficit 

VPD is an important atmospheric constraint for affects the water and carbon fluxes (Novick 
et al., 2016), it refers to the difference between the water vapor pressure in a saturated state 
and the actual vapor pressure in the air at a certain temperature. It is widely used to measure 
atmospheric drought extent (Yuan et al., 2019). In this study, the VPD (kPa) was calculated 
from the relative air humidity and temperature provided by 118 meteorological stations us-
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ing the following: 

 
17.27

237.30.611 1
100

a
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T
T RHVPD e

×
+  = × × − 

 
 (3)

 
where Ta is the temperature (Ta, ℃) and RH is relative humidity (RH, %). 

2.3.3  GPP and ET products validation 

The reliability and accuracy of four GPP and ET gridded products were validated using flux 
tower observations data. Four metrics, namely the Pearson correlation coefficient (R, Equa-
tion 4), the root mean square error (RMSE, Equation 5), mean absolute error (MAE, Equa-
tion 6), and mean bias (Bias, Equation 7), are used to evaluate the agreement between the 
gridded products values and flux tower observed values at the site scales. The equations are 
as follows: 
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= −∑  (7) 

where xi represents the flux tower observed GPP and ET, yi represents the values of GPP and 
ET from the considered products; x  and y  represents the corresponding average values 
of the observed data and products (GPP or ET), and n is the number of samples. 

2.3.4  Partial correlation analysis 

In this study, partial correlation analysis was employed to measure the relative importance of 
GPP or ET to variations in WUE. By controlling for the effects of other variables, we deter-
mine the degree of the relationship between two variables as follows: 

 
( )( ), 2 21 1

XY XZ YZ
XY Z

XZ YZ

R R RR
R R

−
=

− −
             (8) 

where RXY,Z is the partial correlation coefficient between X and Y after removing the effects 
from Z. RXY, RXZ, and RYZ are the correlation coefficients between X and Y, X and Z, and Y 
and Z, respectively. If the ratio of the partial correlation coefficient between WUE and GPP 
to that between WUE and ET is greater than 1, then GPP plays a prominent role. By contrast, 
if the value is less than 1, it indicates that WUE is mainly driven by ET (Zhao et al., 2021). 

2.3.5  Maximum correlation analysis method 

To diagnose the key dominant factors of variations in WUE using the maximum correlation 
coefficient method. The driving factors corresponding to the maximum correlation coeffi-
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cients (Rmax) can be regarded as the key dominant factors of changes in WUE. The general 
equation is as follows:  
 ( ),i iR corr WUE df=  (9) 

 ( )max iR Max R=  (10) 
where Ri is the correlation coefficient between the driving factors and WUE, with the driving 
factors including temperature, precipitation, wind speed, VPD, TWS, SM0–10cm, SM10– 
40cm, SM40–100cm, and SM100–200cm; and Rmax is the maximum value of Ri. 

3  Results 

3.1  Spatial distribution in annual GPP and ET over Inner Mongolia 

Figures 2 and 3 display the spatial distribution of the four GPP and ET products over Inner 
Mongolia for the periods 2001–2017 and 2001–2020, respectively. We found that spatial 
variation of annual average GPP showed good consistency with ET. The highest and lowest 
GPP values from four gridded products were found in the northeast forest and western Gobi 
Desert. The annual GPP of the forest areas in the northeast is greater than 750 gC m‒2 yr‒1, 
while the annual vegetation productivity of the Gobi Desert in the southwest is less than 
150 gC m‒2 yr‒1 (Figure 2). The annual average GPP of the four products was estimated to be  

 

 
 

Figure 2  Spatial distributions of annual average GPP over Inner Mongolia during 2001–2017  
(a. GOSIF, b. BESS, c. GLASS, d. MODIS products) 
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between 449.50 and 500.25 gC m‒2 yr‒1 from 2001 to 2017 (MODIS‒GPP boundary as 
standard). The GPP values quantified by GOSIF and GLASS products are exhibited higher 
than those quantified by BESS and MODIS products. The four ET products also show a 
similar spatial distribution pattern (Figure 3), gradually decreasing from the east to west and 
from south to north, and exhibited latitude and longitude geographical zonality. However, it 
can be observed that there are obvious differences in the absolute values of the four ET 
products. The annual ET derived from four products are all highest in the northeast forest 
(greater than 480 mm yr‒1) and lowest in the southwest Gobi Desert (less than 60 mm yr‒1). 
Besides, the annual average ET was found to be 336.29 mm yr‒1, 316.41 mm yr‒1, 322.60 
mm yr‒1, and 248.26 mm yr‒1 for the GLEAM, GLDAS, FLDAS, and MODIS products, 
respectively (MODIS‒ET boundary as standard). The ET values from the GLEAM, GLDAS, 
and FLDAS products are generally greater than those for the MODIS product. 
 

 
 

Figure 3  Spatial distributions of annual average ET over Inner Mongolia during 2001–2020  
(a. GLEAM, b. FLDAS, c. GLDAS, d. MODIS products) 

 

3.2  Spatiotemporal trends in annual GPP and ET over Inner Mongolia 

Spatial distribution of trends in GPP from 2001 to 2017 over Inner Mongolia, as presented in 
Figure 4. The four GPP products all showed an increasing trend, with the areas correspond-
ing to such a trend for the GOSIF, BESS, MODIS, and GLASS products accounting for 
85.23%, 90.27%, 95.33%, and 67.32% of the total area, respectively. Increasing trends are 
mainly distributed in Mu Us sandy land and eastern Inner Mongolia. However, there are de-
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creasing trends in the north of Chifeng, the east of Xilingol, the central Hulunbuir, and the 
northwest of Alxa. In terms of the spatial distribution of trends in ET during the period 
2001–2020 (Figure 5), the four ET products show obvious differences and similarities. In-
creasing trends were derived for the ET of the GLEAM, FLDAS, and MODIS products, ac-
counting for 82.96%, 98.01%, and 92.09% of the total area, respectively. And it is mainly 
located in vast areas of study regions, whereas there is an opposite trend in the GLDAS 
products, accounting for 58.87% of the total area, mainly distributed in central Inner Mon-
golia. 
 

 
 

Figure 4  Spatial distributions of trends in annual GPP over Inner Mongolia during 2001–2017  
(a. GOSIF, b. BESS, c. GLASS, d. MODIS products) 
 

The performance and accuracy of the four GPP and ET products based on observation 
data at the three flux tower sites were verified (Figures 6 and 7). As shown in Figures 6a–6f, 
the four GPP products all showed a high correlation with the flux tower GPP. The GOSIF 
has the best correlations (R2=0.611) compared with the MODIS (R2=0.584), GLASS 
(R2=0.518), and BESS (R2=0.492) products, as well as the smallest errors. Interestingly, 
although the GLASS correlation coefficient was greater than that for BESS, the RMSE, 
MAE, and Bias of the GLASS products were greater than those of the BESS product. Fur-
thermore, we found that all of these four gridded products overestimate GPP, with an aver-
age Bias of less than zero, especially the GLASS product with a Bias value of –0.48. 

The ET correlation analysis revealed that the FLDAS has a high correlation with the 
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Figure 5  Spatial distributions of trends in annual ET over Inner Mongolia during 2001–2020  
(a. GLEAM, b. FLDAS, c. GLDAS, d. MODIS products) 

 
observed ET (R2=0.871) compared to GLEAM, GLDAS, and MODIS products. The 
MODIS exhibited a relatively weak correlation and higher errors with observed ET, with an 
R2 value of 0.753, RMSE, MAE, and Bias values of 16.05, 11.77, and 8.14, respectively 
(Figures 7a–7f). In addition, GLDAS, MODIS, and FLDAS underestimated the observed ET 
on a monthly scale with Bias values of 1.23, 8.15, and 0.04, respectively. Whereas GLEAM 
overestimates ET, with a Bias value of –3.77. Overall, the GOSIF and FLDAS products 
agreed well with flux tower data than other products, along with the smallest errors. There-
fore, the GOSIF and FLDAS products were selected to characterize variations in GPP and 
ET, and utilize them to estimate WUE. 

3.3  Spatiotemporal variations and trends in WUE and drivers 

From the spatial pattern of WUE in Inner Mongolia from 2001 to 2020 (Figure 8), it can be 
seen that the spatial regime of WUE matches well with that of variations in GPP and ET, all 
showing gradually decreasing values from northeast to the southwest. The annual average 
WUE in Inner Mongolia during this period was 1.23 gC m‒2 mm‒1, ranging from approxi-
mately 0.002 to 4.65 gC m‒2 mm‒1. The high WUE values were mainly in the forest biome 
across northeast Inner Mongolia, with the average values of 2.19 gC m‒2 mm‒1, followed by 
meadow steppe (2.05 gC m‒2 mm‒1), cropland (1.44 gC m‒2 mm‒1), shrubs (1.39 gC m‒2 
mm‒1), typical steppe (1.22 gC m‒2 mm‒1), sand land vegetation (0.96 gC m‒2 mm‒1), and  
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Figure 6  Correlation comparisons of the four GPP products over an 8-daily time scale from 2007 to 2010  
(a. GOSIF, b. BESS, c. GLASS, d. MODIS products, e. MAE frequency, f. bias between the four gridded datasets 
and flux tower GPP) 
 
desert steppe (0.54 gC m‒2 mm‒1), with the lowest WUE values occurred in the western Gobi 
Desert ecosystem, with a value of 0.28 gC m‒2 mm‒1 (Figure 8c). From 2001 to 2020, the 
WUE in Inner Mongolia showed a non‒significant decreasing trend with a rate of –0.0016 
gC m‒2 mm‒1 a‒1, accounting for 55.15% of the entire region (Figures 8a and 8b). The de-
creasing WUE was mainly distributed in the north of Xingan, north of Chifeng, central 
Hulunbuir, east of Xilingol, and northwest of Alxa. In contrast, the WUE in the Ordos, Ulan 
Qab, Bayan Nur, Baotou, Hohhot, and eastern Alxa regions showed an increasing trend, ac-
counting for 44.85% of Inner Mongolia. 
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Figure 7  Correlation comparisons of the four ET products over a monthly time scale from 2004 to 2008  
(a. GLEAM, b. FLDAS, c. GLDAS, d. MODIS products, e. MAE frequency, f. bias between the four gridded 
datasets and observed ET) 
 

From 2001 to 2020, the VPD and wind speed of Inner Mongolia showed decreased by 
–0.002 m s‒1 a‒1 and –0.002 kPa a‒1, respectively. Whereas other driving factors such as soil 
moisture in different layers, precipitation, TWS, and temperature all showed increasing 
trends, which implied that characterize the warming and wetting in Inner Mongolia. Among 
these drivers, the interannual variations in soil moisture of four different layers were well 
consistent with precipitation, and there are all significantly increasing trends (Figure 9). 

3.4  Relationship between the WUE and driving factors 

We found that 59.44% of the WUE pixels (significant in 14.85% of pixels) were positively 
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Figure 8  Distribution of annual average WUE (a), trends (b), and different vegetation types (c) of Inner Mongo-
lia from 2001 to 2020. The black dotted line represents the average WUE value for Inner Mongolia. 

 
correlated with precipitation, and are mainly found in central and western Inner Mongolia, 
this indicates that in these regions increased precipitation leads to increased WUE. Whereas 
WUE negatively correlated with precipitation in 40.56% of the pixels, with 14.77% of them 
being statistically significant. This area was mainly distributed in the northeast part of Inner 
Mongolia (Figure 10). A negative correlation between WUE and VPD was observed in cen-
tral and western Inner Mongolia accounting for 61.89% of the pixels (significant in 17.85% 
of pixels), which suggests that these regional WUE values declined with intensified atmos-
pheric drought. By contrast, a positive correlation between WUE and VPD was found main-
ly in the northeast part of Inner Mongolia, accounting for 38.11% of pixels (significant in 
10.13% of pixels, Figure 10). In addition, the WUE was positively correlated with SM of 
different layers and TWS over central and western Inner Mongolia. However, the WUE was 
negatively correlated with TWS, SM0–10cm, SM10–40cm, SM40–100cm, and SM100– 
200cm over the eastern Inner Mongolia, accounting for 55.48% (14.16%), 56.41% (23.45%), 
59.52% (20.70%), 59.08% (17.44%), and 55.03% (9.20%) of the pixels, respectively (Figure 
10). This implied that WUE tends to decrease with increasing SM and TWS under relatively 
wet conditions. Additionally, 52.92% (significant in 1.79%) of wind speed and 55.53% (sig-
nificant in 5.02%) of temperature pixels were negatively correlated with WUE and were 
mainly located in the central and western parts of Inner Mongolia, illustrating that the in-
crease in wind speed and temperature had a clear negative effect on WUE. 
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Figure 9  Long-term changes of different driving factors in Inner Mongolia from 2001 to 2020. The black dotted 
line represents the trend line. 
 

The spatial pattern of the maximum correlation coefficients (Rmax) between WUE and 
driving factors can reflect the sensitivity of WUE to the variability of driving factors (Fig-
ures 11 and 12). The results illustrate that WUE over Inner Mongolia is most sensitive to 
SM0–10cm, VPD, and precipitation, with the areas showing significant Rmax accounting for 
12.71% (negative), 11.54% (negative), and 7.02% (positive) of Inner Mongolia, respectively 
(Figure 12a). In humid regions, WUE is closely related to SM0–10cm, VPD, SM10–40cm, 
and SM40–100cm. The regional WUE is negatively correlated with SM (0–10 cm, 10–40 cm, 
and 40–100 cm), while positively correlated with VPD, of which the areas with significant 
Rmax accounted for 41.24%, 15.81%, 9.74%, and 7.71% of the humid regions, respectively. 
In particular, the SM0–10cm shows a strong negative response to WUE and is weakened 
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Figure 10  Spatial patterns of the correlations between WUE and driving factors in Inner Mongolia from 2001 to 
2020 (a. Wind speed (WS), b. Vapor pressure deficit (VPD), c. Temperature (Tem), d. Precipitation (PRE), e. 
Terrestrial water storage (TWS), f. Soil moisture 0–10 cm (SM0–10cm), g. Soil moisture 10–40 cm 
(SM10–40cm), h. Soil moisture 40–100 cm (SM40–100cm), i. Soil moisture 100–200 cm (SM100–200cm)) 
 

 
 

Figure 11  Spatial distributions of maximum correlation coefficients between WUE and driving factors in Inner 
Mongolia from 2001 to 2020 (a. Maximum correlation coefficients (Rmax), b. Corresponding driving factors (1, 2, 
3, …, 9 represent the correlations of WUE with temperature (Tem), precipitation (PRE), wind speed (WS), vapor 
pressure deficit (VPD), terrestrial water storage (TWS), soil moisture 0–10 cm (SM0–10cm), soil moisture 10–40 
cm (SM10–40cm), soil moisture 40–100 cm (SM40–100cm), and soil moisture 100–200 cm (SM100–200 cm), 
respectively. A negative value denotes a negative maximum correlation, while a positive value indicates a positive 
maximum correlation in (b).) 
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with increasing soil depths (Figures 11 and 12b). In arid regions, the WUE is primarily sen-
sitive to changes in VPD and precipitation more than the other factors. The WUE is nega-
tively correlated with VPD, while positively correlated with precipitation, of which the re-
gions with significant Rmax accounted for 13.55% and 8.94% of arid regions, respectively 
(Figures 11 and 12c). This result reveals that the increase in VPD and precipitation had a 
negative and positive effect on vegetation WUE under arid conditions. Therefore, when at-
mospheric drought occurs in arid regions, it has a significant influence on local water re-
sources and productivity. 

 

 
 

Figure 12  The significance statistics (p<0.05) for the maximum correlation coefficients between WUE and 
driving factors (a. Entire Inner Mongolia, b. Humid regions, c. Arid regions) 

 

3.5  Determining the threshold of water carbon coupling for vital driving factors 

To further explore the specific effects of the key dominating factors (SM0–10cm, VPD, pre-
cipitation, SM10–40cm, and SM40–100cm) regulating WUE, the coupling of WUE with the 
changes in these factors were analyzed. The results show that the relationships between 
WUE and the key driving factors are non-linear (Figure 13). The WUE along with variations 
in VPD exhibited an “increase-decrease-increase” model. When VPD was less than 0.36 kPa, 
WUE and VPD are positively correlated and WUE increased with the increasing VPD. 
When VPD reached approximately 0.36 kPa, the WUE was at the highest value. When the 
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WUE was greater than 0.36 kPa, WUE and VPD show a significant negative correlation and 
WUE decreased with the increasing VPD (Slope=–1.231, R2=0.496, p<0.01), while VPD 
great than 1.1 kPa, the WUE once more showed an increasing trend. For precipitation, when 
the precipitation in Inner Mongolia was less than 426 mm, there is a significant positive 
correlation between WUE and precipitation (R2=0.917, p<0.01), the WUE increased with 
precipitation, where for every 100 mm increase in annual precipitation, WUE increased by 
0.5 gC m‒2 mm‒1. When the precipitation was 426 mm, the WUE reached its peak and  

 

 
 

Figure 13  Relationships between WUE and the key dominant factors for Inner Mongolia (a. Precipitation (PRE), 
b. Vapor pressure deficit (VPD), c. Soil moisture 0–10 cm (SM0–10cm), d. Soil moisture 10–40 cm 
(SM10–40cm), e. Soil moisture 40–100 cm (SM40–100cm)) 
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showed stationary behavior, but precipitation was higher than the 426 mm critical value, 
WUE decreased with increasing precipitation, decreased by 0.05 gC m‒2 mm‒1 for every 100 
mm increase (R2=0.008, p<0.05). The soil moisture was the most important factor for WUE 
in humid regions. When the soil moisture at a depth of 0–10 cm roughly reached 0.25 m3 
m‒3, the regional WUE has the highest peak value. Moreover, we observed that the 
SM0–10cm and precipitation exhibited relatively consistent variation patterns, this illus-
trates that precipitation may be made greater contributions to SM0–10cm variations than 
depth soil moisture (SM10–40cm and SM40–100cm). In addition, we found that depth soil 
moisture (SM10–40cm and SM40–100cm) variations are relatively complex and exhibited 
two‒peak distributions. When the soil moisture at a depth of 10–40 cm and 40–100 cm was 
separately reached 0.28 m3 m‒3 and 0.26 m3 m‒3, the water use efficiency of vegetation 
reached the maximum value, which indicates that when the soil moisture within this layer 
arrived at this critical value, it was beneficial to the ecosystem carbon and water exchange. 

4  Discussion 

4.1  Evaluation of the griddle GPP and ET datasets 

The performance of the WUE depends on the accuracy of both the GPP and ET estimates. 
Thus, it is necessary to evaluate the reliability and accuracy before using these products 
(Zhang et al., 2015). Our results show that all gridded products have a good performance. 
For GPP, the four GPP products generally overestimated GPP at the flux tower sites, of 
which the overestimation by the GLASS product was the most prominent, with a bias of 
–0.48. For ET, the GLDAS, MODIS, and FLDAS products underestimated the ET at the flux 
tower sites, which is in agreement with previous studies for MODIS (Hu et al., 2015; Yang 
et al., 2021), while GLEAM overestimated the ET at the flux tower sites (Figure 7f). This 
underestimation or overestimation of GPP and ET may be related to relatively few flux tow-
er observation sites in the study areas and a mismatch between the extraction range of prod-
uct data and the observation range of flux towers. Our results also revealed that the GLDAS 
product showed greater uncertainty compared with GLEAM, MODIS, and FLDAS (Figure 
5), which may be related to the differences in the employed model algorithms, parameters, 
and forcing data used to generate the different products. Yao et al. (2018) and Li et al. 
(2021a) suggested that the ET products quality is affected by the differences in model algo-
rithm and parameterize, as well as the used forcing data. Miralles et al. (2016) found that the 
GLEAM product has relatively better performance in most vegetation types and climate re-
gimes around the world. To further verify the effectiveness of the WUE, the WUE calculated 
by the GOSIF-GPP and FLDAS-ET was compared with the WUE calculated by the 
GOSIF-GPP and GLEAM-ET, the result shows that the spatial distribution of both WUEs 
has a good consistency (Figure S1). 

4.2  Spatial heterogeneity and trends of WUE in Inner Mongolia 

Our results show that the WUE in Inner Mongolia decreases from the northeast to the 
southwest, which result is consistent with Li et al. (2021a). The higher WUE values were 
found in the high coverage and within humid climatic zones. Lower WUE values were found 
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in the low coverage and within arid and semi-arid climate zones. The WUE of the forest 
biome is higher than that of meadow steppe, cropland, shrub, typical steppe, and desert 
steppe, which is consistent with previous research results (Bai et al., 2020; Zhao et al., 2020; 
Li et al., 2021a). This may be related to physiological characteristics, physiological structure, 
and living conditions of different vegetation types. Forest had a high carbon sequestration 
capacity (Xiao et al., 2013). Meanwhile, the canopy closure of the forest causes small varia-
tions in the air temperature, ground temperature, and wind speed that did not enhance the ET 
(Li et al., 2021a). For these reasons, the WUE of the forest is the highest. In addition, we 
also found that the regional GPP and ET all showed a significant increasing trend, increasing 
change rate of 5.22 gC m‒2 yr‒1 a‒1 and 4.18 mm yr‒1 a‒1, respectively (Figure S2). But the 
regional WUE showed a non‒significant decreasing trend with a value of –0.0016 gC m‒2 
mm‒1 a‒1 (P=0.491), this decreased WUE may be caused by the synergistic effect of GPP 
and ET. The regional decreasing trend mainly occurs in the northwest of Alxa, eastern Xil-
ingol, northern Xingan, northern Chifeng, and central Hulunbuir (Figures 8 and S1). This 
may be related to human activities (e.g., land cover changes) and shifts in species composi-
tion or abundance (Liu et al., 2012; Du et al., 2019). For example, WUE declines in the 
Xilingol region were caused by large-scale open-cut coal mining which results in reduce 
land surface cover and therefore accelerates ecosystem evapotranspiration processes (Rong 
et al., 2019). Hence, we suggest should be strengthening the prevention and protection of 
vegetation in these regions, to prevent the occurred vegetation degradation.  

4.3  The driving factors of spatial heterogeneity of WUE in Inner Mongolia 

The partial correlation analysis showed that the WUE in the arid and humid region was 
mostly controlled by ET than GPP (Figure S3). This result is in contrast to prior studies that 
WUE variability in humid regions was controlled by GPP (Yang et al., 2016; Liu et al., 
2019). Our results indicate that precipitation is one of the dominant factors in controlling 
WUE in arid regions (Figure 10), which is consistent with previous studies (Wagle and Ka-
kani, 2012; Bai et al., 2020). We found that an increase in precipitation has a positive re-
sponse to WUE in arid regions. This may be caused by an increase in precipitation alleviates 
water stress and thus improves plant productivity, precipitation maybe was also be con-
sumed by soil evaporation and lead to an increase in ET. However, the increased GPP was 
higher than ET, result to increase in WUE (Niu et al., 2011; Liu et al., 2015; Guo et al., 
2019b). Meanwhile, Zhang et al. (2016) found that changes in GPP are also closely linked to 
changes in precipitation-induced ET. Increased precipitation in humid regions negatively 
contributed to WUE. Increased precipitation in humid regions can enhance canopy intercep-
tion and soil evaporation (Liu et al., 2015). Meanwhile, increased precipitation usually being 
accompanied by a reduction in temperature and solar radiation, which can restrict vegetation 
growth and photosynthesis (Mao et al., 2012; Liu et al., 2015), which leads to an increase in 
ET greater than carbon uptakes to negatively effect on WUE. In addition, we found that the 
precipitation threshold of about 426 mm, while Liu et al. (2015) found a threshold value of 
around 500 mm in China areas.  

Our results indicate that the VPD is an important determinant for controlling the dynamic 
changes of WUE, especially in water-limited areas (such as arid regions) where WUE is 
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more sensitive to VPD (that is atmospheric drought) than to soil moisture and precipitation 
(Figure 12c). It was found that the WUE was negatively correlated with VPD, indicates that 
the aggravation of atmospheric drought reduces WUE, which may be due to higher VPD 
leading to dramatic increases in ET, including both soil evaporation and vegetation transpi-
ration (Liu et al., 2015; Wu et al., 2019; Li et al., 2021b). On the other hand, high VPD may 
cause some stomatal to close and inhibit photosynthetic rates (Novick et al., 2016; Ding et 
al., 2018; Wu et al., 2019; Li et al., 2021b; Zhao et al., 2021), these effects together may 
lead to the negative response of VPD to variations in WUE. However, in humid regions, the 
VPD is positively correlated with WUE, which demonstrates that higher VPD leads to in-
creased WUE. This may be due to the fact that higher VPD can induce stomatal closure to 
reduce water loss through transpiration, resulting in decreased ET faster than GPP (Liu et al., 
2019). There is another possibility that the higher VPD stimulates plant water use strategy 
and maintain keeps stomata openness of plants to increase GPP (Chen et al., 2021), these 
reasons may be leads to positive effects of VPD on WUE (Frank et al., 2015; Li et al., 
2018c). In addition, our results found a VPD threshold of about 0.36 kPa in Inner Mongolia. 
However, the VPD in the southwest to northeast aridity gradient over China is a threshold of 
about 0.8 kPa (Bai et al., 2020). These differences may be caused by the intensity of drought 
in different regions.   

Additionally, we also found that WUE variability in arid regions is regulated by the pre-
cipitation and VPD, whereas WUE in humid regions is most affected by soil moisture, in 
particular SM0–10cm. This difference may be related to the root characteristics and water 
use strategies of different vegetation types. The arid areas are mostly grassland, and herba-
ceous plants have relatively shallow root systems, which limits the obtaining of water from 
groundwater sources, and thus they are more sensitive to precipitation (Liu et al., 2012; Bai 
et al., 2019). In humid areas, the vegetation types are mostly forest, cropland, and shrubs, 
and these have deeper root systems, with their water supplied by soil moisture from the ca-
pillary fringe, root zone, and groundwater (Liu et al., 2012). Previous studies have shown 
that excessive soil water content can cause root zone hypoxia and results in the 
down-regulation of stomatal conductance and photosynthesis (Li et al., 2018c). Excessive 
soil water input can also promote a significant increase in abiotic water consumption (Liu et 
al., 2019), which leads to an increase in ET greater than carbon uptakes to negatively affect 
WUE. In short, the response of WUE to various factors was different among different vege-
tation types and climate zones. 

4.4  Uncertainties and future studies   

We validated the accuracy of four GPP and ET products using measurement data from three 
flux tower sites. Although all gridded products have a good performance, there are still some 
uncertainties in this study. First, the spatial resolutions of the multi-source remote sensing 
products were not exactly the same, using different resolution products could lead to uncer-
tainties in the expected results. Second, uncertainties would arise from a mismatch between 
the extraction range of the product data and the observation range of flux towers. Third, 
there is relatively little flux tower observation data in the study area, which leads to large 
uncertainties in the accuracy of the evaluation products. In this study, we only discussed the 



MEI Li et al.: Water use efficiency and its driving factors in Inner Mongolia from 2001 to 2020 191 

 

effect of both climate change and soil water content on the variability of WUE. However, the 
WUE of ecosystems is affected by many other factors including Leaf area index (LAI) 
(Huang et al., 2010), drought (Ma et al., 2019), CO2 fertilization (Wu et al., 2019; Liu et al., 
2020), stomatal conductance (Xu et al., 2020), and land cover change (Li et al., 2021a). 
Therefore, it is necessary to further explore other factors affecting the WUE. Our study also 
points out that VPD and soil moisture acts as important environmental factors for under-
standing carbon-water coupling in Inner Mongolia. Therefore, in the future, to furthermore 
consider VPD and soil moisture in predicting and simulating terrestrial ecosystem responses 
to future climate change. 

5  Conclusions 

Ecosystem WUE is a vital indicator to explore the interactions between carbon and water 
cycles in terrestrial ecosystems, and accurate estimates of ecosystem WUE can contribute to 
quantifying the carbon-water exchange of ecosystem function under climate change. The 
result shows that the spatial pattern of four GPP and ET products gradually decreases from 
the northeast to the southwest. Meanwhile, an increasing trend for all GPP and ET products 
over the study area except for the ET estimated from GLDAS products. Using flux tower 
observations data validated four GPP and ET products found that GOSIF and FLDAS have a 
good performance and therefore utilize them to estimate WUE. The spatially WUE showed 
decreasing trends accounting for 55.15% of the entire region, where distributed in the north 
of Xingan, north of Chifeng, central Hulunbuir, east of Xilingol, and northwest of Alxa. In 
addition, the results revealed that the SM0–10cm, VPD, and precipitation play an important 
role in regulating variations in WUE over Inner Mongolia. In arid regions, the WUE is 
mostly controlled by VPD and precipitation. An increase in VPD and precipitation has nega-
tive and positive effects on WUE. In humid regions, variations in WUE are closely associ-
ated with SM0–10cm, VPD, SM10–40cm, and SM40–100cm, in which SM0–10cm has the 
most negative influence on WUE and is weakened with soil depth. These findings improve 
our understanding of arid and semi-arid region WUE variability and its driving mechanisms 
and provide vital insight into predicting the feedback from ecosystems to climate change. 
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Table S1  Descriptions of the flux tower sites in this study 

Site ID Nation Site name Vegetation types Longitude (°E) Latitude (°N) Period 

CN-Du2 China Duolun grassland (D01) Steppe 116.2836 42.0467 2006–2008 

CN-Du3 China Duolun degraded meadow Steppe 116.2809 42.0551 2009–2010 

  China Inner Mongolia Steppe 116.404 43.3255 2004–2005 

 
 
 

 
 

Figure S1  Based on GOSIF-GPP and GLEAM-ET obtained average WUE (a) and trends (b) over Inner Mongo-
lia for the period 2001–2020 
 
 
 

 
 

Figure S2  Interannual variations in GOSIF-GPP (a) and FLDAS-ET (b) across Inner Mongolia during 
2001–2020 
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Figure S3  Spatial pattern of the partial correlation coefficient between WUE and GPP (a), WUE and ET (b), and 
their ratio (c) in Inner Mongolia from 2001 to 2020 
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