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Abstract: Multi-source weighted-ensemble precipitation (MSWEP) is one of the most popular 
merged global precipitation products with long-term spanning and high spatial resolution. 
While various studies have acknowledged its ability to accurately estimate precipitation in 
terms of temporal dynamics, its performance regarding spatial pattern and extreme rainfall is 
overlooked. To fill this knowledge gap, the daily precipitation of two versions of MSWEP 
(MSWEP V2.1 & V2.2) are compared with that of three representative satellite- and reanaly-
sis-based products, namely the Tropical Rainfall Measuring Mission (TRMM 3B42 V7), the 
climate prediction center morphing technique satellite-gauge merged product (CMORPH 
BLD), and the fifth-generation reanalysis product of the European Centre for Medium Range 
Weather Forecasts (ERA5). The comparison is made according to the dense daily rainfall 
observations from 539 rain gauges over the Huaihe River Basin in China during 2006–2015. 
The results show that MSWEP V2.1, MSWEP V2.2 and CMORPH BLD have better perfor-
mance on temporal accuracy of precipitation estimation, followed by ERA5 and TRMM 3B42 
V7. MSWEPs yield the most even spatial distribution across the basin since it takes full ad-
vantage of the multi datasets. As the weighted-ensemble method is independently carried out 
on each grid in MSWEPs, the spatial distribution of local precipitation is changed by different 
source data, which results in that MSWEPs perform worse than CMORPH BLD in terms of the 
representation of precipitation spatial pattern. In addition, the capability of MSWEPs to de-
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scribe the spatial structure in the rainy season is lower than that in the dry season. Strong 
precipitation (≥100 mm/d) events are better represented in TRMM 3B42 V7 products than in 
MSWEPs. Finally, based on the comparison results, we suggest to improve the merging al-
gorithm of MSWEP by considering the precipitation spatial self-correlation and adjusting the 
merging weights based on the performance of the source datasets under different precipita-
tion intensities. 

Keywords: MSWEP; temporal accuracy; spatial pattern; extreme precipitation; Huaihe River Basin 

1  Introduction 

A better understanding on spatio-temporal distribution of precipitation is important for the 
researches on climate change, ecological conservation, utilization of water and land re-
sources, and the prevention and mitigation of hydro-meteorological and geological disasters 
(Tapiador et al., 2012; Kirschbaum et al., 2017; Monsieurs et al., 2018). Precipitation shows 
complex spatio-temporal variations due to the influences of topography, climate and human 
activities. Therefore, it is one of the meteorological variables which is difficult to be meas-
ured, estimated and forecasted. Though rain gauges can provide reliable and accurate obser-
vation, the number of gauges is insufficient, especially in the areas with lakes, mountains 
and deserts (Dos Reis et al., 2017; Sun et al., 2018). As a result, it is not possible to get re-
liable and continuous spatio-temporal distribution of precipitation over a big domain based 
on rain gauge observations without any other data sources. 

In recent decades, a series of satellite- and reanalysis-based gridded precipitation esti-
mates (GPEs) have been developed with advanced sensors and quantitative retrieval algo-
rithms. Major representative products were used in scientific community including the 
Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis 
(TMPA), the climate prediction center morphing technique (CMORPH), the precipitation 
estimation from remotely sensed information using artificial neural networks, the global 
precipitation measurement integrated multi-satellite retrievals for global precipitation meas-
urement, the fifth generation of the European Centre for Medium-Range Weather Forecasts 
(ECMWF) atmospheric reanalysis of global climate (ERA5), and the Japanese 55-year rea-
nalysis (JRA-55) (Joyce et al., 2004; Huffman et al., 2007, 2010; Ebita et al., 2011; Hou et 
al., 2014; Ashouri et al., 2015; Hersbach et al., 2020). These products have been widely 
used in meteorological and hydrological studies at various scales (Su et al., 2019; Chen et 
al., 2020; Jiang et al., 2020; Palash et al., 2020; Tarek et al., 2020; Beck et al., 2021), and 
the products can be considered as alternatives to gauge observations in some areas. Several 
studies have revealed that the use of GPEs is limited by its coarse spatio-temporal resolu-
tions, though it has certain advantages in characterizing the spatial distribution of precipita-
tion. At the same time, the data bias is affected by many factors, such as climate conditions, 
topography, geographic locations, spatio-temporal scales and precipitation intensity (Mag-
gioni et al., 2016; Sun et al., 2018; Li et al., 2020; Ma et al., 2020; Tang et al., 2020). 

It is clear that both gauge observations and GPE products have their own strengths. Hence, 
integrating these products from various sources can enable a better balance between accu-
rately estimating precipitation and characterizing its spatial distribution. Multi-source 
weighted-ensemble precipitation (MSWEP), developed by Beck et al. (2017a; 2019b), is one 
of the most popular multi-source products. MSWEP is a global dataset (including ocean ar-
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eas) with comparatively high spatio-temporal resolution (0.1°×0.1°, 3 h) and long temporal 
coverage (spanning from 1979 to 2021) by merging weighted ground observations, satel-
lite-derived and reanalysis-based precipitation estimations (Beck et al., 2019b). The com-
parisons between MSWEP and other GPE products were conducted in a wide range of spa-
tial scales, from regional to global (Beck et al., 2017b; Massari et al., 2017; Sun et al., 2018; 
Beck et al., 2019a; Xu et al., 2019). Products of MSWEP-ng V2.0 (a non-gauge version) 
were assessed at global scale by compared with 12 ensemble-, satellite-, and reanaly-
sis-based non-gauge-corrected products (Beck et al., 2017b). The results showed that 
MSWEP-ng V2.0 has the highest temporal correlation with gauge observations, followed by 
reanalysis- and satellite-based precipitation products. Moreover, MSWEP-ng V2.0 showed a 
better performance on long-term averaged precipitation estimations. Evaluation of eleven 
gauge-corrected precipitation datasets in the conterminous United States (CONUS) demon-
strated that MSWEP V2.2 generally characterizes daily precipitation most satisfactorily with 
the Kling–Gupta efficiency approaching 1 for all grids (Beck et al., 2019a). Over China, 
MSWEP V2.1 has capabilities of capturing the temporal variations of daily precipitation, 
and effectively identifying and classifying precipitation events (Xu et al., 2019). But, 
MSWEP underestimates the precipitation over the monsoon regions in China and Australia, 
while there are overestimations in the Qinghai-Tibet Plateau, China (Awange et al., 2019; 
Liu et al., 2019; Xu et al., 2019). Furthermore, the averaged accuracy of MSWEP V2.1 in 
India is lower than that of the Climate Hazards Group Infrared Precipitation dataset (Prakash, 
2019). 

The MSWEP precipitation time series at rain gauge stations or grids were examined by 
many studies to assess the averaged accuracy and spatial distributions of relevant indicators. 
However, it is still not clear that how the spatial accuracy in MSWEP is, as well as the spa-
tial structure. To obtain a better knowledge of the performance of MSWEP, it is critical to 
perform detailed assessments in different regions with a comprehensive comparison between 
MSWEP and other representative GPE products. Additionally, analyzing the causes of the 
limitations of MSWEP from the perspectives of the fusion algorithm and source datasets 
could lead to further improvements in the algorithm. 

The Huaihe River, located in the climate transition zone, suffers lots of floods. After 
enormous efforts were done in more than 70 years, the capabilities of flooding defense and 
projection over the Huaihe River Basin (HRB) have been effectively strengthened. However, 
flood modeling and forecasting for the HRB still need to be improved. In particular, more 
reliable GPEs with higher spatio-temporal resolutions are urgently needed to improve the 
accuracy of flood prediction. To this end, this study focuses on the comprehensive compari-
son of the performances of five GPEs over the Bengbu Basin (BB) located in the upper 
reaches of the HRB, namely MSWEPs (V2.2 and V2.1), two satellite-based precipitation 
products (TRMM 3B42 V7 and CMORPH BLD), and the most updated reanalysis-based 
precipitation product (ERA5). Daily precipitation data measured at 539 rain gauge stations 
in the BB during 2006–2015 are adopted to construct a 0.25°×0.25°-grid benchmark precip-
itation dataset, by using a state-of-the-art spatial estimation method based on the double ge-
ographically weighted regression. These products are then compared from the perspectives 
of overall performance, temporal accuracy, spatial accuracy, and estimation performance for 
precipitations of different intensities, so as to evaluate their abilities in identifying and esti-
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mating daily precipitation in the BB. In addition, the positive and negative aspects of 
MSWEPs compared to satellite- and reanalysis-based precipitations are presented, especially 
in terms of spatial accuracy and its sensitivities to precipitation intensities. Finally, the pos-
sible causes for the differences of performances between MSWEPs and other data products 
are discussed, and suggestions for the improvement of the multi-source weighted-merging 
method are proposed. 

2  Study area and data 

2.1  Study area 

The HRB is located between the Yangtze River and the Yellow River, covering an area of 
approximately 2.7 × 105 km2. The majority of the HRB is vast plain, with the Tongbai 
Mountain and the Funiu Mountain in its northwest, the Dabie Mountain in its southwest, and 
the Yimeng Mountain in its northeast. The Bengbu hydrological station is the main control 
node in the middle reach of the Huaihe River. The study area covers the upper catchment of 
Bengbu Station over the HRB (Figure 1a). The area of the catchment (111.9°–117.5°E, 
30.9°–34.9°N) is about 1.17 × 105 km2, of which the mountains occupy only 15.4%. The 
southeastern part of the study region contains many lakes (Figure 1b). Importantly, rain 
gauge stations with a relatively long observation period are densely distributed in the area 
(Figure 1c). Thereby, plenty observations can be used to evaluate the performance of GPEs 
effectively and accurately. The annual mean precipitation in the BB is approximately 920 
mm, and it gradually decreases from south to north. Precipitation in the rainy season (June to 
September) accounts for 50%–75% of the total annual-precipitation (Zhang et al., 2020). 

2.2  Data 

2.2.1  Rain gauge observations 
Daily precipitation observations from 539 gauge stations (Figure 1c) during the period from 
2006 to 2015 are collected from the Annual Hydrological Report of the HRB. On average, 
the effective coverage of a rain gauge is 217 km2, and the density of gauges over the moun-
tainous region is reasonably high. 
2.2.2  GPEs 

MSWEP is a global high-resolution (0.1°×0.1°, 3 h) precipitation dataset encompassing the 
period from 1979 to 2021. MSWEP is produced by integrating three types of datasets using 
the weighted ensemble algorithm. The sources of datasets include four uncorrected satel-
lite-based precipitation products (TMPA 3B42RT, CMORPH, global satellite mapping of 
precipitation and gridded satellite (GridSat), Global Satellite Mapping of Precipitation 
(GSMaP)), two reanalysis-based precipitation products (ECMWF interim reanalysis and 
JRA-55), and the observations from over 75,000 rain gauges worldwide. MSWEP has been 
optimized and updated several times through the improvement of algorithm and data sources. 
The merging process of MSWEP consists of three main parts: the quality control and valida-
tion of source data, the weight calculation and integration of satellite- and reanalysis-based 
precipitation, and the correction of the merged data by comparison with gauge observations. 
The whole process is performed in 10 specific steps (refer to Beck et al. (2019b) for more 
details). The MSWEP V2.1 and V2.2 are selected to be evaluated in this study. Compared to  
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Figure 1  Geographical locations of (a) the Bengbu Basin, (b) lakes and (c) rain gauge stations 
 

MSWEP V2.1, V2.2 has the following updates. (1) The quality control of precipitation data 
retrieved from GridSat infrared images is included. The incorporated GridSat-based rainfall 
estimates have been expanded from 1980 rather than 1983. (2) The problem of intensity and 
trend amplification caused by the cumulative distribution function (CDF) is addressed. The 
operation of rescaling the merged CDF-corrected estimates has been added to match the 
merged non-CDF-corrected estimates. The MSWEP V2.1 and V2.2 from 2006 to 2015 are 
downloaded from www.gloh2o.org. 

The representative satellite-based precipitation products used in this study are TRMM 
3B42 V7 and CMORPH BLD. The former is retrieved by using a multi-satellite estimation 
algorithm that integrates infrared and microwave data from TRMM and other satellites. The 
estimates are rescaled by the monthly gauge observations (Huffman et al., 2007, 2010). The 
retrieval procedure of CMORPH RAW is that the movement vector of cloud systems is cal-
culated first based on the high-resolution infrared brightness temperature data observed by 
geostationary satellites. Then, the instantaneous precipitation distribution which is based on 
the passive microwave data from low-earth orbit satellites is extrapolated to the target time 
along the movement vector (Joyce et al., 2004). The probability density function matching is 
applied to CMORPH RAW to generate the CMORPH CRT product with less bias. The 
CMORPH BLD is obtained by using the optimal interpolation to merge CMORPH CRT with 
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gauge observations. TRMM 3B42 V7 and CMORPH BLD are both scientific products with 
a spatio-temporal resolution of 0.25°×0.25° and 3h. The reanalysis-based precipitation 
product selected in this study is the latest ERA5 which is based on the ECMWF integrated 
forecasting system (IFS) Cy41r2. ECMWF IFS employs a hybrid data assimilation system to 
get ten-member ensemble 4D-VAR data assimilation (Hersbach et al., 2020). The data are 
presented at 0.25°×0.25° grids and 1-hour intervals. The above three datasets in 2006–2015 
are used to compare the accuracy of two MSWEP precipitation estimations. 

3  Methodology 

The framework of the research method includes three parts (Figure 2). First, data processing 
is conducted to obtain benchmark data and five GPEs with harmonious spatio-temporal res-
olutions. Second, detectability and error indicators are employed to compare two MSWEP 
versions and other GPEs. Then, the strengths and weaknesses of MSWEP are identified and 
the possible causes are discussed. Finally, advices on the improvement of the multi-source 
precipitation information fusion algorithm are proposed based on the results. 
 

 
 

Figure 2  The framework of the research method 
 

3.1  Metrics of accuracy evaluation 

This study evaluates the performance of the five GPEs based on the dense rain gauge obser-
vations from 2006 to 2015 in the BB. All the 539 gauge observations are not integrated in 
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the GPEs. The evaluation of GPEs includes the overall performance, temporal accuracy, 
spatial accuracy, and estimation abilities under different precipitation intensities.  

Firstly, overall performance is evaluated by scatter plots and the spatial distribution maps 
of daily mean precipitation derived from gridded precipitation datasets. Secondly, temporal 
accuracy is calculated by comparing the time series of the five GPEs with that of benchmark 
at all grids. The evaluation indexes include categorical and quantitative metrics. The com-
monly used categorical indexes are the probability of detection (POD), false alarm ratio 
(FAR) and critical success index (CSI). These indexes can measure the capability of detect-
ing precipitation events, but they cannot well evaluate the accuracy of precipitation estima-
tion. Even if the values of these indexes are the same, the estimated precipitation may vary 
considerably. As a result, in this study, volumetric indexes proposed by AghaKouchak and 
Mehran (2013), namely the volumetric hit index (VHI, Equation [1]), volumetric false alarm 
ratio (VFAR, Equation [2]) and volumetric critical success index (VCSI, Equation [3]), are 
used to assess the performance of the products. The values of these indexes range between 0 
and 1. The larger VHI and VCSI, and the smaller VFAR indicate better performance. The 
quantitative metrics include mean error (ME, and it equals benchmark minus GPE), mean 
absolute error (MAE), standardized root-mean-square error (SRMSE) and correlation coef-
ficient (CC). The smaller ME, MAE and SRMSE, as well as the larger CC, indicate higher 
estimation accuracy of GPEs. Thirdly, spatial accuracy is evaluated by comparing the spatial 
pattern of GPEs with that of benchmark precipitation in corresponding grids in a specified 
period. The above-mentioned indexes could be used to evaluate spatial accuracy. While the 
similarity of local spatial patterns cannot be quantitatively analyzed using CC, because it 
does not consider the spatial correlation of precipitation. Furthermore, GPEs and gridded 
benchmark precipitation during a specified period can be treated as images. Then, the struc-
tural similarity index (Robertson et al., 2014) is used, which considers luminance, contrast 
and structure (S) of an image. It could provide the local differences of the mean, variance 
and correlation. In this study, only S is adopted as the evaluation index (Equation [4]) 
(Plouffe et al., 2015). As the S gets closer to 1, the spatial structures between the GPEs and 
benchmark become more similar. Finally, eight precipitation intensity intervals, separated by 
0.1, 1, 5, 10, 25, 50 and 100 mm/d, are considered. The correct identification ratios (CIR, 
Equation [5]) of the intervals are used to assess the identification capability of the GPEs for 
precipitation events with different intensities. The MAEs in each interval are calculated, 
which are written as MAEPIs (Equation [6]) in order to distinguish it from those of the spa-
tio-temporal accuracies. 
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For temporal accuracy, in Equations (1)–(3), GPEi and Gi are the precipitation of the GPE 
and benchmark at a certain grid in the period i, respectively, and N denotes the number of 
temporal periods. For spatial accuracy, in Equations (1)–(3), GPEi and Gi represent the pre-
cipitation of the GPE and benchmark at the grid i in a certain period, respectively, and N is 
the number of grids. In Equations (1)–(3), T is the threshold for binary classification of pre-
cipitation events, and T = 0.1 mm/d. In Equation (4), σGPE and σG denote the standard devia-
tions of the GPE and benchmark in the 3 × 3 sliding window at a certain period, respectively, 
and σGPE, G is the covariance of the GPE and benchmark. In order to stabilize the equation, c 
is a constant used when the variability of mean or variance is close to 0 (e.g., when there are 
large consistent patches) (Plouffe et al., 2015), and its calculation formula can be obtained 
from Robertson et al. (2014). In Equations (5) and (6), Tdown and Tup are the lower and upper 
boundaries of the precipitation intensity intervals, and ∀R+∪{0} denotes an arbitrary 
non-negative real number. 

3.2  Data processing 

3.2.1  Preparation of benchmark precipitation 

When discrete gauge observations are directly used to evaluate gridded precipitation prod-
ucts, the precipitation in the areas without gauges cannot be validated. Hence, it is of vital 
importance to prepare a reliable high-resolution gridded benchmark precipitation dataset. 
GWR (geographically weighted regression), a local multiple linear regression method, can 
efficiently utilize the spatial autocorrelation of the regression variable and its 
cross-correlations with explanatory factors (Brunsdon et al., 1998; Chao et al., 2018). As a 
result, GWR has an advantage in presenting non-stationary spatial variations. Short-duration 
precipitations, such as daily precipitation, are highly discontinuous. Based on the work by 
Barancourt et al. (1992), the double GWR (DGWR) is proposed. First, the precipitation 
probabilities at each grid are estimated by using GWR according to the binary classification 
results (rain/no-rain) of gauge observations. Then, the precipitation probability threshold is 
optimized by pursuing the highest CIR to identify the status (rain/no-rain) of each grid. Here, 
the CIR denotes the percentage of correct results in identifying rain/no-rain status of gauge 
stations. Next, according to the gauge observations, precipitation is estimated for each grid, 
and then the estimates and status of precipitation are multiplied to calculate the gridded 
benchmark precipitation. To validate the DGWR, k-means clustering is employed to ran-
domly divide the 539 gauge stations into four categories. The spatial distributions of the four 
categories of gauge networks for modeling and validation are illustrated in Figure 3. 
Cross-validation is used to evaluate the estimation accuracies (Table 1). DGWR accurately 
identifies the precipitation status of gauge observation, and the CIR of precipitation status at 
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the gauge stations used for validation is basically equivalent to the modeling gauge network. 
In addition, if the quantitative errors of the estimates are smaller, the average accuracies of 
different networks are closer to each other. In conclusion, DGWR can provide a reasonably 
generalization and a relatively high accuracy. The China Gauge-based Daily Precipitation 
Analysis (CGDPA), a gauge-based precipitation produced by the China Meteorological Ad-
ministration, is often employed as benchmark dataset. According to Shen and Xiong (2015), 
ME of the CGDPA is between 0.6 mm/d and 3.0 mm/d over the study region and the maxi-
mum value of CC is 0.557. Compared to the CGDPA, the benchmark gridded precipitation 
produced by utilizing GWR performs better. So it is a feasible method for the spatial estima-
tion of daily precipitation. To obtain more accurate benchmark precipitation, all gauge in-
formation including precipitation observation, latitudes, longitudes, and altitudes are em-
ployed to construct the reference dataset with a spatial resolution of 0.25°×0.25°. 
 

 
 

Figure 3  Spatial distributions of gauge station networks in the Bengbu Basin for the cross-validation of double 
geographically weighted regression (DGWR) 
 
Table 1  Accuracies of the DGWR-based precipitation estimates using four categories of gauge networks 

Gauge networks 
Modeling gauges Validation gauges 

CIR MAE (mm/d) SRMSE CC CIR MAE (mm/d) SRMSE CC 

Category I 0.87 1.1 1.36 0.85 0.84 1.6 1.77 0.76 

Category II 0.87 1.1 1.33 0.85 0.85 1.7 1.67 0.77 

Category III 0.87 1.1 1.35 0.85 0.85 1.6 1.61 0.78 

Category IV 0.87 1.1 1.35 0.86 0.85 1.7 1.65 0.77 

Note: The threshold value is set as 0.1 mm/d. 
 

3.2.2  Processing the GPEs 

Considering the spatio-temporal resolutions of the benchmark precipitation dataset and five 
GPEs, evaluation is carried out for 0.25°×0.25° grids at a daily scale. Thus, spatial aggrega-
tion and temporal accumulation are implemented for MSWEP to obtain daily precipitation at 
0.25°×0.25° grids during 2006–2015. The spatial resolutions of TRMM 3B42 V7, CMORPH 
BLD and ERA5 meet the requirements, and the daily precipitation datasets are generated by 
summing in the time dimension. 

4  Results and discussion 

4.1  Overall performance 

Figure 4 is the scatter plots of five GPEs versus the benchmark at 0.25°×0.25° grids. As can 
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be seen, the data points of MSWEP V2.2, V2.1, and CMORPH BLD are more concentrated. 
These three products demonstrate remarkably similar and high quantitative accuracies, with 
MAEs and CCs being 1.2 mm/d and 0.86, respectively. On the contrary, TRMM 3B42 V7 
and ERA5 are relatively scattered with larger errors. Figure 5 shows the spatial distributions 
of daily mean precipitation of the benchmark and five GPEs. All GPEs clearly depict spatial 
variation of daily precipitation in the BB, and indicate that precipitation gradually decreases 
from south to north. MSWEP V2.2 and V2.1 successfully present the low- and high-precipit- 

 

 
 

Figure 4  Scatter plots of daily precipitation of the five gridded precipitation estimates in the Bengbu Basin 
versus the benchmark dataset at 0.25°×0.25° grids 
 

 
 

Figure 5  Spatial distributions of daily mean precipitation of the benchmark dataset and the five gridded precip-
itation estimates in the Bengbu Basin from 2006 to 2015 
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ation areas in the north and south, respectively. However, the precipitation in the middle of 
the BB is underestimated in MSWEP V2.2 and V2.1, while other three GPEs overestimate 
the precipitation in the north. The spatio-temporal accuracies of GPEs are discussed in the 
following sections 4.2 and 4.3. 

4.2  Temporal accuracy 

Table 2 summarizes the mean values of the temporal accuracy indexes of the five GPEs over 
all 0.25°×0.25° grids. The performances of MSWEP V2.2 and V2.1 are basically the same, 
as both their VHIs are close to 1, VFARs are smaller than 0.1, and VCSIs are larger than 0.9. 
The results indicate that both V2.2 and V2.1 have great classification abilities. Furthermore, 
the CCs of the two products reach up to 0.87, which indicates that the temporal variations of 
precipitation revealed by both MSWEPs are reasonably comparable to those of the bench-
mark. The SRMSEs of MSWEPs are 1.79. Two satellite-based precipitation products show a 
little bit overestimation. It is interesting to note that the identification ability and quantitative 
accuracy of CMORPH BLD are comparable to those of MSWEPs. Although VHI, VFAR, 
and VCSI of the ERA5 are similar to those of the CMORPH BLD, the errors of ERA5 
products are significantly larger. The performance of TRMM 3B42 V7 is the worst. Overall, 
the results show that the five GPEs identify the precipitation events reasonably well. How-
ever, their quantitative errors cannot be neglected. Similar to the findings of the scatter plots, 
MSWEP V2.2 and V2.1 and CMORPH BLD have the highest temporal accuracies, followed 
by ERA5 and TRMM 3B42 V7. 

 
Table 2  Mean values of the temporal accuracy indexes of the five gridded precipitation estimates compared to 
the benchmark over the Bengbu Basin during 2006–2015 

Indexes MSWEP V2.2 MSWEP V2.1 TRMM 3B42 V7 CMORPH BLD ERA5 

VHI 0.99 0.98 0.91 1.00 0.99 

VFAR 0.07 0.06 0.12 0.07 0.09 

VCSI 0.92 0.92 0.81 0.93 0.91 

CC 0.87 0.87 0.72 0.87 0.75 

ME (mm/d) 0.0 –0.1 0.3 0.2 0.1 

MAE (mm/d) 1.2 1.2 2.0 1.2 1.6 

SRMSE 1.79 1.80 2.77 1.80 2.45 

 
Figure 6 shows the spatial variations of the temporal accuracy indexes of the five GPEs. 

Except for TRMM 3B42 V7, the other four GPEs yield highly spatially homogeneous VHIs, 
and slightly higher VFARs and VCSIs in the northwestern hilly areas than in the south. The 
spatial patterns of the classification indexes are mostly identical for MSWEP V2.2 and V2.1. 
Additionally, the VCSIs of CMORPH BLD in the south are higher than those of the 
MSWEPs. Owing to local topographical effects, the TRMM 3B42 V7 and CMORPH BLD 
produce higher VFARs, but considerably lower VCSIs at some grids in the Funiu Mountains 
and Tongbai Mountains. Furthermore, abnormal VFARs and VCSIs are produced at some 
isolated grids in the southeast of the BB (Figure 1b) where there are many large water bodies, 
such as Gaotang Lake, Wafu Lake and Chengdong Lake. The presence of these water bodies 
generate similar observation signals to trace precipitation when high-frequency microwaves 
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detect the inland water bodies, thereby causing significant false alarms (Tian and Pe-
ters-Lidard, 2007). The indexes illustrated in Figure 6 also reflect the quantitative estimation 
of the considered products. For all GPEs, MAE values increase from north to south, while 
SRMSE values increase from south to north because the precipitation gradually reduces 
northwards. The errors of TRMM 3B42 V7 and ERA5 are greater than other products. The 
CCs of CMORPH BLD in several grids in the southern region are higher than those of the 
MSWEPs. 

 

 
 

Figure 6  Spatial patterns of temporal accuracy indexes for the five gridded precipitation estimates in the Beng-
bu Basin compared to the benchmark at 0.25°×0.25° grids 
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Overall, the MSWEPs demonstrate a higher temporal accuracy and smaller spatial varia-
bility compared to the other GPEs. In other words, the performances of the MSWEPs in 
characterizing temporal variations of daily precipitation over the whole basin are reasonably 
stable because of the ensemble algorithm adopted. In the MSWEP algorithm, the weights of 
the four uncorrected satellite-based precipitation products and two reanalysis-based precipi-
tation products at each grid are calculated against the three-day average gauge-based precip-
itation. The precipitation of different products is then merged by different weights. Thus, the 
spatial differences of the temporal accuracies of these input datasets are considered. By 
maintaining the estimation performance of superior datasets in high-precision areas and ab-
sorbing the advantages of other data in low-precision areas, it is possible to improve the ac-
curacy of precipitation estimation over a bigger area. The weight assigned to the CMORPH 
dataset is significantly heavier than the other datasets (Beck et al., 2019). As a result, the 
MSWEPs and CMORPH have relatively consistent spatial patterns of temporal accuracy 
indexes. Abnormal indicators in the southeast where lakes are concentrated, disappear sig-
nificantly by merging the reanalysis-based precipitation. Moreover, the CMORPH BLD 
outperforms MSWEPs at some locations. The gauge network used by the MSWEPs and 
CMORPH BLD are different in terms of densities and locations, and this difference can in-
duce variations of temporal accuracies at some grids. VHIs of MSWEP V2.2 are slightly 
higher than those of V2.1, and this is probably due to the quality control of the GridSat in-
frared archive and the rescaling of the CDF-corrected merged precipitation. 

4.3  Spatial accuracy 

Table 3 summarizes the mean values of the spatial accuracy indexes for the five GPEs. 
MSWEP V2.2 demonstrates a greater improvement on spatial classification accuracy than on 
temporal accuracy compared to MSWEP V2.1. Based on the results of the VHI, VFAR and 
VCSI in Table 3, the CMORPH BLD outperforms MSWEP V2.2. The spatial VFAR of 
TRMM 3B42 V7 is smaller than that of ERA5, but the VHI and VCSI indicate a better per-
formance of ERA5 than TRMM 3B42 V7. The CMORPH BLD is the best product in terms 
of characterizing the spatial structure of daily precipitation in the BB, although its mean S is 
close to 0.5. The MSWEP V2.2 is weaker than V2.1 in depicting the spatial distribution of 
precipitation, and the ERA5 is inferior to TRMM 3B42 V7. Quantitative errors suggest that 
the satellite- and reanalysis-based products generally underestimate the daily precipitation, 
whereas MSWEPs slightly overestimate it. The MAEs of MSWEP V2.2 and CMORPH BLD  

 
Table 3  Mean values of the spatial accuracy metrics of the five gridded precipitation estimates compared to the 
benchmark dataset over the Bengbu Basin from 2006 to 2015 

Metrics MSWEP V2.2 MSWEP V2.1 TRMM 3B42 V7 CMORPH BLD ERA5 

VHI 0.93 0.87 0.77 0.96 0.94 

VFAR 0.18 0.15 0.18 0.16 0.21 

VCSI 0.79 0.75 0.66 0.82 0.76 

S 0.41 0.44 0.37 0.49 0.29 

ME (mm/d) –0.2 –0.3 0.3 0.3 0.1 

MAE (mm/d) 2.5 2.6 4.3 2.5 3.4 

SRMSE 2.62 2.50 6.54 2.84 2.90 
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are both 2.5 mm/d, which are slightly smaller than that of the MSWEP V2.1. In contrast, the 
mean SRMSE of MSWEP V2.1 is the smallest, followed by MSWEP V2.2 and CMORPH 
BLD. Notably, the quantitative error of TRMM 3B42 V7 is significantly greater than that of 
ERA5. 

The temporal variations of the spatial accuracy indexes are further analyzed. The tem-
poral continuity of some spatial indexes, such as POD, is affected by the spatio-temporal 
distribution of the daily precipitation. Since precipitation is highly random, spatial accuracy 
indexes show considerable temporal fluctuations. As a result, moving averages of the accu-
racy indicators are calculated by using a 30-day sliding window to extract their major char-
acteristics. Particularly, VCSI, S and MAE are selected (Figure 7). The abilities of GPEs to 
identify precipitation events present conspicuous seasonal variations. The GPE products are 
more capable during flood seasons with small differences. In dry seasons, the performance 
of MSWEP V2.2 is better than MSWEP V2.1 and CMORPH BLD. It is remarkable that 
ERA5 outperforms other products during specific periods. However, the VCSIs of TRMM 
3B42 V7 are exceptionally low (even close to 0) compared to that of others. It can be sum-
marized that the S values are low during rainy seasons, whereas they are high during dry 
seasons, and a contrasting pattern is observed in MAE values, which indicates that the  
 

 
 

Figure 7  Temporal variations of spatial accuracy indexes of the five gridded precipitation estimates in the 
Bengbu Basin versus the benchmark dataset 
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capabilities of characterizing precipitation structure and estimating precipitation are weaker 
during rainy seasons. The S values of MSWEP V2.2 are lower than those of MSWEP V2.1 
in most periods, and are only higher than those of ERA5 during the rainy season. Compared 
to other GPEs, the CMORPH BLD has the best capability of capturing spatial patterns of 
precipitation during the rainy season. The MAEs of MSWEP V2.2, MSWEP V2.1 and 
CMORPH BLD vary synchronously, and they are substantially smaller than those of the 
TRMM 3B42 V7 and ERA5. 

Table 3 shows the S values averaged over all periods, and their temporal variations are 
given in Figure 7. In fact, the averaged S values over all grids and temporal periods vary 
with grid points, as shown in Figure 8. The results indicate that MSWEP V2.2 and MSWEP 
V2.1 reasonably characterize the spatial distribution in the northwestern and southern BB. 
The S values of CMORPH BLD are generally larger than those of MSWEPs, and they are 
close to 0.6 in some grids in the southern region with large precipitation. The S values of 
TRMM 3B42 V7 are mainly between 0.3 and 0.4, except some greater values in the north-
western hilly areas. However, the ERA5 performs the worst in presenting the spatial struc-
ture of precipitation over the BB.  

Although MSWEPs have a low spatial quantitative error, they are still worse than the 
CMORPH BLD in terms of spatially identifying daily precipitation and describing the spa-
tial structure of precipitation over the BB. The reason is that the movement vectors of cloud 
systems and the spatial structure of precipitation are considered in the CMORPH BLD. In 
contrast, MSWEPs merge multi-source precipitation information at each grid independently. 
In this way, the spatial correlations of precipitation between neighboring grids are not in-
cluded in MSWEPs, which could naturally disturb local spatial patterns. Moreover, the ex-
treme events of the CDF-corrected merged precipitation are rescaled, so that the variation 
patterns are consistent with uncorrected merged data in the fusion scheme of MSWEP V2.2. 
 

 
 

Figure 8  Spatial variations of the structure indexes of the five gridded precipitation estimates in the Bengbu 
Basin versus the benchmark dataset at 0.25°×0.25° grids 
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Notably, the trend of precipitation in the rescaling process is obtained through simple linear 
regression, which may result in the decrease of the mean S of MSWEP V2.2 compared to 
that of V2.1 in the rainy season (Beck et al., 2019b). 

4.4  Estimation performances under different precipitation intensities 

Figure 9 provides the CIRs and MAEPIs of the five GPEs for daily precipitation events under 
different intensity conditions. All GPEs can identify the no-rain events considerably better 
than the rain events. When precipitation intensity is lower than 25 mm/d, the identification 
abilities of all GPEs are gradually strengthened as the precipitation intensity increases. 
However, when the precipitation intensity exceeds 25 mm/d, the CIR tends to decline. The 
MSWEP V2.2 is able to identify rain events more effectively than the MSWEP V2.1, but its 
performance is not as good as that of the CMORPH BLD. The CIR values of all GPEs, ex-
cept the ERA5, are approximately 0.2 for the precipitation events whose intensities are larg-
er than 100 mm/d. This indicates substantially low capacity of identifying extreme precipita-
tion. The CIR value of the TRMM 3B42 V7 is the largest among all products, which indi-
cates it has the greatest ability to identify extreme precipitation events with intensity larger 
than 100 mm/d. In terms of quantitative error, the MAEPIs of the five GPEs show a signifi-
cantly increasing trend with the precipitation intensity. When the precipitation intensity is 
lower than 50 mm/d, MSWEP V2.2, MSWEP V2.1 and CMORPH BLD show close MAEPIs. 
Beyond this threshold, the MAEPIs of MSWEP V2.2 and MSWEP V2.1 are greater than that 
of the CMORPH BLD. When precipitation intensity exceeds 100 mm/d, the MAEPIs of 
MSWEPs are larger than that of the TRMM 3B42 V7, while the MAEPI of the ERA5 is even 
larger than 70 mm/d. 
 

 
 

Figure 9  Correct identification ratios (CIRs) and mean absolute errors (MAEPIs) of the five gridded precipita-
tion estimates in the Bengbu Basin under different precipitation intensities 



LI Lingjie et al.: Spatio-temporal accuracy evaluation of MSWEP daily precipitation over the Huaihe River River, China 2287 

 

Considering that the precipitation in the BB gradually reduces northwards, the latitudinal 
variations of the CIRs of all GPEs for extreme daily precipitation events (≥100 mm/d) in 
each month are further investigated (Figure 10). Figure 10a shows that extreme precipitation 
events are concentrated in the south of the BB, and mainly occur from June to August. 
However, some of the extreme precipitation events in the north of the BB are missed in the 
MSWEPs. The distribution maps of the two versions are very similar. It is possibly because 
the ERA-interim data underestimates the extreme precipitation due to the influence of the 
model structure and its parameters. Then, when the ERA-interim data is merged into the 
MSWEP, extreme precipitation in the north of the BB is overlooked (Beck et al., 2019b). 
Although missing and false phenomena also occur in the TRMM 3B42 V7, the spa-
tio-temporal distribution of the CIR for extreme events of TRMM 3B42 V7 is reasonably 
consistent with that of the benchmark. Numerous missed precipitation events are also ob-
served in the south of BB for the CMORPH BLD, but it is still better than the ERA5 on 
capturing extreme precipitation.  

 

 
 

Figure 10  Latitudinal variations of the CIRs of all the gridded precipitation estimates for extreme precipitation 
events (≥100 mm/d) in all months over the Bengbu Basin from 2016 to 2015 
in estimating precipitation with different intensities. 

 
Overall, MSWEPs and the CMORPH BLD outperform the other GPEs in identifying pre-

cipitation events with intensities <100 mm/d. While for the precipitation intensity ≥100 
mm/d, the comprehensive performance of TRMM 3B42 V7 is the best. At present, in the 
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process of calculating the weights of satellite- and reanalysis-based precipitation data, the 
fusion algorithm of MSWEP does not consider the different abilities of various data sources 

5  Conclusions 

This study comprehensively compared the performances of MSWEPs (V2.1 and V2.2), rep-
resentative satellite-based (TRMM 3B42 V7 and CMORPH BLD) and reanalysis-based 
(ERA5) precipitation products with respect to the daily precipitation in the BB. The ad-
vantages and disadvantages of MSWEPs were examined, and the probable causes were dis-
cussed. The main conclusions are as follows: 

(1) Except the TRMM 3B42 V7, the mean VHI, VFAR and VCSI of other GPEs are all 
close to perfect values. The MAE of MSWEP V2.2, MSWEP V2.1 and CMORPH BLD are 
similar, and their accuracies are higher than those of the ERA5 and TRMM 3B42 V7. For 
the MSWEPs, the weighted ensemble algorithm is employed to merge the merits of multiple 
satellite and reanalysis datasets in various locations. As a result, the spatial heterogeneity of 
the temporal indicators decreases significantly. Hence, the MSWEPs have better temporal 
performances than other GPEs over the BB. 

(2) For spatial accuracy, the CMORPH BLD has better overall classification results than 
the MSWEPs. Furthermore, it reproduces a better spatial pattern of daily precipitation, par-
ticularly in the south of the BB. However, it has a larger value of mean SRMSE than that of 
MSWEPs. The spatial accuracy indexes exhibit remarkable seasonal variations. The precip-
itation identification is more effective in rainy season than that in dry season in all GPE 
products. However, the capture of spatial patterns of precipitation and quantitative accura-
cies are better in dry seasons than in rainy seasons. The spatial structure of daily precipita-
tion in rainy seasons estimated by MSWEP V2.2 is quite different to that of the benchmark 
dataset. The S value of MSWEP V2.2 is only higher than that of the ERA5, because it 
merges precipitation data from various sources at different weights grid-by-grid inde-
pendently which results in disturbance to the spatial structures of the source data. Hence, 
considering local spatial self-correlation of precipitation is beneficial for optimizing the en-
semble algorithm. 

(3) The optimal GPE vary with precipitation intensity. Neither the MSWEPs nor the 
CMORPH BLD is always preferable. When the precipitation intensity exceeds 100 mm/d, 
the TRMM 3B42 V7 provides the best estimation. Based on the accuracies of source da-
tasets under different precipitation intensity conditions, weights should be adjusted accord-
ingly to further improve the precipitation estimation of the MSWEPs. 

Overall, compared to satellite- and reanalysis-based precipitation products, the MSWEPs 
provide the best temporally-accurate estimates with excellent spatial homogeneity in the BB. 
However, there are still space of improvement for MSWEP in characterizing the precipita-
tion spatial structure and estimating extreme precipitation. With regarding to these two as-
pects, this research provides meaningful suggestions to optimize the fusion algorithm. These 
suggestions are also important references for the innovation of multi-source precipitation 
integration methods. 
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