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Abstract: Alluvial fans are an important land resource in the Qinghai-Tibet Plateau with the 
expansion of human activities. However, the factors of alluvial fan development are poorly 
understood. According to our previous investigation and research, approximately 826 alluvial 
fans exist in the Lhasa River Basin (LRB). The main purpose of this work is to identify the 
main influencing factors by using machine learning. A development index (Di) of alluvial fan 
was created by combining its area, perimeter, height and gradient. The 72% of data, in-
cluding Di, 11 types of environmental parameters of the matching catchment of alluvial fan 
and 10 commonly used machine learning algorithms were used to train and build models. 
The 18% of data were used to validate models. The remaining 10% of data were used to test 
the model accuracy. The feature importance of the model was used to illustrate the signifi-
cance of the 11 types of environmental parameters to Di. The primary modelling results 
showed that the accuracy of the ensemble models, including Gradient Boost Decision Tree, 
Random Forest and XGBoost, are not less than 0.5 (R2). The accuracy of the Gradient Boost 
Decision Tree and XGBoost improved after grid research, and their R2 values are 0.782 and 
0.870, respectively. The XGBoost was selected as the final model due to its optimal accuracy 
and generalisation ability at the sites closest to the LRB. Morphology parameters are the 
main factors in alluvial fan development, with a cumulative value of relative feature im-
portance of 74.60% in XGBoost. The final model will have better accuracy and generalisation 
ability after adding training samples in other regions. 
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1  Introduction 

Alluvial fan is a cone-shaped sedimentary geomorphology that restores the deposition from 
catchment (White et al., 1996; Hartley et al., 2010). Alluvial fans can grow in a variety of 
terrestrial settings, such as alpine, periglacial, humid tropical and humid mid-latitude set-
tings (Dorn, 1994). Moreover, alluvial fans can provide substantial historical data about tec-
tonic, environmental and climate change for a basin or region (White et al., 1996; Sil et al., 
2016). In some mountainous areas, alluvial fans have become an excellent producing and 
living space for local residents (Ma et al., 2004; Mazzorana et al., 2020). Some large-scale 
alluvial fans are even developed to towns or cities (Santangelo et al., 2012; Maghsoudi et al., 
2014; Chen et al., 2017). Accordingly, numerous scholars have concentrated on alluvial fan 
since its concept was proposed (Drew, 1873). Research mainly includes the morphology 
(Sorrisovalvo et al., 1998), deposition process (Sweeney and Loope, 2001) and main influ-
encing factors (Calvache et al., 1997; Harvey et al., 1999) of the alluvial fan. Alluvial fan 
development and evolution are influenced by a variety of factors (Goswami et al., 2009), 
including tectonic, climatic and catchment characteristics (relief, geology, drainage basin 
area, etc.). Tectonic activity is a fundamental requirement for alluvial fan development be-
cause it affects the size and morphology of alluvial fans by controlling the accommodation 
space (Viseras et al., 2003; Ventra and Clarke, 2018). Climate is a significant factor for 
fan-forming processes (White et al., 1996), and it affects the geomorphic activity of alluvial 
fans by altering the instability and intensity of runoff and flood (Harvey et al., 1999). The 
intensity and frequency of rainfall events are particularly important for alluvial fan devel-
opment. The debris-flow activities are active with dramatical tensive rains and high rates of 
sediment, and flood-flow activities are active with high tensive rains; these activities ensue 
the procedure of sediment in the broad area where alluvial fans are commonly sculptured 
since Quaternary (Harvey et al., 1999). Meanwhile, the dry–wet cycle in history also affects 
the development of alluvial fans. The size is greater in the humid times than arid times in the 
historical period in central Europe (Meinsen et al., 2014). Catchment characteristics also 
influence the morphology of alluvial fans (Goswami et al., 2009; Ventra and Clarke, 2018). 
These characteristics, mainly including area, gradient, bedrock and vegetation, have re-
ceived great attention in recent years (Harvey et al., 1999; Blair, 2002; Stock et al., 2008; 
Birch et al., 2016; Stokes and Gomes, 2020). Alluvial fans with a small size (typically, their 
radii are less than a few kilometres) and higher gradient are frequently associated with re-
stricted matching catchments that are poorly integrated and small. By contrast, alluvial fans 
with a large size (the radii reached several tens up to a few hundred kilometres) and lower 
gradient are associated with well-integrated and extensive catchments (Ventra and Clarke, 
2018). The alluvial fan area is usually large when the erosion resistance of catchment is low 
(Bull, 1962). Catchment resistance to erosion depends on the bedrock lithology characteris-
tics. The catchment dominated with lithology of greater erodibility, such as mudrock, gyp-
sum and marl limestone, yields a greater amount of weathering materials that can be carried 
to alluvial fan (Nichols and Thompson, 2010). The vegetation continuity also changes the 
shape of alluvial fans. The continuous cover of vegetation can be a barrier to the generation 
of rapid runoff and high-sediment flow. The catchment has a more discontinuous vegetation 
cover, making intensive runoff and debris-flow activities easier to create. The surface of al-
luvial fan is easily damaged or changed in this case due to rapid runoff (Harvey et al., 1999). 
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Accordingly, several factors affect alluvial fan development and evolution, and they may 
influence it in a comprehensive manner or be dominated by one of them (Ventra and Clarke, 
2018). The main influencing factors of an alluvial fan can be isolated where a contrast exists 
between one component and another, although such as case is rare in nature (Nichols and 
Thompson, 2010). Thus, researchers will have difficulty in confirming the major or control-
ling influencing factors on alluvial fan development.  

Exploring the relationship between alluvial fans and their matching catchments is a good 
method to understand the mechanisms and qualify the main influencing factors of alluvial 
fan development (Nichols and Thompson, 2010; Ventra and Clarke, 2018). The composed 
materials of alluvial fans are the sediments delivered from the catchment by runoff, and the 
material characteristics, such as amount, distribution and deposition, can reflect the envi-
ronmental change of catchment (Sorrisovalvo et al., 1998; Crosta and Frattini, 2004; Harvey, 
2012). Accordingly, the relationship (including the sedimentation, morphology, geology and 
so on) between the alluvial fan and the catchment has received great attention in recent years, 
especially morphology, given the convenience of obtaining parameters (Crosta and Frattini, 
2004; Stokes and Gomes, 2020). Moreover, the morphology relationship can show a linkage 
between the morphological characteristics and the processes that shape them (Stokes and 
Mather, 2015). On the one hand, alluvial fan morphology is the direct consequence of 
catchment sedimentation, which can reflect their catchment morphology (Ventra and Clarke, 
2018). On the other hand, catchment morphology is verified to be the main influencing fac-
tor in alluvial fan development compared with other factors when empirical relationship 
models show a high correlation (Crosta and Frattini, 2004). However, the catchment mor-
phology may be inferred to other factors, such as tectonic, climate and rock strength of 
catchment, when inferior correlations exist (Stokes and Mather, 2015; Stokes and Gomes, 
2020). Several empirical relationship models of the morphological properties between allu-
vial fans (area and gradient) and catchments (area, relief, length and gradient) have been 
quantified in the volcanic island chain in the east-central Atlantic Ocean, indicating that 
catchment is a factor for alluvial fan development. However, the relationship of the models 
is inferior, and other more essential factors in this terrestrial environment must be taken into 
account to specifically link with volcano structure (Stokes and Gomes, 2020). Therefore, the 
morphology–catchment relationship is a significant way for determining the main influenc-
ing factors in alluvial fan development. The other affecting factors for alluvial fan, such as 
rock strength, hydrological condition and vegetation, are rarely considered in those rela-
tionships between alluvial fan and catchment even though they are significant for alluvial 
fan development and morphology. Those morphology–catchment relationships may be ex-
pressed as a power function of empirical models based on regression analyses, one or more 
of which is chosen to illustrate the main influencing factors of alluvial fan development 
(Harvey, 2002; Stokes and Gomes, 2020; Stokes and Mather, 2015). Although those rela-
tionships are useful in determining the main influencing factors in alluvial fan development, 
the optional regression model is an empirical selecting result from a series of regression 
models qualified by linear regression, polynomial regression, logistic regression and other 
methods. The selection standard is to choose an optional solution after contrasting the cor-
relation exponents of regression models. However, some regression models may be over-
looked because they are not well-known, although they really exist. Regression models 
based on machine learning are potential solutions to address the issue. 
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Machine learning techniques can help in finding the optimal solution for solving a com-
plex problem for which no good solution can be found using a traditional approach (Géron, 
2019). Machine learning has been used for modelling in many fields, including flood risk 
assessment (Alipour et al., 2020), debris flow forecast (Kern et al., 2017) and landslide sus-
ceptibility assessment (Marjanovi et al., 2011). The modelling processes of those studies are 
similar. Firstly, the independent factor data are proportionally classified into three parts. The 
first part is used to train different regression models. The second part is used to validate the 
models. The last part is used to test the models. The final model is qualified by the testing 
results, and some important main influencing factors for independent parameters are con-
firmed in the modelling process. The process of identifying the main influencing factors in 
alluvial fan development is also similar to those aforementioned processes, but few studies 
focused on it. Moreover, alluvial fan research is more common in arid, semi-arid or humid 
environments (Blair, 2002; Crosta and Frattini, 2004; Stokes and Mather, 2015; Stokes and 
Gomes, 2020), but it is seldom conducted in cold-alpine environments. Therefore, the objec-
tives of this work as follows: 1) propose a regression model in the Lhasa River Basin (LRB) 
of Qinghai-Tibet Plateau (QTP) based on machine learning algorithms, according to the en-
vironmental parameters (morphology, material and hydrology of catchment) and alluvial fan 
development parameters; 2) analyse the application ability in other regions based on the 
generalisation ability testing of the model in other three basins in the QTP; and 3) qualify 
the main influencing factors in alluvial fan development based on the feature importance of 
final model. This work will provide a scientific basis for understanding the alluvial fan de-
velopment in cold and high-altitude regions. 

2  Data and methodology 

2.1  Study area 

The LRB is located in the south of Tibetan Plateau, southwest of China (Figure 1). The alti-
tude range is wide, varying from 3523 m to 7067 m, because the topography is dominated by 
alpines and valleys (Zhang et al., 2010). The area is influenced by plateau semi-arid mon-
soon, with an average temperature from −1.7℃ to 9.7℃ and annual rainfall from 340 mm 
to 600 mm. The rainy season runs from June to September (Zhang et al., 2010; Wei et al., 
2012). The vegetations are characterised by alpine steppe, alpine shrubs and meadows, 
cushion vegetation and so on (Lin et al., 2008). Some typical plants, including Populus 
szechuanica, Caragana sinica, Hordeum vulgare, Pisum sativum, Agropyron cristatum and 
Gnaphalium affine, can be found in the region (Lin et al., 2021). The seven soil types of this 
region are as follows: alluvial soil, meadow soil, subalpine meadow soil, alpine meadow soil, 
subalpine steppe soil, alpine steppe soil and alpine frozen soil (Wei et al., 2012).  

Alluvial fan is one of the fundamental landforms in the LRB, and it has been demonstrat-
ed to be an important land resource with huge utilisation potential (Zhao, 2020; Chen et al., 
2022). The alluvial fans and matching catchments were interpreted one by one based on 
Google Earth (Figure 2). The three visible judging characteristics to ascertain alluvial fan in 
the LRB are as follows (Chen et al., 2020): 1) fan-shaped landform, 2) braided flow chan-
nels and 3) inconsistent flow (Figure 3, Chen et al., 2021). The position, amount, area and 
distribution of all alluvial fans were then obtained and entered into ArcGIS. Finally, ap-
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proximately 826 alluvial fans were determined in the research area, with a total area of 
1166.03 km2. The quantity of alluvial fans is concentrated in the east of LRB, but they are 
mainly distributed in the west (Chen et al., 2021). 

 

 

Figure 1  Location of the Lhasa River Basin (LRB) 
 

 

Figure 2  Distribution of alluvial fans in the Lhasa River Basin 
 

2.2  Methods 

The alluvial fans had been visually interpreted based on Google Earth in a previous study. 
The 826 matching catchments with alluvial fans were obtained in the same way, using field 
checks for boundaries of some typical catchments, as shown in Figure 2. A typical alluvial 
fan and its matching catchment located in RLB are shown in Figure 3. 

In this study, 826 alluvial fans are matched with 826 catchments. The process of building 
models consisted of a variety of steps, including establishing a development index (Di), ob-
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taining independent parameters, different regression model operations, model evaluation and 
model generalisation ability test (Figure 4). 

 

 
 

Figure 3  Typical alluvial fan and its matching catchment in the Lhasa River Basin 
 

 

Figure 4  Flow chart of modelling 
 

2.2.1  Alluvial fan developmental index establishment 

Alluvial fan is a cone-shaped geomorphology, which develops when sediment from catch-
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ment is covered and eroded by external forces, such as runoff, wind and human activities. 
The development includes two directions under those two opposite functions, including 
‘positive’ and ‘negative’ directions. The positive direction is when an alluvial fan develops 
into a steadier state with larger area or (and) lower elevation (Figure 5a to 5b, 5c or 5d; Fig-
ure 5b or 5c to 5d). The negative direction is the opposite of positive direction (Figure 5d to 
5a, 5b, or 5c; Figure 5b or 5c to 5a). The perimeter and slope gradient of alluvial fan should 
be coordinated with area and height in the developmental process, and they are replenished 
information for alluvial fan development states. The common parameters in alluvial fan de-
velopment are all about morphology, for example, alluvial fan area (Fa), alluvial fan perim-
eter (Fp), alluvial fan average gradient (Fg) and alluvial fan height (Fh) (Sorrisovalvo et al., 
1998; Stokes and Gomes, 2020). Those four dependent parameters are shown in Table 1. 
Parameters Fa, Fp, Fg and Fh were calculated in ArcGIS using Calculate Geometry, Slop 
and Regional Statistical Analysis functions based on DEM (ALOS). The DEM (ALOS) data 
with 12.5 m of resolution were obtained from NASA EARTHDATA, and they were project-
ed in geographic-WGS84 coordinates. The aforementioned parameters were used to create a 
developmental index of alluvial fan. 
 

 

Figure 5  Conceptional map of the developmental state of alluvial fan. Height 1 is more than Height 2, and Area 
1 is less than Area 2; The state of a is unsteady. The alluvial fan is easily eroded by external forces because the 
area is small, and the height is long. The state of d is the steadiest one amongst a, b and c due to the large area and 
long height. 

 
Table 1  Brief information of the four dependent parameters 

No. Alluvial fan parameter Abbreviation Unit Range 

1 Area Fa km2 0.05–82.99 

2 Perimeter Fp km 0.95–50.59 

3 Average gradient Fg ° 2.32–23.34 

4 Height Fh m 19–570 

 
A development index (Di) was suggested based on the above data. The height of an allu-

vial fan is short, and the area and Di are large. The slope gradient and perimeter are supple-
mentary indicators for alluvial fan development, considering the need for more information. 
Consequentially, four indicators (dependent parameters) are selected to develop Di. Based 
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on the success of soil quality index (SQI) (Doran and Parkin, 1994; Li et al., 2013; Guo et 
al., 2017), Di was obtained using the following equation: 

 
1
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where Di is the development index of alluvial fans that ranges between zero and one, Wxi is 
the assigned weight of each indicator, fxi is the indicator score, and i is the number of indi-
cators from one to four, including Fa, Fp, Fg and Fh. 

Wxi was calculated by Entropy Weight Method (EWM), which is an objective weighting 
method. EWM uses the information entropy to qualify the entropy weight of index, based on 
the variation degree of each index (Gao et al., 2018). Fxi was calculated and normalised by 
standard scoring function (SSF) (Guo et al., 2017), which can avoid variation of the differ-
ent indicator units. In our study, two types of SSF equations, S and reverse S, were chosen to 
standardise the alluvial fan development indicators. The area and perimeter were standard-
ised by S equation, according to Figure 5. The height and slope gradient were standardised 
by reverse S equation. The two equations can be described as follows: 
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where f(x) is the score of the indicator that ranges between 0.1 and 1; x is the value of the 
indicator; and xmin and xmax are the minimum and maximum values of the indicators, respec-
tively. 

2.2.2  Independent parameter obtainment 

The morphology, lithology, vegetation, rainfall, glacier and snow of the matching catchment 
are selected as independent parameters, according to existing research. The morphology of 
catchment determines the energy conditions of runoff. Lithology and vegetation are the fac-
tors that affect the material amount from matching catchment (Harvey et al., 1999; Nichols 
and Thompson, 2010). Rainfall, glacier and snow determine the characteristics of runoff, 
which are directly provide energy for alluvial fan development.  

Eleven parameters related to morphology were selected (Table 2, 1–11). Examples of the 
parameters are catchment area (CA), catchment perimeter (CP), catchment slope gradient 
(CSG), catchment slope aspect (CSA), catchment relief (CR), catchment relief ratio (CRR), 
catchment drainage density (CDD) and catchment shape coefficient (CSC). CSA indirectly 
affects the weathering material amount by influencing solar radiation. The slope could be 
divided into four classes (Huang et al., 2015), including sunny slope (157.5°–247.5°), 
half-sunny slope (112.5°–157.5°, 247.5°–292.5°), shady slope (0°–67.5°, 337.5°–360°) and 
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half-shady slope (67.5°–112.5°, 292.5°–337.5°), according to the aspect angle. The percent-
age between the area of a class and the total area of a catchment is regarded as an independ-
ent parameter to illustrate the function of an aspect on alluvial fan development in a more 
detailed way. The other parameters include sunny slope percentage (CSA1), half-sunny 
slope percentage (CSA2), shady slope percentage (CSA3) and half-shady slope percentage 
(CSA4). CR is the elevation difference between the top and the outlet of a catchment (Zhou 
et al., 2016). CRR is the ratio between CR and horizontal distance of the main stream, which 
indicates the overall steepness of catchment. CDD is the ratio between total drainage length 
and CA. CSC is an important factor for runoff velocity of a catchment, and it is defined as 
the ratio of an actual catchment perimeter to a circular catchment perimeter of the same area. 
The larger the CSC, the more circular the catchment is. The relationships can be expressed 
Eq. (4) as follows: 
 CSC = Pt/Pc = Pt/(4πA)1/2, (4) 
where CSC is the shape coefficient of a catchment, Pt is the true perimeter of a catchment 
(km), Pc is the parameter of a circle catchment with the same area of true catchment (km), 
and A is the area of catchment (km2). 

The 11 parameters were achieved using the DEM (ALOS) and calculated by the tools of 
ArcGIS, including the Calculate Geometry, Slope, Aspect, Spatial Analyst and Regional Sta-
tistical Analysis.  

The two factors of material for alluvial fan development are lithology and vegetation (Ta-
ble 2, 12 and 13). The data related to lithology and vegetation cannot be quantified in terms 
of catchment. The study was confined to lithology and vegetation because of this issue. The 
solution was as follows. The lithology data were obtained by vectorisation of the geological 
map of 1:250,000 scale (Figure 6). The lithology in this area is intricate. Many exposures 
from the Ordovician and Carboniferous to the Neogene and Quaternary can be observed, 
with the exception of Jurassic and Cretaceous strata (Figure 6). The lithology data in a 
catchment was classified as very soft (Quaternary loose material), soft (Paleozoic stratified 
intermediate and acid intrusive rocks, clastic rocks), medium (Cenozoic stratified schistose 
intrusive rocks, clastic rocks), hard (Cenozoic and Mesozoic stratified intermediate-acid and 
acid intrusive rocks) and very hard (Cenozoic and Mesozoic stratified basic and intermediate 
intrusive rocks) according to the hardness of the rock (Zhao et al., 2020). Meanwhile, five 
degrades (1–5) were assigned in ArcGIS (Figure 7). Then, Regional Statistical Analysis of 
ArcGIS was used to obtain the average rock hardness (RHa) of every catchment unit. The 
RHa was regarded as an independent parameter. In this study, the mean annual NDVI was 
used to represent vegetation. The NDVI (2000–2018) with a 250 m resolution was obtained 
from the National Qinghai–Tibet Plateau Data Center (Du, 2019). This parameter cannot be 
assigned a value in a catchment. The processing of NDVI data was similar to that of lithol-
ogy data. The NDVI was classified into low (0–0.2), middle-low (0.2–0.4), middle (0.4–0.6), 
middle-high (0.6–0.8) and high (0.8–1) in ArcGIS. Then, five degrades (1–5) were assigned. 
Finally, the average NDVI of every catchment unit (VIa) was calculated using the same li-
thology data processing method. 

The two hydrologic factors for alluvial fan development are rainfall and glacier and snow. 
The alluvial fan is a sedimentary landform that has been affected by runoff over many years.  
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Figure 6  Geological map of the Lhasa River Basin 
 

 

Figure 7  Distribution of rock hardness in the Lhasa River Basin 
 

The main source of the runoff is from the confluence of rainfall and melting of glacier and 
snow. Accordingly, the average annual rainfall (Ra) and average annual cover of glacier and 
snow (GSa) (Table 2, 14 and 15) were selected. The annual rainfall data (1990–2015) with 1 
km resolution was obtained from the National Qinghai–Tibet Plateau Data Center. The glac-
ier and snow cover data (2000, 2010 and 2020) with a 30 m resolution was obtained from 
GlobeLand30 (http://www.globallandcover.com/home_en.html?type=data). The Ra and GSa 
of catchment unit were calculated in ArcGIS using Calculate Geometry and Regional Statis-
tical Analysis. 

http://www.globallandcover.com/home_en.html?type=data
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Table 2  Brief of the 15 matching catchment independent parameters of alluvial fans 

No. Name of parameter Abbreviation Unit Range 

1 Catchment area CA km² 0.16–490.77 

2 Catchment perimeter CP km 1.51–125.78 

3 Catchment average slope gradient CSGa ° 4.91–36.34 

4 Sunny slope percentage CSA1 % 0–100 

5 Half-sunny slope percentage CSA2 % 0–100 

6 Shady slope percentage CSA3 % 0–100 

7 Half-shady slope percentage CSA4 % 0–100 

8 Catchment relief CR m 80–2283 

9 Catchment relief ratio CRR m/m 0.35–1 

10 Catchment drainage density CDD km/km2 2.61–10.65 

11 Catchment shape coefficient CSC / 1.08–2.49 

12 Catchment average rock hardness RHa / 1–5 

13 Catchment average NDVI VIa / 0.14–0.80 

14 Average annual rainfall Ra mm 409–759 

15 Average annual glacier and snow cover GSa km2 0–0.01 
 

2.2.3  Parameter assignment and preprocessing 

A database for the 826 catchment and alluvial fan had been built, with 15 independent pa-
rameters and four dependent parameters. The 826 data were randomly divided into three 
parts in the proportions of 72%, 18% and 10% in accordance with previous studies (Bengio 
et al., 2016), including 595 training samples, 149 validating samples and 82 testing samples. 
Then, the 826 data were subjected to min–max standardisation. 

Detecting parameters with high correlation and multicollinearity is an important step to 
parameter preprocessing (Heiser et al., 2015). According to the proposal of previous re-
search (Dormann et al., 2013), removing the parameters with correlation coefficient greater 
than 0.7 will effectively overcome the multicollinearity of the models. Therefore, the CP, CR, 
CSA3 and CSA4 were removed according to the correlation matrix of the independent pa-
rameters (Table 3), thereby ensuring that the models will not have the problems of high cor-
relation and multicollinearity. Finally, the remaining 11 parameters were used in the model-
ling. 

2.2.4  Running different machine learning algorithms 

The machine learning algorithms of regression used in this study were run on python, ena-
bling us to develop predictive models using successful library packages. The 10 packages 
with different characteristics were used to create a model, and they were obtained from 
https://www.anaconda.com/. The mechanisms were classified two types of algorithms. The 
first type includes simple machine learning algorithms, including Bayesian Ridge, Linear 
Regression, ARD Regression, Decision Tree and Support vector machine. The decision 
boundary of these algorithms is relatively simple. The second type includes ensemble learn-
ing algorithms, such as Gradient Boost Decision Tree, Random Forest, Adaboost, EXtree 
and XGBoost. The decision boundary of these algorithms is more detailed. Accordingly, the 
generalisation ability is better. 

 

https://www.anaconda.com/
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Table 3  Correlation analyses between Di and independent parameters 

Di CA CP CSGa CSA1 CSA2 CSA3 CSA4 CR CRR CDD CSC Rha VIa Ra GSa 

1.000 0.580** 0.641** 0.057 0.097** –0.004 0.028 –0.003 0.190** 0.198** –0.076* 0.527** –0.249** –0.256** –0.208** 0.126** 

 1.000 0.979** 0.026 0.088* 0.030 0.052 0.024 0.729** –0.117** 0.149** 0.296** –0.127** –0.159** –0.126** 0.236** 

  1.000 0.033 0.093** 0.024 0.051 0.020 0.686** –0.080* 0.106** 0.468** –0.144** –0.191** –0.160** 0.189** 

   1.000 0.051 –0.007 –0.049 –0.009 0.065 0.017 0.027 0.067 –0.025 0.048 –0.136** –0.013 

    1.000 0.541** –0.866** –0.803** 0.033 0.046 –0.022 0.056 –0.425** –0.131** –0.100** 0.024 

     1.000 –0.743** –0.427** 0.025 0.022 –0.047 –0.028 –0.267** –0.173** 0.005 0.032 

      1.000 0.578** 0.033 –0.046 –0.025 0.018 0.377** 0.108** 0.031 –0.003 

       1.000 0.024 –0.042 0.034 0.005 0.362** 0.104** 0.102** 0.008 

        1.000 –0.481** 0.351** 0.095** –0.073* –0.047 –0.086* 0.121** 

         1.000 0.129** 0.123** –0.011 –0.026 –0.061 –0.031 

          1.000 –0.121** 0.084* 0.108** –0.028 0.040 

           1.000 –0.146** –0.193** –0.221** –0.130** 

            1.000 0.267** 0.146** –0.140** 

             1.000 0.074* –0.343** 

              1.000 0.119** 

               1.000 

Note: * is a significant correlation at the 0.05 level, ** is a significant correlation at the 0.01 level. The bold fonts 
represent the value of correlations greater than 0.7. A Spearman correlation analysis was conducted via SPSS 19.0 (SPSS 
Inc. Chicago, USA) 

 

2.3  Testing the accuracy of different machine learning models 

The regression algorithms used in the study were separately run on Python. The training 
samples were inputted into each algorithm one by one to create a series of algorithms using 
the automatic regressors. Subsequently, a series of primary machine learning model was 
produced. Thereafter, the regression models were tested. The optimal models were selected 
in 11 regression algorithms according to the coefficient of determination (R2). The closer the 
value of R2 is to one, the closer the predicted value of the models is to the true value. There-
fore, the accuracy and performance of regression models is better when R2 is higher. The 
equation of R2 is expressed as follows: 
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where R2 is the coefficient of determination, SSres is the sum of squares of residuals, SStot is 
the total sum of squares, yi is the true Di calculated by equation (1), fi is the Di estimated by 
models, and y  is the mean of yi. 

2.4  Optimising different machine learning models 

Validating data and grid search were used to optimise different machine learning models. 
The validating data were inputted into the primary models. Meanwhile, the grid search is 
used to adjust the parameters of the models, which can be achieved by calling Mod-
el_select.GridSearchCV in Scikit-learn (Pedregosa et al., 2011). The method can optimise 
models using optimal parameters. Grid search uses the exhaustive search method; thus, it 
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consumes a substantial amount of computer processing time. Under the initial conditions, 
any parameter adopts the default parameters, and the performance of the initial model is 
checked by fitting data. The parameters are coarsely adjusted first and then finely modified 
to continuously narrow the search range and select some models as alternative models with 
good performance from a group of more than 10 models. For example, the learning rate of 
model parameters, the maximum depth of tree, the maximum value of leaves and other pa-
rameters are adjusted in the EXtree model, and the optimal value of each parameter is de-
termined by gridding search, resulting in the best performance (R2).  

2.5  Testing the generalisation ability of the alternative models 

The generalisation ability of the model is not only an important aspect to test whether it can 
be widely applied but also an important reference to evaluating whether it can be regarded as 
an excellent model. The better the generalisation ability of the model, the easier it is to be 
popularised and applied. The models with a relatively high R2 are selected as the alternative 
models of the final model according to the modeling results of 2.4 after being optimised. 
Then, the final model is determined by the testing results of the generalisation ability of the 
alternative models. 

Three other basins, except the LRB in the Qinghai-Tibet Plateau, were selected, including 
the Danupu, Niyangqu and Bayin River Basins (Figure 8), and 10 alluvial fans were ran-
domly selected in each basin. The distances between the LRB and Danupu, Niyangqu and 
Bayin River Basins are 195.91, 310.42 and 1016.72 km, respectively (Figure 8). The data of 
the 10 alluvial fans and matching catchments are obtained according to the steps in 3.1–3.3. 
These 30 data sets are used to test the generalisation ability of the alternative models in de-
termining the final model. Finally, the relative feature importance of the final model is pro-
duced in the feature engine, which can provide the contribution of an independent parameter 
for alluvial fan development (Di). 

 

 
Figure 8  Sample sites of alluvial fans in the Qinghai-Tibet Plateau (QTP) 

3  Results 

3.1  Primary model results 

The primary results are shown in Figure 9. The results of the ensemble learning algorithms 
are more accurate than those of the single learning algorithms. The three ensemble models 
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are Gradient Boost Decision Tree, Random Forest and XGBoost (R2 > 0.5), which have rela-
tively good performance in predicting the value of the test samples. The R2 of XGBoost is 
close to 0.7. The performance ratings of all single models are lower than those of the en-
semble models. The R2 values of these models are not more than 0.5. The R2 values of Line-
ar regression, ARD Regression and Decision Tress are not more than zero. Therefore, Gra-
dient Boost Decision Tree, Random Forest and XGBoost can be regarded as the final models 
with at least 50% illustrations for alluvial fan development. The result comparison of the 
two types of models also reflects that the ensemble algorithms have better validation ability 
in testing the samples. The predicted values of the ensemble models are close to the true Di 
of testing samples, especially for some extreme values (Figure 9b). 
 

 
 

Figure 9  Primary results of different types of models 
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3.2  Optimisation results of the model 

The optimisation results are shown in Figure 10 after grid research. The R2 values of Gradi-
ent Boost Decision Tree and XGBoost reached 0.782 and 0.870, respectively (Figure 10b). 
Thus, Gradient Boost Decision Tree and XGBoost showed excellent performance in pre-
dicting the Di of alluvial fan by independent factors. The results of the single models opti-
mised by grid research are basically equal to the values before optimisation. Therefore, Gra-
dient Boost Decision Tree and XGBoost can be considered alternative models for the final 
model of alluvial fan development. 
 

 

Figure 10  Optimisation results of different types of models 
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3.3  Generalisation ability of the alternative models 

The testing results of the two alternative models in three basins are shown in Table 4. Both 
alternative models follow the same pattern: their generalisation ability decreases as the dis-
tance from the LRB increases. Specifically, the model may have better prediction results in 
the area close to the LRB under the current conditions in this research. XGBoost has a better 
generalisation ability than Gradient Boost Decision Tree because its accuracy is higher than 
that of Gradient Boost Decision Tree in the Danupu, Niyangqu and Bayin River Basins. The 
R2 of XGBoost in the Danupu River Basin, which is the closest basin to the LRB, is 0.670. 
Specifically, the accuracy of XGBoost in the Danupu River Basin is close to 0.7. Thus, the 
XGBoost is chosen as the final model. 
 
Table 4  Testing results of the generalisation ability of the alternative models 

River basin Gradient Boost Decision Tree (R2) XGBoost (R2) 

Danupu River Basin 0.569 0.670 

Niyangqu River Basin 0.277 0.389 

Bayin River Basin 0.093 0.297 

 
3.4  Feature importance of the final model 

The relative feature importance amongst 
the 11 independent parameters is shown in 
Figure 11. The feature importance of CA is 
highest (17.88%), indicating that CA is the 
most environmental parameter for alluvial 
fan development (Di). The sum value of 
the geomorphological parameters, includ-
ing CA, CSGa, CSA1, CSA2, CDD, CSC 
and CRR, is 74.60%. The sum value of the 
material parameters, including VIa and 
RHa, is 14.42%. Meanwhile, the sum val-
ue of the hydrological parameters, includ-
ing Ra and GSa, is 10.98%. Therefore, the 
geomorphological parameters are the ma-
jor influencing factor for alluvial fan de-
velopment in the LRB. 

4  Discussion 

4.1  Model characteristics 

The accuracy rates of the single models (Bayesian Ridge, Linear Regression, Support Vector 
Machine and Decision Tree) are lower than those of the ensemble models (Adaboost, Gra-
dient Boost Decision Tree, Random Forest, EXtree and XGBoost) (Figure 9). The reason is 
that the ensemble algorithms use the multiple single learning algorithms to process data. 

 

Figure 11  Relative feature importance of the independ-
ent parameters 
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These types of algorithms combine the previous single machine learning algorithms and be-
come integrated models with a strong prediction ability (Kim et al., 2003). The ensemble 
models can be divided into two categories according to the relationship between integrated 
single models. The first categories have strong dependence amongst the single models, and 
they serially generate results, such as AdaBoost and Gradient Boost Decision Tree. The se-
cond categories have no strong dependence amongst the single models, and they can syner-
gistically generate results, such as EXtree and XGBoost (Sagi and Rokach, 2021). Although 
the prediction accuracy of each single model is weak, it will be significantly improved after 
model combination. The ensemble models will achieve a strong learner with superior gener-
alisation ability (Kim et al., 2003). 

The accuracies of Gradient Boost Decision Tree and XGBoost are 0.782 and 0.870, and 
they have the same excellent prediction ability for Di, but XGBoost is better in terms of al-
gorithm and computing speed (Chen and Guestrin, 2016). The algorithms used in these two 
models actually have an evolutionary relationship. XGBoost uses the second derivative in-
formation in its algorithm, whilst Gradient Boost Decision Tree only uses the first derivative. 
Therefore, XGBoost is more efficient than Gradient Boost Decision Tree and supports par-
allel operation at a faster speed. In addition, XGBoost explicitly adds the complexity of the 
Tree as a regular term to the optimisation objective; thus, it has a high prediction accuracy 
(Sagi and Rokach, 2021). These two models can be regarded as alternative models without 
considering the calculation cost. However, XGBoost is superior to Gradient Boost Decision 
Tree algorithm in terms of the number of parameters handled and the calculation speed. This 
superiority will be more clearly expressed when the amount of data is enough. However, 
XGBoost is far better than Gradient Boost Decision Tree in terms of algorithm and compu-
ting speed. This superiority can also be confirmed by comparing the generalisation ability of 
these models. 

4.2  Generalisation ability of the two alternative models 

Generalisation ability is an important standard for evaluating the utilising potential of mod-
els. The generalisation ability performance of the alternative models determines the general-
isation ability in other regions. Danupu, Niyangqu and Bayin River Basins have 30 alluvial 
fans (10 samples for each basin) (Figure 8). Those three groups of data from the three basins 
were inputted into two alternative models (XGBoost and Gradient Boost Decision Tree) to 
test their generalisation ability. The generalisation ability of the models is weaker as the dis-
tance from the LRB increases. The reason for the differences in the performances of the al-
ternative models in those three regions is the changes of environmental factors on alluvial 
fan development. The Danupu River Basin is located in the middle reaches of the Yarlung 
Zangbo River, which is the same with the LRB. These basins belong to the same tectonic 
division (Pan et al., 2009), geomorphological division (Wang et al., 2020) and climate divi-
sion (Zheng et al., 2013). Accordingly, the background environment of these basins would 
be similar. Therefore, the performance of the XGBoost of Danupu River Basin is relative 
good. The current model should be applied to the region where the background environment 
is similar to the LRB. Meanwhile, XGBoost has better generalisation ability than Gradient 
Boost Decision Tree due to its higher accuracy (Table 4). Therefore, XGBoost is chosen as 
the final model.  
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In comparison with the LRB, the performance of the final model in Niyangqu and Bayin 
River Basins is low due to the differences in the background environment, including tectonic, 
geomorphology and climate (Pan et al., 2009; Zheng et al., 2013; Wang et al., 2020). How-
ever, low performance does not mean that the final model cannot be applied to the Niyangqu 
and Bayin River Basin, as well as in other regions. The current results of the generalisation 
ability are not based on the fact that no data belonging to these three new basins are added to 
the training sample of XGBoost. If a certain amount of data on alluvial fans from other re-
gions is acquired and added to the training samples in the final model built by our research, 
then the performance should be more satisfactory (Webb et al., 2010; Dolnicar et al., 2016). 
Specifically, the results of the generalisation ability of XGBoost obtained before adding any 
training samples belonging to the other regions are 0.670 in Danupu River Basin, 0.389 in 
Niyangqu River Basin and 0.297 in Bayin River Basin. If some new data of alluvial fans and 
its matching catchment belonging to these three basins are added to the training samples of 
XGBoost, then the generalisation ability performance will be improved. The amount of 
training samples in different regions will be quantified in the future. Hence, the final model 
still has potential to be applied in the QTP and other regions under the premise of adding 
training samples from different regions. 

4.3  Main factor of alluvial fan development 

The geomorphological characteristics of catchment for alluvial fan development in the LRB 
are significant factors. The factors of alluvial fan development in this research were divided 
into three parts, namely, geomorphological factors (Table 2, from 1 to 11), material factors 
(Table 2, 12 and 13) and hydrological factors (Table 2, 14 and 15). The sum value of the 
relative feature importance (Fi) of geomorphological factors is 76.09% (Figure 11). The Fi 
of catchment area (CA) can reach 17.88% only on these parameters. Meanwhile, the sum Fi 
of material factors (catchment average rock hardness and NDVI) and hydrological factors 
(average annual rainfall, glacier and snow cover) are 14.42% and 10.98%, respectively. 
Therefore, the independent parameters related to geomorphology are the main influencing 
factors for alluvial fan development.  

The importance of geomorphology for alluvial fan development in this research is con-
sistent with those of the High Atlas Mountains in Morocco (Stokes and Mather, 2015), 
which is located in semi-arid area, similar to the LRB. The main influencing factor of allu-
vial fan development in this mountain is also the geomorphology of matching catchment 
because the catchments with alluvial fan have higher relief, larger area, lower slope and 
longer length compared with those without alluvial fan (Stokes and Mather, 2015). However, 
our research conclusion is inconsistent with the volcanic islands in the east-central Atlantic 
Ocean and Calabria in the southern Italy (Antronico et al., 2016; Stokes and Gomes, 2020). 
The volcanic island is located in the tropical arid climate, and the main influencing factor of 
alluvial fan development is the accommodation space amongst volcanic mountain, although 
the rock strength, climate and base level also have influences on the alluvial fan develop-
ment. Specifically, the accommodation space and the alluvial fan are large (Stokes and 
Gomes, 2020). The main influencing factor for the alluvial fan development in the Calabria 
is the lithology of the matching catchment because the lithologies of most catchments of 
alluvial fans are low-grade metamorphic rocks, shales and igneous rocks.  
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The geomorphological features of the matching catchment are the main influencing factor 
of alluvial fan development in LRB. The two main reasons are as follows. Firstly, the LRB 
has less precipitation, and the formation of alluvial fan mainly depends on the flood pro-
cesses. Forming a flood under this semi-arid condition requires enough large catchment to 
collect more runoff, and the shape of the catchment makes it easy to gather runoff. Six in-
dependent parameters related to geomorphology have a significant positive relationship with 
Di (Table 3). The values of the catchment area, catchment perimeter, catchment relief, 
catchment relief ratio and catchment shape coefficient are high, and the conflux of runoff is 
substantial, thereby increasing the amount of weathering material carried by runoff from 
catchment to alluvial fan (Stokes and Mather, 2015). The sixth geomorphological parameter 
is sunny slope percentage of catchment, which also have a significant positive relationship 
with Di. Meanwhile, the half-sunny slope percentage, shady slope percentage and half-shady 
slope percentage have no significant relationship with Di. Alluvial fan development is sim-
pler in catchments with higher sunny slope percentage. Specifically, the sunny slope has a 
greater ability to produce more weathering materials with more variable-temperature condi-
tion as a result of achieving more radiation from the sun (Ran and Liu, 2018). Therefore, 
geomorphology plays an important role in the development of alluvial fans in this area. 
Secondly, the growth of vegetation and chemical weathering of rocks are limited because of 
the high altitude, low temperature and little precipitation in the LRB (Chen et al., 2022). 
Therefore, factors, such as precipitation and vegetation, have less influence on the develop-
ment of alluvial fan than the landform of catchment area.  

The two independent parameters of catchment average rock hardness and catchment av-
erage NDVI directly related to material have a negative relationship with Di. A catchment 
with high rock hardness cannot easily produce weathering materials because the rock is 
harder to be weathered. Therefore, weathering materials carried by runoff from catchment to 
alluvial fan are less (Mather and Stokes, 2017). Meanwhile, weathering materials are less in 
a catchment with high catchment average NDVI because vegetation can fix the weathering 
materials. There are two independent parameters about hydrology (average annual rainfall 
and average annual glacier and snow cover), but they have opposite effects for alluvial fan 
development (Table 3). The average annual glacier and snow cover has a positive relation-
ship with Di. The data are consistent with that of LRB. The alluvial fan is large, developed 
in the area with high glacier and snow cover, especially in the Damshung county (Chen et al., 
2021). The more glacier and snow cover can produce more runoff or floods that is the ener-
gy source to carry on the weathering materials in the catchment. However, the Ra (average 
annual rainfall) has a significant negative correlation with alluvial fan development. The 
data match with those of the LRB. The alluvial fan in Damshung county is large, with low 
average annual rainfall. There are three reasons for the phenomenon. The alluvial fan is a 
landform due to a series of flooding processes, and the flooding processes depend on the 
extreme runoff transformed by quick and extreme events of glacier-snow melting or rainfall 
(Santangelo et al., 2012). Thus, the first reason for the above phenomenon is that the func-
tion of rainfall to alluvial fan development may indirectly work by average annual glacier 
and snow cover. The temperature of Damshung county is lower than those of the other parts 
of LRB (Qiao et al., 2020). Therefore, the glacier and snow are easier produced and stored, 
although the average annual rainfall is low. Specifically, this place should have more possi-
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bility of producing flooding processes. Secondly, the average annual rainfall may not totally 
reflect the extreme rainfall events. Thirdly, the time of alluvial fan development (since Qua-
ternary) is not matched with rainfall data (1990–2015) in this research. This phenomenon 
can be clearly illustrated under the more detailed spatiotemporal rainfall data in the future. 

The other factors, such as tectonic activity, historical climate, accommodation space and 
human activities (Bahrami et al., 2015; Ventra and Clarke, 2018), also affect the alluvial fan 
development in the LRB, although those factors were overlooked in our research due to the 
limitation and shortage of data. For example, human activities are also one of the important 
factors that affect the alluvial fan development. In the process of development, houses, ter-
races, canals and roads could be built the surface of the alluvial fan, which could change the 
shape of an alluvial fan (Bahrami et al., 2015; Chen et al., 2021). These factors are difficult 
to quantify and add to the model, which may be one of the main reasons for the 13% unil-
lustrated variance of final model. The two other possible reasons for the unillustrated vari-
ance are as follows. Firstly, although the highest precision geological map published at pre-
sent has been used in final model, its scale is still larger than that of alluvial fan. Secondly, 
the vegetation and precipitation data used in final model do not completely match the alluvi-
al fan development. Vegetation and precipitation have been monitored in the past few dec-
ades. However, these factors could not reflect all influences on the alluvial fan development 
in the historical period to a certain degree. 

Although the geology, vegetation and precipitation data in this work are not highly accu-
rate, they can reflect the influence of these three factors on the alluvial fan development to a 
certain extent. The two main reasons are as follows. Firstly, geology is a regional concept, 
and no big change in a small range can be observed (Zhao et al., 2020). Secondly, some 
studies have shown that since the early Holocene (11,700 yr BP), the climate suitable for 
forest growth around Lhasa has disappeared and turned into a semi-arid environment with 
little rain, although the climate of the QTP has shown signs of warming and wetting in re-
cent years. Since then, the surface vegetation type has changed from forest to modern vege-
tation dominated by sparse herbs and shrubs; meanwhile, the modern vegetation has been in 
a relatively stable state for a long time (Kaiser et al., 2009; Miehe et al., 2014; Zhang et al., 
2018). 

Despite that an unillustrated variance (0.130) exists in our research, the 0.870 accuracy 
(R2) of XGBoost (final model) remains, and geomorphology should be the most important 
factor in alluvial fan development. 

5  Conclusions 

Alluvial fans and relative environmental factors in the LRB were selected for moulding to 
illustrate the alluvial fan development. The main conclusions are as follows: (1) The results 
of the ensemble learning algorithms are more accurate than those of the single learning al-
gorithms. The three ensemble models are Gradient Boost Decision Tree, Random Forest and 
XGBoost (R2 > 0.5), which have relatively good performance in predicting the value of the 
test samples. (2) After grid research, Gradient Boost Decision Tree and XGBoost are showed 
excellent performance in predicting the Di of alluvial fan by independent factors. The R2 

values of Gradient Boost Decision Tree and XGBoost reached 0.782 and 0.870, respectively. 
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(3) The model built by XGBoost is selected as the final model due to its better algorithm, 
computing speed and generalisation ability. Specifically, XGBoost has a better generalisa-
tion ability than Gradient Boost Decision Tree because its accuracy is higher than that of 
Gradient Boost Decision Tree in the Danupu, Niyangqu and Bayin River Basins. The accu-
racy of XGBoost in the Danupu River Basin closest to the Lhasa River Basin is close to 0.7. 
Therefore, the model has better prediction results in the area close to the Lhasa River Basin. 
(4) The independent parameters related to geomorphology are the main influencing factors 
for alluvial fan development, especially catchment area. The sum value of the relative fea-
ture importance of geomorphological factors is 76.09%. The feature importance of catch-
ment area can reach 17.88% only on these parameters. Meanwhile, the sum feature im-
portance of material factors (catchment average rock hardness and NDVI) and hydrological 
factors (average annual rainfall, glacier and snow cover) are 14.42% and 10.98%, respec-
tively. Therefore, the XGBoost is the best model to predict the alluvial fan development in 
which the geomorphological parameters are the most important factors. 
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