
J. Geogr. Sci. 2022, 32(5): 892-912 
DOI: https://doi.org/10.1007/s11442-022-1977-6 

© 2022    Science Press    Springer-Verlag 

Incorporation of intra-city human mobility into 
urban growth simulation:  
A case study in Beijing 

WANG Siying1,2, FEI Teng1, LI Weifeng2,3, ZHANG Anqi2, GUO Huagui5, 
*DU Yunyan4 
1. School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China; 
2. Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China; 
3. Guangdong-Hong Kong-Macau Joint Laboratory for Smart Cities; 
4. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; 
5. School of Architecture and Urban-rural Planning, Fuzhou University, Fuzhou 350108, China 
 

Abstract: The effective modeling of urban growth is crucial for urban planning and analyzing 
the causes of land-use dynamics. As urbanization has slowed down in most megacities, im-
proved urban growth modeling with minor changes has become a crucial open issue for these 
cities. Most existing models are based on stationary factors and spatial proximity, which are 
unlikely to depict spatial connectivity between regions. This research attempts to leverage the 
power of real-world human mobility and consider intra-city spatial interaction as an imperative 
driver in the context of urban growth simulation. Specifically, the gravity model, which con-
siders both the scale and distance effects of geographical locations within cities, is employed 
to characterize the connection between land areas using individual trajectory data from a 
macro perspective. It then becomes possible to integrate human mobility factors into a neu-
ral-network-based cellular automata (ANN-CA) for urban growth modeling in Beijing from 
2013 to 2016. The results indicate that the proposed model outperforms traditional models in 
terms of the overall accuracy with a 0.60% improvement in Cohen’s Kappa coefficient and a 
0.41% improvement in the figure of merit. In addition, the improvements are even more sig-
nificant in districts with strong relationships with the central area of Beijing. For example, we 
find that the Kappa coefficients in three districts (Chaoyang, Daxing, and Shunyi) are con-
siderably higher by more than 2.00%, suggesting the possible existence of a positive link 
between intense human interaction and urban growth. This paper provides valuable insights 
into how fine-grained human mobility data can be integrated into urban growth simulation, 
helping us to better understand the human-land relationship. 
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1  Introduction 

As one of the most complex systems, cities constantly evolve (White et al., 2015). The in-
trinsic nature of urban changes lies in the myriad of human activities that significantly im-
pact land-use patterns. The rapid growth of population and the increasing need for so-
cio-economic development has led to considerable land-use and land-cover changes, in-
cluding the expansion of urban areas, biodiversity changes, and changes in ecosystem ser-
vices (Liu et al., 2014; Zhao et al., 2020). The study of urban growth modeling can help us 
to better understand the driving factors, dynamics, and consequences of future land use 
(Marta and Luis, 2021). It can thus provide practical urban planning and management sug-
gestions (Li and Yeh, 2002).  

The cellular automata (CA) models have gained popularity among various land-use mod-
els as they have introduced dynamic features in the spatial simulation of urban growth (Ber-
ling-Wolff and Jianguo, 2004). After Tobler (1979) first adopted CA in geographic modeling, 
various urban growth simulations applied similar models over the last few decades (Cou-
clelis, 1985, 1997; Santé et al., 2010; Liu et al., 2014; Liang et al., 2018). Many studies 
have successfully demonstrated that CA model simulations are a practical approach in rep-
resenting complex spatial processes (Batty et al., 1997). By properly defining transition 
rules, global spatio-temporal patterns can emerge from local interactions among adjacent 
land units (Santé et al., 2010; Liu et al., 2017). Many published studies have demonstrated 
the potential of CA-based models. For example, the SLEUTH model, using two coupled 
cellular automata for urban growth and land-use change simulations, have been applied for 
many years (Clarke, 2008); more recently, the FLUS model, which combines top-down sys-
tem dynamics and natural effects in land-use simulations, has shown its power and superior-
ity compare with other models (Liu et al., 2017).  

Aside from the ongoing, promising advances in the empirical techniques adopted in CA 
models, it is also vital to better understand the driving factors that affect the existing spatial 
distribution of different land-use types. In CA models, urban growth simulation involves 
various spatial variables inputs (Lin and Li, 2015) and the neighborhood’s exogenous condi-
tions. In general, the factors can be aggregated into two categories (White and Engelen, 
1993): 1) fixed conditions, e.g., road, water, and 2) suitability factors, e.g., slope, soil type. 
However, these driving factors generally remain stationary and any changes that do occur, 
proceed at a much slower rate than the fast urbanization processes. Therefore, one current 
focus is to integrate new sources of information that can further characterize the interchange 
between different places, for example, urban information flow and population flow.  

Human mobility is suspected of exerting long-term impacts on urban developmental pro-
cesses (Lee and Holme, 2015; Chen et al., 2019). The relationships between human mobility 
and land-use types are complex and often bi-directional. The accumulation of individual 
human trajectories between areas significantly influences long-term land-use patterns. Fur-
thermore, different land-use functions serve a diverse suite of urban activities. This inter-
change of different flows can form an urban network and thus represent the relationships 
between different places. Several studies have successfully attempted to integrate mobility 
data into urban growth simulations, and it has proven advantageous. In the study by Li (2018) 
and Lin (2015), web search data from Baidu were extracted to present the spatial flows 
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within urban agglomerations. These simulation results suggested that an urban flow variable 
enhances the performance of CA models. Most recently, Xia et al. (2019) proposed an im-
proved CA model, in which weighted urban flows were obtained by information and popula-
tion flow data represented by a gravitational field model. The result indicated that the spatial 
interaction data could improve the urban growth simulation accuracy in large-scale metro-
politan areas.  

However, most current research only coarsely quantifies the mobility effects. The refer-
enced urban networks generally formed among different cities but failed to depict the rela-
tionship within the city. Specifically, most of the mobility data adopted are population flow 
data and web search data at the city level, sufficient for describing the inter-city spatial rela-
tionship in an urban agglomeration but difficult to extend into a finer geographical space 
(intra-city level). Moreover, information flow from web searching data cannot represent the 
pressure that human flow brings to land use in the real world. Therefore, fresh insight needs 
to be explored by combining high-resolution intra-city mobility data into urban growth sim-
ulation, such as trajectory data. 

Given the current widespread use of smartphones and the full coverage of connection 
networks in big cities, cell-phone signaling record data has become popular in urban mobil-
ity studies (Zhang, 2014; Liu et al., 2018; Wang et al., 2018). A well-known study demon-
strated that individual daily mobility is highly predictable and shows a highly reproducible 
pattern (González et al., 2008). Therefore, it should be safe to assume that the travel patterns 
of all residents in a city on a given random complete weekday are representative of their 
travel patterns over time. In this paper, an artificial-neural-network-based CA (ANN-CA) 
model considering the human mobility pattern is proposed for an urban growth simulation. 
Concerning the high urbanization rate in megacities like Beijing, we want to explore how 
the human flow within a city can help to promote our understanding of urban growth. The 
proposed model is distinct in coupling the spatial interactions from massive cell-phone sig-
naling record datasets in the simulation input process. More importantly, such intra-city tra-
jectory data are of high spatial resolution and can reasonably describe the real-world human 
movements within an entire city. By quantifying the urban flow magnitudes based on graph 
theory and a gravity model, this study can provide a refreshing view of the relationship be-
tween urban land teleconnections and urban growth.  

This paper is organized into five sections. In Section 2, we introduce the relevant materi-
als and methods, describing critical theories of the proposed methods and placing human 
mobility into the context of land use simulation. Section 3 presents the application of the 
methodology, the comparison of the simulation results with various models, and sensitivity 
analyses. Sections 4 and 5 discuss the results and present the conclusions. 

2  Methodology  

The proposed methodology is composed of two parts: (1) designing an approach to pro-
cessing the massive trajectory data and quantifying the intra-city inflow and outflow magni-
tudes, and (2) coupling the spatial interactions according to the driving factors that the 
ANN-CA model uses to simulate urban growth. The general framework of the approach is 
illustrated in Figure 1. 
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Figure 1  The framework of the ANN-CA model in the integration of human mobility factors 
 

2.1  Measurement of flow magnitude in the city 

2.1.1  Stay point detection 

It is crucial to partition the data into meaningful elements when dealing with massive tra-
jectory data, which is important for further analysis. Considering the different semantics of 
human mobility, the recorded locations of trajectories are not all equally important. There-
fore, stay points, where individuals tend to conduct meaningful activities like working, 
shopping, etc., need to be extracted. 
 

 
Figure 2  Illustration of the stay point detection process 

 
Operationally, a stay point is constrained by both spatial and temporal dimensions. If 

people remain within a certain region within a given time interval, the location is detected as 
a stay point. The process is shown in Figure 2. The individual’s trajectory, P, is represented 
by a sequence of points {p1, p2, p3, …, pn}. Each point contains three properties (latitude, 
longitude, and timestamp). The points are sequentially connected based on their chronologi-
cal order. Then, a subsequence of P, {pm, pm+1, pm+2, …, pm+j}, can be regarded as one set of 
stay points, if: 

1) Distance (pm, pi) ≤ Dth, m < i ≤ m+j 
2) Time interval (pm, pm+j) ≥ Tth 

where Dth is the distance threshold and Tth is the time threshold.  
The complexity of the processed data can be effectively reduced compared to the original 

trajectory data. At the same time, the semantic meanings behind the trajectories can be en-
hanced. All the calculations forthcoming is based on these processed trajectories. 

2.1.2  Graph-based flow magnitude calculation 

Location-to-location movements within a city can reflect the spatial mobility pattern of peo-
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ple. These movements, also referred to as spatial interactions (or flows), naturally form large 
geographically embedded networks (Guo, 2009). Literature regarding land changes has dis-
cussed distal flows can be regarded as urban land teleconnections that drive and respond to 
urbanization (Seto et al., 2012). The gravity model is the most common formula for quanti-
fying spatial interactions (Yan and Zhou, 2018; Hilton et al., 2020). Specifically, it allows us 
to measure location-based relationships by integrating the distance decay functions with 
measures of the relative scale of geographical entities (Haynes and Fotheringham, 1985). 
The model has become a popular method for quantifying the urban spatial interaction inten-
sity (or magnitudes) between cities by leveraging different kinds of urban flow data (Lin and 
Li, 2015; Li et al., 2018; Xia et al., 2019; Lu et al., 2021).  

Although both approaches are based on gravity models, this method differs from previous 
studies. Existing studies (Lin and Li, 2015; Li et al., 2018; Xia et al., 2019; Lu et al., 2021) 
were mainly conducted in urban agglomeration areas. The scale of urban flow data (e.g., 
human migration, information flow) is region-wide, and the data only depicts city-to-city 
spatial interactions. Such native coarse scales of the spatial interaction data make it chal-
lenging to consider the heterogeneity in each cell’s interaction strength in a gravity model. 
However, the principle of gravity model operates under the premise that in addition to the 
distance, the attraction between two places is also dependent on the products of the masses 
(e.g., population, GDP) of these two places. In our research, benefitting from fine data gran-
ularity, we can leverage the complex graph theory and form a massive trajectory network 
among mobile phone stations. Thus, the degree centrality of each station can be considered 
in the gravity model to describe the origin and destination attractiveness. In this way, we can 
obtain weighted spatial flow magnitudes for many base stations within the city and then de-
rive reasonable grid representations for each cell using a spatial interpolation technique. 

The processed trajectories record people moving between different places, and those stay 
points on the same trajectory are thus correlated. For each trajectory, the nature of the con-
nection is assumed to exist between any two stay points in chronological order. For example, 
if a person’s daily trajectory is recorded as S = {s1, s2, s3, s4}, then the links will be {s1→s2, 
s2→s3, s3→s4, s1→s3, s1→s4, s2→s4}. Following graph theory, we constructed a weighted 
graph (also called a network) G = (V, E) using those links of the trajectory data (Figure 3), 
where V represents the set of nodes (locations, in this research, refers to mobile phone base 
stations), and E is the set of edges (spatial interactions, also called flows). To measure the 
weight (wij) of the edges of the trajectory network, the concept of connection strength is 
proposed as we operate under the assumption that each spatial location in the city varies in 
its attraction for people. 

In graph theory, the more people that visit a location, the higher the degree centrality of 
this node. In the gravity model, the connection between two nodes is inversely proportional 
to their distance, usually represented by distance decay functions. In general, there are three 
distance decay functions: the power law, exponential law, and Gaussian function (Yu et al., 
2014). Previous research has most often adopted the exponential function in characterizing 
urban mobility patterns (Liang et al., 2011); therefore, we choose this approach for our 
method. It follows that, based on the relationship between degree and distance, the connec-
tion strength, wij, between mobile phone stations i and j is given as 
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Figure 3  An example of a directed graph formed by human trajectories 
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where ki and kj are the degrees of node i and node j, respectively, minmax is the function by 
which the products of degrees are normalized, d is the distance between mobile phone base 
stations i and j, and α is the distance decay coefficient. 

To distinguish between the direction of spatial interaction, we classify urban flows as ei-
ther inflow or outflow. Based on the accumulation function, the sum of inflow and outflow 
magnitudes for each mobile phone station is calculated by: 
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where m and n are the number of nodes in-connected and out-connected with nodes i, wij is 
the connection strength of the edge between node i and node j, and aij and aji are the 
in-degree and out-degree values of node i, which can be derived from the adjacency matrix 
of the trajectory network.  

Subsequently, the weighted inflow and outflow magnitudes of a massive number of stay 
points are obtained from the original complex trajectory data. Given the high density and 
relatively uniform distribution of sites, this study used the spatial interpolation technique to 
interpolate the inflow and outflow magnitudes of detected station points into 30 m raster 
layers. This process was implemented in the ArcGIS environment. Both inverse distance 
weighted (IDW) interpolation and kriging tools have been considered for interpolation. We 
used the trial-and-error method to test each scenario. By manually adjusting parameters and 
comparing the smoothness of the resulting surfaces, the ordinary kriging method with the 
optimized parameters offered by ArcGIS was chosen to generate the raster layers of flow mag-
nitude. In this way, we can quantify the impact of human mobility interaction in each cell. 

2.2  The framework of the ANN-CA model 

The ANN-CA model is selected to perform the urban growth modeling task (Figure 4). Cel-
lular automata (CA) is a discrete, intrinsically spatial model that ties nicely into geographic 
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information systems (GIS). The relaxation of its transition rules enhances the capabilities of 
a CA model to deal with the actual evolution of land-use patterns. To reconcile the complex 
relationship between spatial variables, an artificial neural network method is adopted to cal-
culate the overall development probability of each cell. 

Artificial neural networks (ANNs) refer to a family of machine learning algorithms. Us-
ing a backward-propagating learning algorithm, ANNs can efficiently learn the multivariate 
non-linear relationship between different inputs through the learning and training processes 
(Li and Yeh, 2002). The basic structure of an ANN can be seen in Figure 4. In the input layer, 
the neurons correspond to the driving factors which ultimately determine the land use de-
velopment probability. Then, the input variables feed-forward into the next layer with varia-
ble weights, and the activation function delivers the outputs. The mathematical expression is 
given by 

 ( )1 1 1
01

*lnl l l l
j ji i ji

P f w P w− − −
=

= +∑ , (4) 

where l
jP  is the output value of node j in the current layer and 1l

iP −  is the input value of 

the i-th node in the previous layer, nl–1 is the total number of nodes in the previous layer,  
 

 
Figure 4  The architecture of the ANN-CA model 
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l
jiw  denotes the weight between two layers, and the standard sigmoid function has been 

chosen as the activation function f (x)=1/(1+e–x). In the output layer, the nodes correspond to 
urban land and non-urban land. For an input land cell n, the development probability is ex-
pressed as Pn. 

Meanwhile, the transformation of a land cell to urban land is also dependent on other 
conditions, including the neighborhood effect, geographical constraints, and random dis-
turbances, all of which are accounted for by the CA simulation procedure. Finally, the com-
bined probability of a cell converting into urban land at time t can be given by 

 Ω (1 [ ln( )] )t t t
n n nCP P con αγ= × × × + − ,  (5) 

where t
nP  is an estimated development probability that cell n transitions to land use type m 

at time t. The symbol  Ω  t
n denotes the density of urban land in a 5 × 5 Moore neighborhood; 

con refers to the geographical constraints, such as the ecological control areas, basic farm-
land protection areas – the value will be assigned as 0 in these areas –; 1+[–ln(γ)]α is the 
stochastic disturbance term, where γ is a random variable within the range of 0 to 1, and α is 
an adjustable parameter that controls the size of the stochastic disturbance. 

Hence, the iterative procedure of estimating the combined probability for each land cell 
will begin for the urban growth simulation (Figure 4). At each iteration time, all the exoge-
nous factors are obtained to compute the combined probability for each cell. The current 
non-urban cell will then be allocated to the urban land if the combined probability exceeds a 
pre-defined threshold (0.8), set according to previous studies (Guan et al., 2005, Zhou et al., 
2017). Then the state of the neighborhood and cell will be updated at each iteration. The 
process is carried out iteratively until the total number of pixels changed meets the demand 
for overall urban growth. 

To demonstrate the robustness of the effect of spatial interaction within a CA urban 
growth simulation, a well-accepted traditional logistic-CA model (Lin et al., 2011) was im-
plemented for comparison. Therefore, four models were established, including 
ANN-CAwithflow, ANN-CAwithoutflow, Logistic-CAwithflow, and Logistic-CAwithoutflow, where with-
flow indicates a model considering the urban flow effect and withoutflow neglects the urban 
flow effect. 

2.3  Model performance evaluation 

Two assessments are used to evaluate model performance: 1) the fit of the ANN model to the 
development probability and 2) the pixel-based accuracy evaluations of the simulation re-
sults.  

For the first aspect, the Receiver Operating Characteristic (ROC) curve analysis is adopt-
ed to quantify whether the ANN model fits well with the generated overall development 
performance. The ROC is a common metric to evaluate the classifier system (Lin et al., 
2011). Generally, the area under the ROC curve (AUC) was calculated to assess the perfor-
mance of a model. The value of AUC is generally between 0.5–1; the larger the value of 
AUC, the better the model’s performance. 

For the second aspect, the two most adopted methods used to evaluate the simulation ac-
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curacy are Cohen’s Kappa coefficient and the figure of merit (FoM). The Kappa coefficient 
is designed to measure inter-raster reliability and has been widely used in remote sensing 
classification measurements (Kerr et al., 2015). By analogy, researchers also apply it to 
measure the proportion of agreement between the observed raster and simulated raster (Liu 
et al., 2017; Xia et al., 2019). The Kappa coefficient can be calculated by  
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where p0 indicates the agreement between observed raster and simulated raster and pe is the 
expected probability of chance agreement; N is the total number of cells, c is the number of 
land-use types; nii is the number of cells in the same category between the two rasters; niT 
and nTi represent the total number of cells in each category i of the two rasters, respectively. 

The FoM can evaluate model accuracy by measuring the agreement of variations between 
actual land-use patterns and simulation results while ignoring those cells that persist un-
changed. The index can be calculated as follows: 

 
( )

BFoM
A B C

=
+ +

, (7) 

where A is the number of errors for those observed urban cells predicted as the persistence of 
non-urban cells, B is the number of correct cells observed and correctly simulated as urban 
growth, and C is the number of errors due to observed unchanged cells predicted as urban 
cells. 

3  Implementation and results 

3.1  Study area and data preparation 

The proposed method was applied in Beijing, the capital of China (Figure 5). The city is  
 

 
 

Figure 5  Administration divisions of Beijing 
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located in North China and lies between 39°26′N–41°03′N and 115°25′E–117°30′E. As a 
megacity, Beijing has a population of over 21.7 million within an area of 16,800 km2. Bei-
jing is now experiencing a high level and low speed of urbanization, distinct from other 
Chinese cities experiencing dramatic changes in land use. In this case, it is worth examining 
how human mobility has brought vitality and changes to urban growth in this city. Mean-
while, Beijing has a high mobile phone penetration rate among Chinese cities. Hence, the 
availability of mobile phone data makes Beijing an ideal research area. 

This research centers upon an urban growth simulation from 2013 to 2016, classified from 
Landsat 8 Operational Land Imager (OLI) images. The spatial resolution is maintained at its 
initial value of 30 m. Based on existing literature (Gharbia et al., 2016, Qiang and Lam, 
2015), the selected driving factors can be classified into four categories (Table 1), including 
1) physical properties, 2) proximity to entities of interest (EOI), 3) neighborhood, and 4) 
human mobility. The physical properties include elevation and slope. Among the proximity 
properties, the distance to primary roads, secondary roads, and water areas are important 
indicators for urban growth (Figure 6). As existing urban areas greatly affect newly devel-
oped urban areas (Batty, 2005), the distance to urban areas is also considered in this model. 
Rather than directly calculating the distance from urban centers or gathering discrete urban 
land-use units, we adopt a more precise way by using night-time light remote sensing data to 
extract/define urban areas in Beijing supplemented by threshold-based algorithms in the re-
search of Jing et al. (2015). Moreover, the cellular neighborhood always indicates spatial 
autocorrelation among land cells. A calculation of the number of neighborhood cells is also 
served as inputs.  

The nature of human mobility in Beijing is inferred by a dataset of mobile phone records 
used to measure people’s spatial interactions. The dataset is collected from a Chinese mobile 
communication service provider, who anonymously processed the records to protect person-
al information. It contains the trajectories of 12,270,000 users and 346,302,792 records on a 
weekday (27 December 2016) and covers 20,978 mobile phone base stations. Every time a 
user’s phone connects to the cellular network, a record is generated with a location of the 
base station and a timestamp. Thus, a sequence of locations represents the trajectory of one 
user in a day. Figure 7 shows the flow map of the original trajectory data. 

 
Table 1  Model inputs and their data source 

Spatial variables Category Explanation Data source 

y Binary Urban growth 2013–2016 Landsat 8 Operational Land Imager 
images 

DisToMainRoad Float Euclidean distance to main roads Road network map 

DisToSecondRoad Float Euclidean distance to secondary roads Road network map 

DisToWaterArea Float Euclidean distance to a water area Map of water area 

DisToUrbanArea Float Euclidean distance to an urban area VIIRS Day/Night Band (DNB) 
Nighttime Imagery 

DEM Float Transition suitability considering terrain con-
ditions data 

Global Digital Elevation Mod-
el (ASTGTM) Slope Float 

Neighborhood Float Amount of urban cells in 5·5 neighborhood Landsat 8 Operational Land Imager 
images 

 



902  Journal of Geographical Sciences 

 

 

Figure 6  The spatial variables in Beijing (a) slope, (b) DEM, (c) distance to urban area, (d) distance to the main 
road, (e) distance to the secondary road, and (f) distance to water area 

 

 

Figure 7  The flow map of trajectory data in Beijing 
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3.2  Processing of spatial variables and model setup 

3.2.1  Stay points detection 

The trajectory data was processed according to the methodology section 2.1. Previous stud-
ies have described the details of the thresholds setting of stay points detection (Li et al., 
2008, Zheng et al., 2009). The commonly used time threshold is 30 min. The distance 
threshold was usually set to less than 1000 meters, commonly 200 and 500 meters. Based on 
the average nearest distance (261 meters) among base stations in our research, the distance 
threshold is set to 500 meters, and the time threshold is set to 30 minutes. After the stay 
points extraction process, the number of valid trajectories was reduced to 6,650,348, and the 
total records decreased to 10,033,174 compared to the original data.  

3.2.2  Flow magnitude maps 

After extracting the abovementioned stay points, we need to quantify the flow magnitude 
between them. At first, with the formed undirected network (graph) among whole points, a 
20,978 × 20,978 adjacency matrix was derived, which stores the adjacent information (edge) 
between each two mobile phone station points. Then, according to equation (1), the connec-
tion strength (edge weight) is calculated between each pair of points based on their in-out 
degree and distance. On this basis, the inflow magnitude and outflow magnitude of each 
mobile phone station point can finally be acquired based on equations (2) and (3), respec-
tively. Considering that the distribution of station points is not homogeneous, to match the 
CA model’s spatial scale, the ordinary kriging method mentioned in section 2.1.2 was used 
to interpolate the flow magnitude of whole station points onto a 30 m grid surface. Accuracy 
was assessed by the root mean square error (RMSE) with values of 10.154 and 9.903 for the 
inflow and outflow magnitude interpolation results, respectively. Figure 8 shows the final 
flow magnitude layers. As can be observed, the hotspots of inflow magnitude are generally 
the same as outflow magnitude. At the same time, the distribution pattern outflow tends to 
be more diffuse. This phenomenon is intuitive in that intended destinations of people are 
more concentrated in certain functional urban areas, e.g., business, shopping, healthcare, 
transit.  
 

 

Figure 8  The inflow magnitude distribution (a) and the outflow magnitude distribution (b) of Beijing 
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3.2.3  Predictive modeling 

We project the relevant, collected, and processed variables in the same spatial resolution. All 
data is normalized in the range of [0, 1] to accelerate the gradient descent algorithm in the 
ANN model. The overall urban growth pattern is unbalanced, with most of the land cells 
remaining unchanged while a relatively small number of cells change from non-urban land 
to urban land. The learning process may have a low sensitivity to the minority class and be 
affected by the majority class in such a way that it always predicts the land use as unchanged, 
which is a common problem in the machine learning algorithm called “class imbalance” 
(Batista et al., 2004; Qazi and Raza, 2012). Thus, an under-sampling technique was adopted 
to remove samples from the majority class to alleviate this imbalance in the dataset (Bunk-
humpornpat et al., 2011; Lemaître et al., 2017). Then the sampled data were randomly strat-
ified and split into two parts, the training dataset (70%) and the testing dataset (30%). The 
above sampling strategies can optimize the training process and guarantee good model con-
vergence. In this way, a neural network was established for the estimation of overall devel-
opment probability, and the CA evolution of urban growth was subsequently simulated. 

3.3  Simulation results 

The four models (ANN-CAwithflow, ANN-CAwithoutflow, Logistic-CAwithflow, and Lo-
gistic-CAwithoutflow) proposed in this study are established for the urban growth simulation in 
Beijing of China from 2013 to 2016 at a spatial resolution of 30 m × 30 m. The simulation 
results of the four models are shown in Figure 9. Four regions are enlarged to display addi-
tional details to better examine the spatial variability among the different simulation results. 
Compared to the actual land use in 2016, the two ANN-CA models can yield more reliable 
results than the Logistic-CA models in some fast-growing regions, such as the fourth en-
larged area (Daxing District). Specifically, the results of the ANN-based model can generate 
a more reasonable amount and distribution of urban land. However, due to the large scope of 
the entire city, it is difficult to visually evaluate the effect of human mobility on the simula-
tion results. Therefore, the evaluation can be made more objective by quantitative assess-
ment. 

The model goodness of fit was examined by the three measures proposed in section 2.3, 
including ROC, Kappa coefficients, and FoM. Table 2 shows the model accuracy results. 
The three metrics assessed the degree of model optimization by comparing the results be-
tween the models with and without flow. In general, the ANN-CA models outperformed the 
Logistic-CA models regardless of whether the human mobility factor was considered. The 
main reason for this could be that the ANN models are more capable of dealing with com-
plex spatial relationships among variables. Moreover, the accuracies of the CA models con-
sidering human mobility factors (with flow) are better than that of traditional models (with-
out flow), although the improvements brought about by human flow are generally less sig-
nificant compared to those attributed to different modeling methods. Regardless, we docu-
ment improvements of 0.60% for both AUC and the Kappa coefficient and 0.41% for the 
FoM values relative to the ANN-CAwithflow model.  

As the newly developed urban cells only accounted for a small portion of the whole city 
and were concentrated in certain areas, evaluating the model accuracy in different dis-
trictswould be more meaningful. Kappa coefficients and FoM values were selected for dis 
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Figure 9  The observed urban growth from 2013 to 2016 in Beijing (a) and the simulated pattern in 2016 based 
on the four proposed models: (b) ANN-CAwithflow, (c) ANN-CAwithoutflow, (d) Logistic-CAwithflow, and (e) Lo-
gistic-CAwithoutflow 
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Table 2  Assessment of the simulation results 

Models AUC Improvement Kappa Improvement FoM Improvement 

ANN-CAwithflow 0.909 0.60% 0.751 0.60% 0.2362 0.41% 
ANN-CAwithoutflow 0.903 – 0.745 – 0.2321 – 
Logistic-CAwithflow 0.897 0.40% 0.737 0.30% 0.2115 0.33% 
Logistic-CAwithoutflow 0.893 – 0.734 – 0.2082 – 

 

trict-level simulation accuracy assessments. Based on the ANN-CAwithflow model, the im-
provements of Kappa coefficients and FoM values were calculated for all 16 districts in Bei-
jing (Figure 10) and compared to the traditional model (ANN-CAwithoutflow). It can be seen 
that most districts maintained significant improvements, except for very few regions that 
experienced reduced Kappa coefficients and FoM values. Compared with the improvements 
calculated for the entire city of Beijing, these results on a district basis are more informative. 
Specifically, by considering the human mobility factors in the ANN-CA model, the im-
provement of Kappa coefficients in six districts exceeds 0.5%, and in three districts exceeds 
2.0%. For FoM, six districts had more than a 0.5% improvement, three districts exceeded 
1.0%, and one district exceeded a 2% improvement. We note that several districts, including 
Chaoyang, Daxing, and Shunyi, are firmly at the forefront of improved Kappa coefficients 
and FoM values, confirming a satisfactory performance of the ANN-CA model considering 
human flow. 

 
Figure 10  Resultant improvements of Kappa coefficients and FoM values of the simulation results for districts 
of Beijing based on ANN-CAwithflow model 
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4  Discussion 

A massive spatio-temporal trajectory dataset can serve as a reasonable proxy for human mo-
bility (Chen et al., 2019). The spatial interactions between different land cells can effectively 
indicate urban growth. Figure 11 shows the accuracy and model loss of the two ANN-CA 
modeling processes. As can be seen from Figures 11a and b, after 160 epochs, the accuracy 
values of the model considering flow data stabilize around 0.705, and its losses stabilized 
between 0.690 and 0.700. In comparison, the accuracy values of ANN-CAwithoutflow stabilize 
under 0.705, and the losses are around 0.710, respectively. These results support the premise 
that the inclusion of the spatial interaction patterns of human trajectories does help to im-
prove the ANN modeling performance.  
 

 

Figure 11  The plots of training accuracy and loss 
 
Although the overall improvements of the simulation results were not prominent (0.41% 

and 0.60%), the results are reasonable if we compare them with similar research. Xia et al. 
(2019) conducted urban growth simulations by applying inter-city population flow data and 
web search engine data and noted improvements between 0.40%–0.59%.  

Moreover, we should consider the urbanization of Beijing from a contemporary perspec-
tive. In the three years between 2013 and 2016, like most megacities, Beijing’s urbanization 
level has stabilized, and the speed of urbanization has lessened. Unlike the formerly ob-
served rapid outward urban sprawl, the recent urban growth is different, geared more to-
wards densifying inner-urban areas (Ouyang, 2020). In this context, the dispersive and small 
changes in the urban area will make the prediction even more difficult for each model, 
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which could be the main reason for the minor numerical improvements attributed to en-
hancing the model by adding human mobility factors. 

However, significant improvements in simulation accuracy do occur in certain districts. 
The comparisons between different districts may help illustrate the effectiveness of incorpo-
rating human mobility into the ANN-CA model and the spatial pattern of this difference. 
Figure 12 shows the aggregated flow map between 16 districts in Beijing. The spatial inter-
action within Beijing forms an urban mobility network, with red color and broad lines indi-
cating stronger connections. This map shows strong linkages at the city center, and the flow 
magnitude is higher between those districts surrounding the core districts (Dongcheng and 
Xicheng). After comparing the calculated improvements for each district, we found the more 
significant improvements are partial to Daxing, Chaoyang, and Shunyi districts. All three 
districts surround the core area of Beijing and keep a close connection with other districts 
and maintain a higher flow magnitude. More importantly, unlike Changping district, which 
is located near the higher-elevation region (mountainous area), these three districts are lo-
cated on the southeast side of the city at a lower elevation, which provides favorable geo-
graphical conditions for urban growth. Table 3 compares the elevation of the four mentioned 
districts. The elevation factor may help us understand why these districts have a more pro-
nounced improvement in simulation results. Those non-urban areas with a strong connection 
with core urban regions are also more likely to develop because frequent spatial interactions 
serve as a potential indicator for space consumption and economic development. Therefore, 
human mobility may constitute a significant connection channel between micro and macro 
urban development. 

 
Table 3  A comparison of the elevation of the four selected districts of Beijing 

District Total flow  
Improvement 

Mean elevation (m) Area (km2)  
Kappa (%) FoM (%) 

Chaoyang 848129  2.67 1.56 31.74  470.80 

Changping 435217 –0.10 0.54 279.71 1430.00 

Daxing 409522  2.27 1.82  25.06 1012.00 

Shunyi 403389  2.95 2.00  35.95 980.00 

 
In summary, integrating human movement data into the bottom-up CA model improved 

the simulation accuracy and made the results more realistic. Moreover, the outstanding per-
formance of machine learning algorithms such as ANN makes the CA model more powerful 
in dealing with complex spatial inputs. However, our approach has some limitations.  

One comes from the incomplete nature of mobile phone data. As only one communication 
service provider provided the trajectory data, we cannot capture the mobility pattern of the 
entire population of Beijing. In addition, the trajectory data can only record the movements 
between mobile phone stations, not real locations of people. Thus, the accuracy of our 
measurements of the flow magnitudes at different locations may be compromised. 

Furthermore, the data only depict human mobility in one given wintertime day. Although 
there are always specific patterns in human mobility, a multiple time series of data would 
make the conclusions more convincing. Future model improvements can be realized with the 
acquisition of multi-temporal trajectory data. By extending the temporal dimension, the spa-
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tial interaction can then describe the dynamic characteristics of regional linkages in 
three-dimensional space. Thus, the inclusion of the temporal dimension may help us acquire 
a more comprehensive understanding of the relationship between human mobility and urban 
growth.  

Lastly, how a simulation responds to variable neighborhood and parameter settings has 
not yet been explored in this study. How they can be linked and fine-tuned to the scale of 
human mobility may still be an important issue in future research. 

 

 

Figure 12  Flow map and an enlarged view of Beijing 
 

5  Conclusion 

Urban growth simulation research can help us understand the socio-economic, physical, and 
human contributions to urban area dynamics. Model input, theoretical arguments, and iden-
tification of driving forces are all crucial in these simulations. As urban growth is 
scale-dependent, its emergence depends not only on stationary conditions, e.g., traffic and 
slope, but also on the spatial connectivity effect, leading to heterogeneity in the direction of 
urban growth.  

In this study, real-world trajectory data from Beijing was processed to include human 
mobility factors using a gravity model and graph theory and then integrated into an urban 
growth simulation. Some improvements can be observed in those districts that maintain 
strong ties with core regions in Beijing and have favorable development conditions, includ-
ing Daxing, Chaoyang, and Shunyi. Specifically, the Kappa coefficient increased by more 
than 2%, and the figure of merit increased by more than 1.5% in all the three districts.  

We have assumed that integrating real-world human mobility into urban growth simula-
tion could help reconstruct the teleconnections within the city and better characterize the 
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complex process of urban growth. This research is expected to enhance the potential contri-
bution of human behaviors to better understand urban sprawl and improve the large data 
generalization method in the urban growth simulation process. The accelerating spatial in-
teraction among regions is reshaping land use at the local scale, and these interactions are 
intertwined with each other in processes related to urbanization. We suggest that human mo-
bility impacts could serve as a potential indicator in modeling the fine-scale expansion of 
urban areas. Therefore, effective measures regarding human mobility should be further ex-
plored in urban growth simulations. 
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