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Abstract: Flood is one of the severest natural disasters in the world and has caused enor-
mous causalities and property losses. Previous studies usually focus on flood magnitude and 
occurrence time at event scale, which are insufficient to contain entire behavior characteris-
tics of flood events. In our study, nine behavior metrics in five categories (e.g., magnitude, 
duration, timing, rates of changes and variability) are adopted to fully describe a flood event. 
Regional and interannual variations of representative flood classes are investigated based on 
behavior similarity classification of numerous events. Contributions of geography, land use, 
hydrometeorology and human regulation on these variations are explored by rank analysis 
method. Results show that: five representative classes are identified, namely, conventional 
events (Class 1, 61.7% of the total), low discharge events with multiple peaks (Class 2, 5.3%), 
low discharge events with low rates of changes (Class 3, 18.1%), low discharge events with 
high rates of changes (Class 4, 10.8%) and high discharge events with long durations (Class 
5, 4.1%). Classes 1 and 3 are the major flood events and distributed across the whole region. 
Class 4 is mainly distributed in river sources, while Classes 2 and 5 are in the middle and 
down streams. Moreover, the flood class is most diverse in normal precipitation years (2006, 
2008–2010 and 2015), followed by wet years (2007, 2013–2014), and dry years (2011 and 
2012). All the impact factor categories explain 34.0%–84.1% of individual flood class varia-
tions. The hydrometeorological category (7.2%–56.9%) is the most important, followed by 
geographical (1.0%–6.3%), regulation (1.7%–5.1%) and land use (0.9%–2.2%) categories. 
This study could provide new insights into flood event variations in a comprehensive manner, 
and provide decision-making basis for flood control and resource utilization at basin scale.          
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1  Introduction 

Flood events play positive roles in river geometry formulation, water resource utilization, 
pollutant migration and transformation, nutrient exchange between floodplain and river 
channel, integrity of aquatic ecosystem and so on (Milly et al., 2002; Hirabayashi et al., 
2013). However, flood events frequently happen at large scales and easily cause severe 
damage to human life and property. For example, the frequency of global major floods sub-
stantially increased during the 20th century, and the annual flood losses increased from 7 
billon USD in the 1980s to 24 billon USD in the 2000s (Zbigniew et al., 2013). In China, the 
flood ranks first among all the natural disasters. The total number of casualties caused by the 
flood disasters reached 25.9 thousand and direct economic losses were 0.48 trillion USD in 
the past two decades. Particularly in 2016, an extreme flood happened in 473 rivers across 
China, and caused 684 deaths and direct economic loss of 52.3 billion USD (Yang et al., 
2017). Therefore, it is critical to fully understand the flood event variations across space and 
time, which could be beneficial for the strategic designing of flood control and resource uti-
lization at basin scale.  

Flood event variation shows complicated spatio-temporal heterogeneity due to mutual 
impacts of rainfall patterns, catchment characteristics and anthropogenic activities (Sauquet 
and Catalogne, 2011). Numerous time and frequency analysis methods are usually adopted 
to investigate the variations of flood event metrics at station scale, including temporal trend 
analysis methods (e.g., Mann-Kendall test, segmented regression model) (Shao and Camp-
bell., 2002; Chen and Li, 2011a; Zhang et al., 2011b; 2012; Wang et al., 2015), change point 
tests (e.g., Pettit test, Mann-Kendall test, moving t-test) (Zheng et al., 2007; Li et al., 2008; 
She et al., 2017), periodicity analysis (e.g., wavelet analysis) (Anctil, 2010; Yang et al., 
2018) and frequency analysis (e.g., copula analysis, entropy theory) (Zhang et al., 2011a; 
Singh, 2015). Most of existing studies mainly focus on flood magnitude metrics (e.g., flood 
volume, peak flood) and their frequencies at station scale (Milly et al., 2002a; Rogger et al., 
2012; Xia et al., 2012; Ma et al., 2014; Requena et al., 2017; Merz et al., 2018; Sun et al., 
2018). However, all of these findings are still difficult to reveal comprehensive variation 
characteristics at basin scale. Furthermore, besides these metrics, other flood behavior met-
rics (e.g., flood timing, rate of change and variability) also play essential roles in the flow 
events, and have been paid more attention gradually in the last two decades (Richter et al., 
1996; Poff et al., 1997; Robinson and Sivapalan, 1997; Merz and Blöschl, 2003; Parajka et 
al., 2010; Sikorska et al., 2015; Zhang et al., 2015; Zhang et al., 2017). Therefore, it is nec-
essary to analyze the entire behavior characteristics of flood events and their spatio-temporal 
variations at basin scale by grouping flood events with similar flood behavior characteristics. 

Many methods have been adopted for river or catchment classification (Burn and Boor-
man, 1992; Rosgen, 1994; McDonnell and Woods, 2004; Ali et al., 2012), flow regime clas-
sification (Kennard et al., 2010; Zhang et al., 2012), and dam regulation assessment 
(Mcmanamay et al., 2016; Zhang et al., 2015, 2017). The representative methods include 
multivariate and principal component analysis (Snelder et al., 2005; Zhang et al., 2012, 
2015), artificial neural network (Kumar et al., 2013), and fuzzy decision tree method (Han et 
al., 2002; Sikorska et al., 2015). The multivariate and principal component analyses are 
widely used due to their simple, fast and effective classification (Zhang et al., 2012, 2015, 
2017). The artificial neural network uses similar input patterns (e.g., Neurons, Layers and 
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Networks) in high-dimensional space to pick out homogeneous samples in low-dimensional 
spaces. However, it is time-consuming and difficult to get stable classification results be-
cause a large number of iterative calculations are required (Liao and Wen, 2007). The fuzzy 
decision tree method adopts fuzzy approaches to solve classification uncertainties and ran-
domness, but needs to set initial classification standards and types which are based on strong 
practical experience of users (Sikorska et al., 2015; Brunner et al., 2018).  

The Huaihe River Basin is the most densely inhabited basin and the main cropping area of 
China (Zhang et al., 2012). However, due to complicated climatic and topographical features, 
this basin is experiencing severe flood disasters, which seriously threaten the safety of hu-
man lives and properties (Ning et al., 2003; Zhang et al., 2017). In this study, regional and 
interannual variations of representative flood event classes are explored based on the be-
havior similarity classification of numerous events. There are 342 flood events from 2006 to 
2015 at 39 stations across the upper and middle Huaihe River Basin which are selected for 
our study. The specific objectives are to: (1) identify the representative flood event classes 
based on multiple behavior metrics of magnitude, duration, timing, rate of changes and 
variability by principal component analysis and cluster analysis; (2) investigate the regional 
and interannual variations of the representative classes individually; (3) assess potential im-
pacts of geographical, land use, hydrometeorological and human regulation factor categories 
on the class variations by the rank analysis method. This study is expected to provide new 
insights into flood event variations in a comprehensive manner, and to provide deci-
sion-making basis for flood control and resource utilization at basin scale. 

2  Materials and methods 

2.1  Study area 

As one of the major basins in China, the Huaihe River Basin (111°55–121°25E, 30°55– 
36°36N) is located between the Yangtze River and Yellow River basins. The drainage area 
is approximately 2.7×105 km2 which is divided into the Huaihe River Catchment (1.8×105 
km2) and Yishusi River Catchment (9.0×104 km2) by the paleo-channel of the Yellow River 
(Old Yellow River) (Zhang et al., 2012) (Figure 1). It is in the south–north climate transi-
tional straps with warm temperate zone in the north of the basin, and north tropical zone in 
the east of the basin. The annual average temperature is 13.2‒15.7℃, and the annual average 
precipitation is 883 mm, of which 50%–75% falls during the flood season (June– Septem-
ber).  

Due to strong precipitation seasonality, rapid discharge from the upper mountainous areas 
and backwater effect from downstream lakes, the Huaihe River Basin is one of the most 
frequently and severely threatened basins by flood disasters. Over 350 major floods have 
happened in the last 2000 years. Particularly, 29 counties were severely stricken in the upper 
and middle catchment of the Huaihe River during the catastrophic flood of August, 1975 
(“75.8” catastrophic flood). The death roll was 26 thousand and the direct economic loss was 
billions of USD. Since the beginning of the 21st century, major floods happened continu-
ously across the whole basin, e.g., 2001, 2003, 2007, 2009, 2011 and 2020. In order to regu-
late floods, 9643 reservoirs and 23,767 sluices had been constructed with the storage capaci-
ties accounting for over half of the annual runoff magnitude in the Huaihe River Basin by 
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the end of 2018. Therefore, the flow regimes of the Huaihe mainstream and most of the 
tributaries were regulated remarkably (Zhang et al., 2015). In this study, the upper and mid-
dle catchments of the Huaihe River (i.e., catchment controlled by the Bengbu station) are 
selected as the study area, including Shaying River, Hongru River, southern mountainous 
rivers and Huaihe mainstream.  

2.2  Data sources 

The hourly flow observations of 342 flood events at 39 hydrological stations in the three 
main tributaries (i.e., Shaying River, Hongru River and Southern mountainous rivers) and 
the Huaihe mainstream are collected from the hydrological yearbooks of Henan and Anhui 
provinces from 2006 to 2015. There are 89 flood events at 11 stations in the Shaying River, 
76 events at 11 stations in the Hongru River, 105 events at nine stations in the Southern 
mountainous rivers, and 72 events at eight stations in the Huaihe mainstream. The general 
geographical, major land use and climatic characteristics of controlled catchments are pre-
sented in Table 1. 

 

Table 1  The general characteristics of controlled catchments, and the selected flood events 

ID Rivers Stations 
Dam 

regula-
tion

Catch-
ment area 

(km2) 

Slope 
length 
(km)

Slope 
(%)

Eleva-
tion 
(m)

River 
density 

(km/km2)

Major 
land use 

(%) 

Flood 
events

Precipita-
tion (mm) 

Potential 
evapotranspi-
ration (mm) 

1 ZiLS / 1800 89.4 22.15 818.3 0.027
Forest 
(67.6)

12 80.0±76.3 36.9±18.0 

2 ZhongT / 485 41.4 29.07 680.2 0.019
Forest 
(77.5)

13 71.0±55.2 26.7±13.8 

3 XiaGS Yes 354 36.9 19.67 471.0 0.083
Forest 
(45.0)

10 54.4±36.9 32.2±21.5 

4 RuZ Yes 3005 73.4 16.54 662.2 0.016
Forest 
(45.8)

11 54.0±27.1 42.8±19.3 

5 GaoC Yes 627 49.1 13.98 493.8 0.055
Dryland 
(58.4)

5 57.2±68.1 42.5±32.3 

6 ZhongM / 2106 132.3 1.28 144.3 0.027
Dryland 
(53.4)

5 65.9±51.8 34.7±8.3 

7 JiZ / 46 10.5 16.16 394.0 0.023
Forest 
(73.9)

5 54.4±87.7 18.7±9.8 

8 XinZ Yes 1079 75.5 5.37 268.4 0.027
Dryland 
(63.6)

10 134.1±80.6 65.7±68.1 

9 HeK Yes 2124 116.4 3.32 153.1 0.004
Dryland 
(72.4)

9 57.2±35.4 38.0±14.8 

10 LuoH Yes 12,150 170.0 7.75 316.5 0.002
Dryland 
(59.7)

6 45.3±34.3 44.9±12.0 

11 

Shaying 
River 

ZhouK Yes 25,800 202.1 4.47 214.9 0.001
Dryland 
(67.5)

3 54.1±52.6 44.6±41.8 

12 XuT / 70 13.9 22.67 554.1 0.430
Dryland 
(61.4)

3 64.1±57.6 26.9±18.7 

13 SuiP Yes 1760 96.4 5.08 164.9 0.030
Dryland 
(59.4)

9 67.5±37.1 23.0±28.4 

14 YangZ Yes 1037 61.5 4.23 141.9 0.122
Dryland 
(65.4)

5 12.8±14.0 26.0±14.8 

15 WuGy Yes 1564 107.8 2.37 105.9 0.054
Dryland 
(73.2)

8 38.3±46.2 36.7±17.0 

16 LiX / 78 18.0 6.50 175.5 0.095
Dryland 
(38.0)

10 39.8±32.9 24.6±26.3 

17 ZhuMD / 104 17.8 2.74 105.3 0.113
Dryland 
(75.0)

3 37.5±31.1 10.2±4.1 

18 MiaoW Yes 2660 95.2 1.39 81.4 0.026
Dryland 
(77.8)

12 43.4±52.4 47.6±16.8 

19 

Hongru 
River 

LuZ / 396 38.4 9.50 214.7 0.031
Forest 
(56.5)

14 24.7±29.3 18.4±9.9 

(To be continued on the next page) 



ZHANG Yongyong et al.: Investigation on flood event variations at space and time scales in the Huaihe River Basin  2057 

 

 

(Continued) 

ID Rivers Stations 
Dam 

regula-
tion

Catch-
ment area 

(km2) 

Slope 
length 
(km)

Slope 
(%)

Eleva-
tion 
(m)

River 
density 

(km/km2)

Major 
land use 

(%) 

Flood 
events

Precipita-
tion (mm) 

Potential 
evapotranspi-
ration (mm) 

20 XinC Yes 4110 178.5 0.86 66.2 0.043
Dryland 
(79.8)

2 71.1±10.6 60.7±1.6 

21 BanT Yes 11,280 197.6 1.69 88.5 0.008
Dryland 
(74.2)

4 18.6±26.1 34.9±28.8 

22 

 

GuiL Yes 1050 57.6 3.76 133.3 0.108
Dryland 
(67.0)

6 31.1±38.1 31.5±10.4 

23 TanJH / 152 24.3 20.33 279.9 0.040
Forest 
(88.2)

12 81.2±54.9 25.7±12.7 

24 ZhuGP Yes 1639 94.2 7.11 159.8 0.036
Forest 
(43.6)

14 75.6±66.0 51.4±19.9 

25 XinX Yes 274 31.5 19.40 286.1 0.071
Dryland 
(57.7)

16 79.2±54.1 42.8±32.2 

26 HuangNZ / 805 48.9 24.03 487.4 0.006
Forest 
(46.5)

10 25.1±34.5 24.5±9.6 

27 QiL / 185 31.4 26.65 531.5 0.006
Forest 
(58.3)

14 29.6±31.2 15.6±6.6 

28 HuangC Yes 2050 117.9 6.76 156.7 0.036
Dryland 
(47.7)

6 52.2±30.1 84.6±38.7 

29 BeiMJ / 1710 111.6 2.88 101.9 0.037
Paddy 
(47.7)

16 73.4±37.7 56.1±17.2 

30 JiangJJ Yes 5930 161.2 11.99 246.6 0.008
Forest 
(36.5)

8 54.5±34.3 61.8±30.6 

31 

South-
ern 
moun-
tainous 
rivers 

PeiH Yes 18 8.6 30.98 390.3 0.167
Forest 
(100.0)

9 87.9±54.2 22.6±12.4 

32 DaPL Yes 1640 70.0 6.68 218.2 0.111
Forest 
(45.9)

13 58.1±36.6 44.9±21.5 

33 ChangTG Yes 3090 78.0 5.51 185.5 0.031
Dryland 
(41.1)

14 79.6±45.9 53.4±22.9 

34 XiX Yes 10,190 124.7 4.86 148.2 0.008
Dryland 
(36.2)

10 84.5±46.0 75.8±24.5 

35 HuaiB Yes 16,005 138.7 3.93 125.0 0.005
Dryland 
(43.2)

10 60.2±43.1 96.1±46.4 

36 LuTZ Yes 88,630 232.3 4.14 147.7 0.001
Dryland 
(54.3)

5 73.6±70.8 73.7±46.4 

37 BengB Yes 121,330 279.3 3.23 123.6 0.001
Dryland 
(57.2)

4 46.53±39.7 47.7±31.4 

38 WangWQ Yes 200 33.2 0.91 63.3 0.131
Dryland 
(91.4)

12 28.8±27.5 24.3±11.9 

39 

Huaihe 
main-
stream 

WangJB Yes 30,630 159.8 2.77 104.5 0.003
Dryland 
(56.6)

4 107.1±59.1 113.6±22.4 

Note: The ratio of major land use area is calculated based on the land use in 2015; the precipitation and potential evapo-
transpiration are the average values ± the standard deviation for the flood events at each station. 

 

2.3  Flood behavior metrics and potential impact factors 

Nine flood behavior metrics in five categories of magnitude, duration, timing, rate of 
changes and variability are adopted to describe the overall characteristics of flood events. 
The detailed definitions and calculations are given in Table 2. 

Our study investigates the potential impacts of geographical, land use, hydrometeo-
rological and regulation categories on the flood event classes (Zhang et al., 2010; Xia et al., 
2012b; Shi et al., 2013; Zhang et al., 2015; Nied et al., 2017). In this study, 40 geographical, 
land use, hydrometeorological and human regulation factors are adopted to investigate po-
tential impacts on the individual flood event classes at catchment scale (Table 3). The geo-
graphical factors (n=10) include location (longitude and latitude: Long and Latt), catchment 
area (Cat_A, km2), average elevation (Cat_ae, m), slope (Cat_slp, %) and length (Cat_len, 
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Figure 1  Locations of the Huaihe River Basin, selected hydrological stations, dams and sluices 
 

Table 2  Flood behavior metrics used for flood event descriptions 

Categories Behavior metrics Abbreviation Unit Calculation equation 

Total amount of flood Rsum mm 3 386.4 10 86.4 10
tend

sum sum t
t tbegin

R Q A Q A 


        

Magnitude 

Maximum peak flood Qpk none ,max max( )pk t sum t sumQ Q Q Q Q   

Duration Flood event duration Tduration d 1duration end beginT F F    

Timing of flood event Fbegin d 
Timing Timing of maximum 

peak flood Tpk none 
,max( 1)pk pk begin durationT F F T    

Mean rate of positive 
changes RQrise 1/hr 

,max

,max

( )

[ ( ) 24]
t Fbegin

rise
sum pk begin

Q Q
RQ

Q t F




  
 

Rate of 
changes 

Mean rate of negative 
changes RQdown 1/hr ,max

,max

( )

[ ( 1) 24]
t Fend

down
sum end pk

Q Q
RQ

Q F t




   
 

Number of peak flood Npk none 
Flood 
forms Coefficient of varia-

tion CV none 
avCV Q  

Note: Qt is the tth flood magnitude (m3/s); A is catchment area (km2); Qav and σ are the average value and standard de-
viation of flood series (m3/s), respectively; QFbegin and QFend are flood magnitudes at the beginning and end of a flood 
event, respectively (m3/s); Fbegin, Fend and Fpk,max are the beginning and end days of a flood event, and the day that the 
maximum flood peak happens, respectively (day). 

 
km) of the controlled catchment, river slope (Rch_slp, %) and length (Rch_len, km), river 
width-depth ratio (Rch_wdr, m/m), and river density (Rch_den, km/km2). The land use fac-
tors (n=7) are the main land use areas in the controlled catchment, i.e., paddy (Lu_pad, km2), 
dryland (Lu_dry, km2), forest (Lu_fst, km2), grass (Lu_grs, km2), water (Lu_wat, km2), ur-
ban (Lu_urb, km2) and unused land (Lu_uns, km2). The hydrometeorological factors (n=13) 
mainly involve the cumulative amounts of precipitation and potential evapotranspiration 
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during the flood event (Pcp_tot and Pet_tot, mm) and in the antecedent days, the annual 
amounts (Pcp_ann and Pet_ann, mm) and the ratios in flood season (R_fldpcp and R_fldpet), 
and baseflow index of the flood event (BFI) gained by averaging the BFI results of Chap-
man-Maxwell method (Chapman, 1999), Boughton-Chapman method (Boughton, 1993) and 
Lyne-Hollick method (Lyne and Hollick, 1979). The antecedent three, five and seven days 
are usually adopted for the hydrological simulation and flood disaster assessments (Liu et al., 
2006; Ma et al., 2012), and thus are adopted in this study (i.e., Pcp_3d, Pcp_5d, Pcp_7d, 
Pet_3d, Pet_5d and Pet_7d,mm). Due to the difficulties to collect hourly precipitation and 
potential evapotranspiration observations, the Pcp_tot and Pet_tot are calculated at the daily 
scale, i.e., from the beginning day to the end day of flood event. The dam regulation factors 
(n=10) include number of dams and sluices (num_rsv), total and beneficial storage capaci-
ties of dams and sluices (tot_rsv and use_rsv, 108 m3), and their ratios of annual average ru-
noff magnitude from 2006 to 2015 (R_totrsv and R_usersv), number of water diversion 
projects (num_wdp) and total capacities (tot_wdp, 108 m3), number of water pumping pro-
jects (num_wpp) and total capacities (tot_wpp, 108 m3), and total capacity of water transfer-
ring projects (tot_wtp, 108 m3). All the factor values are obtained for all the 
station-controlled catchments.  
 
Table 3  Potential impact factor categories used to analyze the space and time variations of flood events 

Factor categories Factors Flood event implications 

Location  Longitude and latitude (Long and Latt) All the behavior categories 

Catchment 
Area (Cat_A, km2), average elevation (Cat_ae, m), slope 
(Cat_slp, %) and length (Cat_len, km)  

Magnitude, rate of changes 
and forms Geography 

River 
Slope (Rch_slp, %) and length (Rch_len, km), 
with-depth ratio (Rch_wdr, m/m), river density 
(Rch_den, km/km2) 

Magnitude, rate of changes 
and forms 

Land use Land use area
Paddy (Lu_pad, km2), dryland (Lu_dry, km2), forest 
(Lu_fst, km2), grass (Lu_grs, km2), water (Lu_wat, km2), 
urban (Lu_urb, km2) and unused land (Lu_uns, km2) 

Magnitude, rate of changes 
and forms 

Precipitation

Cumulative amount in the antecedent three, five and 
seven days (Pcp_3d, Pcp_5d, Pcp_7d, mm) and during 
the flood event (Pcp_tot, mm), annual amount (Pcp_ann, 
mm) and ratio of flood season (R_fldpcp) 

All the behavior categories 

Potential 
evapotranspi-
ration 

Cumulative amount in the antecedent three, five and 
seven days (Pet_3d, Pet_5d and Pet_7d, mm) and during 
the flood event (Pet_tot, mm), annual amount (Pet_ann, 
mm) and ratio of flood season (R_fldpet) 

Magnitude 

Hydrometeoro- 
logy 

Baseflow Baseflow index (BFI) 
Magnitude, duration and 
forms 

Water storage 
project 

Number (Num_rsv), total and beneficial capacities 
(Tot_rsv and Use_rsv, 108 m3), and their ratios of annual 
average runoff magnitude (R_totrsv and R_usersv) 

All the behavior categories 

Water diver-
sion project 

Number (Num_wdp) and total capacities (Tot_wdp, 108 m3) Magnitude  

Water pump-
ing project 

Number (Num_wpp) and total capacities (Tot_wpp, 108 m3 Magnitude 

Human regulation 

Water trans-
ferring project

Total capacity (Tot_wtp, 108 m3) Magnitude 

 

The data sources of Geographic Information System (GIS), gauged hydrometeorological 
observations, and dam regulations are collected for the impact assessments. The GIS data 
sources include the Digital Elevation Model (DEM) (100 m×100 m resolution), and land use 
data in 2005, 2010 and 2015 (1000 m×1000 m resolution), all of which are from the Data 
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Center for Resource and Environmental Sciences, Chinese Academy of Sciences 
(http://www.resdc.cn/). The geographical and land use factors of station-controlled catch-
ments are extracted based on DEM and land use data using the hydrological toolset of Ar-
cGIS platform (Environmental Systems Research Institute, 2011). The hydrometeorological 
observations include the daily precipitation and temperature observations at 80 stations col-
lected from the China meteorological administration (http://cdc.cma.gov.cn/home.do). The 
gauged potential evapotranspiration is calculated using the Hargreaves method (Hargreaves 
and Samani, 1982), and both the precipitation and potential evapotranspiration factors in the 
catchments are calculated from the gauged observations using the inverse distance weighting 
interpolation method. The dam regulation data sources are collected from the Huaihe River 
Basin Hydrology Handbook (Ning et al., 2003). 

2.4  Methods 

Both the principal component analysis and the cluster analysis are adopted to identify the 
main flood event classes and their variations. The principal component analysis has advan-
tages of merging multiple correlated metrics into independent composite components with-
out losing the metric information (Zhang et al., 2017). The cluster analysis is beneficial to 
identify representative characteristics from multiple pieces of chaotic information (Olden et 
al., 2012). Currently, both principal component analysis and cluster analysis are widely ap-
plied in the hydrology community, such as river classification (Mcmanamay et al., 2016), 
assessment of flow regime variation at spatio-temporal scales (Zhang et al., 2015, 2017) and 
flood classification (Sikorska et al., 2015).  

2.4.1  Principal component analysis 

The nine flood behavior metrics of all the 342 events could be formed as a metric matrix A:  

 1 2( , , , )j j j mjA = a aa                            (1) 
where aij is the ith flood behavior metric (i = 1, 2, …, m; m= 9) for the jth flood event (j = 1, 2, …, 
n; n = 342), i.e., Rsum,j (mm), Qpk,j (none), Tduration,j (day), Fbegin,j (day), Tpk,j (none), RQrise,j 
(1/hr), RQdown,j (1/hr), Npk,j (none) and CVj (none); Aj is the vector of flood behavior metrics 
for the jth flood event; and n is the total flood event number. The standardization is usually 
implemented as follows for all the flood behavior metrics to eliminate impacts of different 
units. 
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where aij
* is the ith flood behavior metric after the standardization; ia  and i  are the av-

erage value and standard deviation of ith flood behavior metric; Aj
* is the vector of flood 

behavior metrics for the jth flood event after the standardization. 
Due to the high dimensionality and correlation among different flood behavior metrics, 

the principal component analysis is adopted to simplify the matrix A into a new matrix P 
with several independent principal components (i.e., PCAs). The kth PCA (k = 1, 2, …, l; 
l<m) is calculated as follows: 
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where pki is the factor loading of kth principal component (k = 1, 2, …, l; i= 1, 2, …, m). The 
factor loadings are the eigenvectors of correlation matrix R of flood behavior metrics. 

 

11 12 1

21 22 2

1 2

m

m

m m mm

r r r

r r r
R

r r r

 
 
 
 
 
 




   


   (4) 

where rij is the correlation coefficient between the ith and jth metrics. The eigenequation of 
correlation matrix is formulated as follows: 

 0I R                             (5) 
where λi is the ith eigenvalue (i= 1, 2, …, m) and its corresponding eigenvector is pi in equa-
tion (2), all of which are gained by the Jacobian method (Simon and Blume, 1994). Variance 
is adopted to assess information of the flood behavior metrics contained in the PCA. The 
larger the variance of this PCA, the more metric information it contains. Contribution (Ri) of 
the ith PCA is calculated as follows: 
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If the cumulative variance reaches a certain threshold, the first l PCAs are considered to 
contain enough information of the flood behavior metrics. In this study, the threshold is set 
as 80%. 

2.4.2  Cluster analysis 

The hierarchical clustering analysis is adopted to cluster 342 flood events into some repre-
sentative flood event classes based on the PCA similarity among different flood events. Euc-
lidean distance is used to calculate the PCA similarity and the equation is as follows: 
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where l is the total PCA number, and i, j are the ith and jth flood events. Ward’s method is 
used for hierarchical clustering of all the flood events. The Goodman-Kruskal index (GKI), 
C index (CI), and minimum cluster size are used to evaluate the clustering performance. The 
final clustering result is determined according to the greatest value of GKI and the lowest 
value of CI, and the minimum cluster size is more than two flood events to ensure its repre-
sentativeness (Zhang et al., 2015). 

2.4.3  Impact factor identification of individual flood event classes 

The rank analysis method is adopted to detect the potential relationships between impact 
factor categories and flood event classes. The typical methods are the Detrended Corre-
spondence Analysis (DCA), Redundancy Analysis (RDA) and Canonical Correlation Analy-
sis (CCA) (Zhang et al., 2016). The RDA is a linear model, and the CCA is an unimodal 
model, both of which could be used for the detection. The data sources of impact factor cat-
egories and flood event metrics in the individual classes are firstly detected by the DCA 
method. All the 40 potential impact factors of all the 342 events could be formed as a factor 
matrix F:  
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  1 2, , ,j j j kjFF = F F                         (8) 

where Fij is the ith impact factors (i = 1, 2, …, k; k= 40) for the jth flood event (j = 1, 2, …, n; 
n = 342); Fj is the vector of flood behavior metrics for the jth flood event, which is stan-
dardized using Equation (2). Each factor is assigned a score (xi). Scores for each event (yj) 
are calculated as a weighted average as follows: 
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The event scores are then used to calculate a new set of impact factor scores following the 
same procedure. Thus the equation is given as follows: 
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The impact factor scores are centered and standardized with their mean and variance being 
zero and one, respectively. 
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This procedure for calculating impact factor and event scores (i.e., Equations 9–11) is re-
peated until the scores stabilize. The yj scores are referred as a trial vector and deemed to be 
an eigenvector. The first axis is calculated following the procedure outlined above. The se-
lection of CCA or DCA is according to the length of first axis. If the length is greater than 
4.0, CCA is selected. If the length is between 3.0 and 4.0, both CCA and RDA are suitable. 
If the length is less than 3.0, RDA is selected. The detections are implemented for the entire 
flood events and the individual flood event classes to identify the main impact factor catego-
ries and their contributions on the flood event variations. 

3  Results and discussion 

3.1  Flood event classification 

Five independent PCAs are selected, which explain 83.18% of the entire variance of flood 
behavior metrics. The first PCA including the characteristic metrics (Qpk, RQrise, RQdown and 
CV) explains 35.15% of the entire variance. The second PCA including the characteristic 
metrics (Rsum and Tpk) explains 15.03%. Npk, Fbegin and Tduration represent the third, fourth and 
fifth PCAs, which explain 11.68%, 11.13% and 10.19%, respectively.  

The flood events are classified into several clusters (i.e., two to six) based on the similar-
ity of the PCAs (Figures 2 and 3). As the cluster number increases, the GKI increases gradu-
ally from 0.56 to 0.82, and both the CI and minimum size of all the clusters decrease gradu-
ally from 0.27 to 0.06 for CI, and from 132 to 14 for the minimum size. Therefore, the per-
formance for the main five clusters is the best with the greatest of GKI (0.82) and the small-
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est of CI value (0.06). The main five classes are classified for all the flood events in our 
study. 

 
 

Figure 2  Hierarchical clustering results presented by black, red, yellow, blue and green colors for all the flood 
events named by station name+ event sequence which is sorted in chronological order (e.g., ZiLS01 means the 
first event at ZiL station) 
 

3.2  Flood behavior characteristics of individual classes 

There are 210 flood events in Class 1, accounting for 61.4% of the total number (Figure 4). 
Most of the events have one peak flood and mainly occur in the flood season. For the flood 
magnitude, Rsum values are relatively small, and are from 0.07 mm to 48.77 mm with the 
average of 3.36 mm (Figure 5). The Qpk values are from 3.93 m3/s to 3140 m3/s, accounting 
for 0.5%–11.3% of the total flood magnitude with the average of 3.17%. For the flood vari-
ability, the CV values are from 0.33 to 2.59 with the average of 1.25. For the flood duration 
and timing, the Tduration values are from 1.83 days to 54.33 days with the average of 10.94 
days. The Fbegin values are from 167th to 309th with the average of 220th. Furthermore, the 
Tpk values are from 0.125 days to 10.70 days after the flood events begin, accounting for 
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0.9%–62.5% of the total flood durations. For 
the rates of changes, both the RQrise and RQdown 
are the second greatest in all the classes with 
the average of 2.1×10‒3 hr‒1 and 2.7×10‒4 hr‒1, 
respectively. According to all the flood behav-
ior metrics, the flood events in Class 1 repre-
sent the Low discharge, Medium Variable and 
Single Peak flood events with Medium Rates 
of changes in the flood season (Class 1: 
LMV-SP-MR in the flood season).  

There are 19 flood events in Class 2, ac-
counting for 5.6% of the total number. For the 
flood magnitude, Rsum values are also quite 

small, and are from 0.13 mm to 25.03 mm with the average of 5.09 mm (Figure 5). The Qpk 
values are from 33.6 m3/s to 3220 m3/s, accounting for 0.6%–8.2% of the total flood magni-
tude with the average of 2.03%. For the flood variability, the CV values are from 0.68 to 

 

 
 

Figure 4  Normalized flood hydrographs of individual flood event classes (a–e) and their frequencies of flood 
events in the pre-flood, flood and post-flood seasons 

 
 

Figure 3  Classification performance assessment 
using the Goodman-Kruskal index (GKI), C index 
(CI) and minimum cluster for different total class 
numbers 
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Figure 5  Variations of individual flood behavior metrics among different classes. Median values are defined by 
the solid dot symbols, respectively. Each black box illustrates the 25th and 75th percentile values, and the vertical 
line defines the minimum and maximum values without outliers. The white dot means the 50th percentile value 
and the violin shape means the frequency distribution of flood behavior metric.  

 

2.02 with the average of 1.17. For the flood duration and timing, the Tduration values are from 
5.04 days to 28 days with the average of 13.89 days. The Fbegin values are from 175th to 
249th with the average of 210th, and all of these events occur in the flood season. Further-
more, there are multiple peak floods in most of flood events in this class, and the Tpk values 
of the maximum peak flood are from 0.25 day to 3.96 days after the flood events begin, ac-
counting for 5.0%–28.9% of the total flood durations. For the rates of changes, both the 
RQrise and RQdown are the medium in all the classes with the average of 1.1×10‒3 hr‒1 and 
1.1×10‒4 hr‒1, respectively. Therefore, the flood events in Class 2 represent the Low dis-
charge, Medium Variable, Multiple Peak floods with Medium Duration in the flood season 
(Class 2: LMV-MP-MD in the flood season). 

There are 62 flood events in Class 3, accounting for 18.1% of the total number. For the 
flood magnitude, Rsum values are also small, and are from 0.05 mm to 36.20 mm with the 
average of 2.79 mm. The Qpk values are from 6.65 m3/s to 2980 m3/s, accounting for 
0.5%–10.0% of the total flood magnitude. For the flood variability, the CV values are from 
0.57 to 2.78 with the average of 1.30. For the flood duration and timing, the Tduration values 
are from 3.20 days to 29 days with the average of 11.4 days. The Fbegin values are from 9th 
to 167th with the average of 109th, and these flood events mainly occur in the pre-flood 
season. Furthermore, the Tpk values are from 0.125 days to 7.75 days after the flood events 
begin, accounting for 0.7%–38.2% of the total flood durations with the average of 16.9%. 
For the rates of changes, both the RQrise and RQdown are the medium in all the classes with 
the average of 1.7×10‒3 hr‒1 and 1.9×10‒4 hr‒1, respectively. Therefore, the flood events in 
Class 3 represent the Low discharge, Medium Variable, Single Peak floods with Low Rates 
of changes in the pre-flood season (Class 3: LMV-SP-LR in the pre-flood season).  

There are 37 flood events in Class 4, accounting for 10.8% of the total number. For the 
flood magnitude, Rsum values are the smallest, and are from 0.05 mm to 7.23 mm with the 
average of 1.52 mm. The Qpk values are from 31.3 m3/s to 3370 m3/s, accounting for 
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8.6%–40.7% of the total flood magnitude with the average of 15.5%. These ratios are the 
greatest among all the classes. For the flood variability, the CV values are the greatest among 
all the classes, from 1.33 to 3.47 with the average of 2.25. For the flood duration and timing, 
the Tduration values are from 1 day to 19.38 days with the average of 4.51 days. The Fbegin 
values are from 122th to 271th with the average of 194th, and these flood events mainly oc-
cur in the flood season. Furthermore, the Tpk values are from 0.04 day to 1.21 days after the 
flood events begin, accounting for 0.2%–37.9% of the total flood durations. For the rates of 
changes, both the RQrise and RQdown are also the greatest among all the classes with the av-
erage of 2.5×10‒2 hr‒1 and 2.4×10‒3 hr‒1, respectively. Therefore, the flood events in Class 4 
represent the Low discharge, Extreme Variable, Single Peak floods with High Rates of 
changes in the flood season (Class 4: LEV-SP-HR in the flood season). This class belongs to 
the sharp and skinny flood event in the mountainous regions reported by Zhang et al. (2020), 
and is basically similar with the low discharge and variable flow regimes (Zhang et al., 
2012).  

There are 14 flood events in Class 5, accounting for 4.1% of the total number. For the 
flood magnitude, Rsum values are the greatest, and are from 0.5 mm to 266.5 mm with the 
average of 86.69 mm. Although the Qpk values (from 479 m3/s to 4010 m3/s) are the largest 
among all the classes, the ratios to the total flood magnitude are the least, only 0.3%–14.1% 
with the average of 1.68%. For the flood variability, the CV values are the least, and are 
from 0.08 to 1.28 with the average of 0.55. For the flood duration and timing, the Tduration 
values are from 3.17 days to 29.5 days with the average of 15.64 days. The Fbegin values 
were from 61th to 260th with the average of 168th, and these flood events also mainly occur 
in the flood season. Furthermore, the Tpk values are from 0.3 day to 14.5 days after the flood 
events begin, accounting for 0.1%–64.0% of the total flood durations. For the rates of 
changes, both the RQrise and RQdown are the medium in all the classes with the average of 
1.5×10‒3 hr‒1 and 1.7×10‒4 hr‒1, respectively. Therefore, the flood events in Class 5 represent 
the High discharge, Stable, Single Peak floods with Long Duration in the flood season 
(Class 5: HS-SP-LD in the flood season). This class belongs to the dumpy flood event in the 
middle and downstream regions reported by Zhang et al. (2020), and is also similar with the 
high discharge and stable flow regimes (Zhang et al., 2012). 

3.3  Regional variations of individual classes 

All the flood event classes exist in the Hongru River, Shaying River and Southern moun-
tainous rivers, except the Huaihe mainstream (Figure 6). Class 1 is the dominant flood event 
at all the attributes across the basin. In particular, over 80% of the flood events at ZhongM 
and ZiLS stations in the Shaying River, SuiP and MiaoW stations in the Hongru River, 
HuangNZ station in the Southern mountainous rivers, and WangWQ station in the Huaihe 
mainstream are in Class 1. Class 2 is mainly distributed in the Hongru River and the down-
stream of Southern mountainous rivers. Regional distributions of Class 3 are mainly consis-
tent with those of Class 1. Class 4 is mainly distributed in the source areas of Shaying River, 
Hongru River and Southern mountainous rivers. Class 5 is mainly distributed in the middle 
and downstream of the Huaihe mainstream. Furthermore, the class diversity of flood events 
reduces gradually from the source stations to the downstream stations. 
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Figure 6  Spatial variations of different flood event classes 

 
In the Shaying River, 78.9% of the flood events belongs to Class 1, followed by Class 3 

(18.4%), Class 4 (11.8%), Class 2 (6.5%) and Class 5 (1.3%). All the flood event classes 
(Classes 1–5) exist at XiaGS station, while only one flood event class (Class 1) exists at 
ZhongM station. In the Hongru River, 60.5% of the flood events also belong to Class 1, fol-
lowed by Class 4 (21.1%), Class 3 (11.8%), Class 2 (5.3%) and Class 5 (1.3%). The flood 
event class is most diverse at GuiL station (Classes 1, 3, 5), LiX station (Classes 1, 2, 4), 
MiaoW and WuGY stations (Classes 1, 3, 4), while only one flood event class is at SuiP sta-
tion (Class 1) and ZhuMD station (Class 4). In the Southern mountainous rivers, 78.9% of 
the flood events belong to Class 1, followed by Class 3 (36.8%), Class 4 (15.8%), Class 2 
(5.3%) and Class 5 (1.3%). The flood event class is most diverse at JiangJJ station (Classes 
1–3, 5) and XinX station (Classes 1–4), while only one flood event class is at HuangNZ sta-
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tion (Class 1). In the Huaihe mainstream, 57.9% of the flood events belong to Class 1, fol-
lowed by Classes 3 and 5 (14.5%), and Class 2 (7.9%). No flood events exist in Class 4. The 
flood event class is most diverse at Xix station (four classes, i.e., Classes 1–4), while only 
one flood event class is at Lutz and Bengb stations (Class 5).  

3.4  Interannual variations of individual classes 

For all the flood events, the class is most diverse in the normal precipitation years (2006, 
2008–2010 and 2015) including all the five classes (Figure 7), followed by those in the wet 
years (2007, 2013–2014) with four classes. The classes are most homogeneous in the dry 
years, i.e., 2011 (Classes 1, 2 and 4) and 2012 (Classes 1, 3 and 4). Class 1 is also dominant 
in the whole period, except 2010 and 2015. The ratio of Class 1 for the individual years 
ranges from 38.9% (2015) to 84% (2012) with the average of 62.5%. Classes 2–4 mainly 
exist in most years of the whole period, except 2007 and 2011 for Class 2, and 2011 for 
Class 3. The ratios range from 2.7% to 13.3% with the average of 7.1% for Class 2, from 
4.0% to 38.9% with the average of 18.5% for Class 3, and from 2.6% to 19.4% with the av-
erage of 11.2% for Class 4. Class 5 is only in 2006–2010 and 2015, and the ratio ranges 
from 2.8% to 13.3% with the average of 6.5%. 

The flood event classes in the Shaying River shift from Class 1 to Classes 3 and 4 with 
the decrease of annual precipitation. Class 1 distributes in the whole period, and is dominant 
particularly in the dry years (2011, 2012 and 2014). There are only five events in Class 2, 
mainly in the normal precipitation years (2006, 2008 and 2010); 14 events in Class 3, mainly 
in the normal precipitation and wet years (2007, 2008, 2010, 2013 and 2015); nine events in 
Class 4, mainly in the wet years (2009, 2013 and 2015).  

The flood event classes in the Hongru River and Southern mountainous rivers are rela-
tively diverse, and there are two or three classes in all the years. In the Hongru River, be-
sides the dominant Class 1, Class 4 exists in most years (except 2013) with the ratios from 
11.1% to 40.0%. Only four events exist in Class 2, mainly in the normal precipitation years 
(2006, 2010 and 2015); nine events in Class 3, mainly in the normal precipitation years 
(2008, 2009, 2012, 2013 and 2015), and only one event in Class 5 (at XiaGS station in 2007). 
In the South mountainous rivers, Class 3 exists in most years except in 2011 and 2012 with 
the ratios from 16.7% to 60.0%. Only four events exist in Class 2, in the dry years (2009, 
2011 and 2013); 12 events in Class 4, mainly in the normal precipitation and wet years 
(2008, 2010–2013); only one event in Class 5 (at JiangJJ station in 2015).  

In the Huaihe mainstream, the flood event classes vary most obviously in the whole pe-
riod. There are four classes (except Class 4) in the wet year (2008), but only one class (Class 
1) in the normal precipitation and dry years (2012 and 2013). Class 1 is dominant in 2009, 
2011 and 2012 with the ratios being over 85%. Class 5 is mainly distributed in 2006–2010 
and 2015 with the ratios from 11.1% to 50.0%, and Classes 2 and 3 are mainly distributed in 
2013–2015 with the ratios from 6.7% to 50.0% for Class 2, and from 11.1% to 40.0% for 
Class 3, respectively. 

3.5  Potential impacts on the flood event classes 

According to the DCA detection, all the lengths of first axises are less than 3.0. Thus, the 
RDA method is selected. By the RDA analysis, 80% of the impact factors (32/40) are  
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Figure 7  Interannual distributions of flood event classes from 2006 to 2015 in the Shaying River, Hongru River, 
Southern mountainous rivers, Huaihe mainstream and for all the flood events 
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detected to be significantly correlated with the flood event variations (p≤0.01) (Figure 8). 

The significant factors are the position (Long), Cat_ae, Cat_A, Cat_slp, Cat_len, Rch_slp 
and Rch_wdr in the geographical category with the correlation coefficients (r) ranging from 
0.18 to 0.80, are the Lu_pad, Lu_dry, Lu_fst, Lu_grs, Lu_wat, Lu_urb and Lu_uns in the 
land use category (r: 0.64–0.82), are the BFI, Pcp_tot, Pet_tot, Pet_7d, R_fldpcp and 
R_fldpet in the hydrometeorological category (r: 0.18–0.32), and are the num_rsv, tot_rsv, 
use_rsv, num_wdp, tot_wdp, num_wpp, tot_wpp, and tot_wtp in the regulation category (r: 
0.69–0.82). There are 34.0% of the total flood event variations explained by all the impact 
factor categories, i.e., 15.3%, 2.1%, 1.0% and 0.9% of the total variations by hydrometeorol-
ogy, regulation, geography and land use, respectively. The rest 14.7% variations are the com-
bined impacts of all the categories.  

 

  
 

Figure 8  Correlation coefficients between impact factors and flood behavior metrics (the blank column means 
insignificant impact factor) 

 
Due to the flood event classification, the impact factor categories explain more variations 

for the individual flood event classes (Figure 9). In Class 1, 71.2% of the flood event varia-
tions are explained including 46.3% by the hydrometeorological category, 1.7% by the reg-
ulation category, 1.6% by the geographical category, 1.2% by the land use category, and 
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20.4% by the combined impacts of all the categories. In Class 3, 82.6% of the flood event 
variations are explained including 56.9% by the hydrometeorological category, 6.3% by the 
geographical category, 5.1% by the regulation category, 2.2% by the land use category, and 
12.2% by the combined impacts of all the categories. In Class 4, 84.1% of the flood event 
variations are explained including 52.3% by the hydrometeorological category, 4.0% by the 
land use category, and 27.8% by the combined impacts of all the categories. In Classes 2 and 
5, only the hydrometeorological category is statistically significant, explaining only 7.2% 
and 47.9% of the flood event variations in Classes 2 and 5, respectively. 

 

 
 

Figure 9  Contributions of impact categories and their combinations on the regional and interannual variations of 
individual flood event classes 

 
Therefore, the regional and interannual variations of both the individual flood events and 

classes are mainly impacted by the hydrometeorological category, particularly the total pre-
cipitation amount during the events which directly determines all the flood event character-
istics (Wang et al., 2015; Nied et al., 2017). The cumulative precipitation and potential 
evapotranspiration in antecedent days impact initial soil moisture and water storage in river 
systems, which obviously impact the runoff yield processes (Xia et al., 2005). The baseflow 
provides stable and perennial flow for river streamflow, which directly impacts the flood 
magnitude, duration and forms (i.e., Class 5) (Shao and Campbell, 2002; Chapman, 1999). 
The impacts of geographical, regulation and land use categories also could not be ignored. 
The locations mainly determine the characteristics of climate, land covers and the catchment 
and river factors directly alter runoff yield and routing, and thus impact the magnitude, rate 
of changes and forms of flood events (Kennard et al., 2010; Zhang et al., 2016). The land 
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use category mainly impacts runoff yield and overland routing (Shi et al., 2013; Sikorska et 
al., 2015; Zhang et al., 2016). For example, Class 1 is the most common flood event types at 
89.7% of the stations (35/39) across the basin. The flood event characteristics belong to 
natural storm floods mainly impacted by the hydrometeorological category. The flood events 
in Class 4 are mainly in the headstreams without severe regulations of reservoirs and sluices. 
The main flood event characteristics are high peak flood, short duration and steep changes 
mainly impacted by the precipitation and retention of land covers (Zhang et al., 2012).  

Furthermore, 27 of all the 39 stations (69.2%) are at the downstreams of reservoirs or 
sluices (Table 1), including 63.6% of stations in the Shaying River, 63.6% in the Hongru 
River, 55.6% in the Southern mountainous rivers and 87.5% in the Huaihe mainstream. Thus, 
the flood events at these stations are altered obviously, particularly in the upstreams of the 
Southern mountainous rivers, Shaying River and Hongru River which are regulated by large 
reservoirs (Zhang et al., 2012, 2015). Although the impacts of regulation category are not 
significant (i.e., Classes 2 and 5) by the RDA, the potential impacts also could be deduced. 
For example, 78.6% of the stations (11/14) in Class 2 are in the upstreams and also mainly 
regulated by large reservoirs. The main regulation characteristics are to decrease the peak 
flood magnitude and rate of changes, and to noticeably increase the peak flood numbers and 
flood durations. These characteristics are quite similar with the regulation of “storage reser-
voir” (McManamay et al., 2016) and Late Summer Flow regulation (L–V–MI) reported by 
Zhang et al. (2015). In Class 5, all the stations are in the middle and lower reaches of the 
Huaihe mainstream. The main characteristics are large flood volume, stable and long dura-
tion due to the flood confluence from all the tributaries. Thus, all the flood events could be 
hydrological responses to combined impacts of hydrometeorology, geography, land use and 
dam regulation in the upstream regions (Zhang et al., 2015). In Class 3, 75.0% of the sta-
tions (21/28) are in the downstream regulated by the sluices (Zhang et al., 2015). The main 
flood characteristics are very similar with those of Class 1, but the flood event timings are 
different. Furthermore, the main regulation characteristics by sluices are only to slightly de-
crease the rates of changes, and are quite similar with the regulation of “run-of-river reser-
voir” (McManamay et al., 2016).  

4  Conclusions 

The flood event variations are investigated at both regional and interannual scales based on 
the flood behavior metrics using the classification approach, and the potential impact cate-
gories are further explored to explain the flood event variations using the rank analysis. 
There are 342 flood events at 39 stations in the upper and middle reaches of the Huaihe 
River Basin selected for the study. Results show that: 

(1) All the flood events are clustered into five flood event classes, i.e., the low discharge, 
medium variable, single peak flood events with medium rates of changes in the flood season 
(Class 1), the low discharge, medium variable, multiple peak floods with medium duration 
in the flood season (Class 2), the low discharge, medium variable, single peak floods with 
low rates of changes in the pre-flood season (Class 3), the low discharge, extreme variable, 
single peak floods with high rates of changes in the flood season (Class 4), and the high 
discharge, stable, single peak floods with long duration in the flood season (Class 5). There 
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are 210, 19, 62, 37 and 14 events in Classes 1–5, respectively, accounting for 61.4%, 5.6%, 
18.1%, 10.8% and 4.1% of the total number of events. 

(2) The flood event class is most diverse at the source and upstream stations, and becomes 
single at the downstream stations. Classes 1 and 3 are the major flood events in all the at-
tributes across the basin. Class 2 mainly distributes in the Hongru River and the down-
streams of Southern mountainous rivers. Class 4 mainly distributes in the source rivers, and 
Class 5 mainly distributes in the middle and downstream of Huaihe mainstream. Further-
more, most of the flood event classes exist in the normal precipitation years, followed by the 
wet years. The flood event class becomes homogeneously distributed in the dry years. 

(3) The impacts of geographical, land use, hydrometeorological and regulation categories 
probably result in the regional and interannual variations for both all the flood events and the 
individual classes. The contributions of all the impact factor categories range from 34.0% to 
84.1%, in which the hydrometeorological category is the most important (7.2%–56.9%). The 
impacts of geographical, regulation and land use categories should not be ignored, which 
explain 1.0%–6.3%, 1.7%–5.1% and 0.9%–4.0% of the total variations of flood event 
classes. Moreover, the combined influences of all the impact factor categories can explain 
14.7% of the total flood event variations, 20.4% of the total variations in Class 1, 12.2% in 
Class 3 and 27.8% in Class 4, respectively. 

The results of flood event classes could be beneficial to investigate the flood event varia-
tions in a comprehensive manner. For example, the flood event variations in different rivers 
could be deduced in advance from the identified flood event classes according to the geo-
graphical, land use, hydrometeorological and regulation conditions. The variations would be 
very informative to design plans for flood control and disaster mitigation, water resource 
utilization at basin scale. However, the potential impacts on the flood event variations can be 
further explored because 15.9%–92.8% of the total variations in the individual classes are 
still not explained. Hydrological modelling approach could be adopted to explore the poten-
tial impact mechanisms, and quantify their contributions in future studies. 
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