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Abstract: Reconstruction of the spatial pattern of regional habitat quality can revivify the 
ecological environment background at certain historical periods and provide scientific support 
for revealing the evolution of regional ecological environmental quality. In this study, we se-
lected 10 driving factors of land use changes, including elevation, slope, aspect, GDP, popu-
lation, temperature, precipitation, river distance, urban distance, and coastline distance, to 
construct the CA-Markov model parameters and acquired the land use spatial data for 1975, 
1980, 1985, 1990, and 1995 by simulation based on the land use status map for 2010. On this 
basis, we used the InVEST model to reconstruct the spatial pattern of habitat quality in the 
study area and conducted classification division and statistical analysis on the computed 
habitat degradation degree index and the habitat quality index. (1) The results showed that 
from 1975 to 2010, the habitat degradation degree gradually increased, and the habitat deg-
radation grade spatially presented a layered progressive distribution. Habitat quality pre-
sented a constantly decreasing trend. The high-value zones were mainly distributed in the 
mountainous areas, while the low-value zones were mostly located in built-up areas. During 
the period of 1975–2010, low-value zones gradually expanded to their surrounding high-value 
zones, and the high-value zones of habitat quality tended to be fragmented. (2) The spa-
tial-temporal variation characteristics of habitat quality from 1975 to 2010 showed that the 
regions with low habitat quality were difficult to be restored and mostly maintained their orig-
inal state; the regions with poor habitat quality, which accounted for 6.40% of the total study 
area, continued to deteriorate, mainly around built-up areas; the regions with good and 
superior habitat quality, which accounted for 5.68% of the total study area, were easily con-
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verted to regions with bad or poor habitat quality, thus leading to the fragmentation of the 
regional habitat. (3) From 1975 to 2010, land use changes in the study area were significant 
and had a huge influence on habitat quality; the habitat quality in the study area decreased 
consistently, and the area of the regions with bad and poor habitat quality accounted for more 
than 60% of the total study area. Construction land was the largest factor threatening habitat 
quality. 

Keywords: habitat quality; land use; InVEST; reconstruction of spatial pattern 

1  Introduction 
With the further intensification of human activities, their interference with the ecosystem 
affects the quality of biological habitats and leads to the degradation of biodiversity. Cur-
rently, with the rapid development of China's urbanization, the sharp expansion of impervi-
ous grounds is significantly influencing regional habitat quality, with considerable chal-
lenges for biodiversity protection (Brandt et al., 2014; Yuan et al., 2017). Habitat quality 
refers to the ability of an ecological system to provide living conditions that are suitable for 
the sustainable development of individuals and populations, reflecting the status of regional 
biodiversity to some extent (Fellman et al., 2015; Hillard et al., 2017). Habitat quality also 
reflects the health status of an ecosystem and plays an important role in maintaining the bio-
diversity level (Dominique et al., 2018; Barbara and Stefan, 2018). In the past few decades, 
human activities have led to habitat disappearance and fragmentation as well as to habitat 
quality degeneration, with serious consequences for biodiversity and human welfare 
(Haddad et al., 2015; Newbold et al., 2015). Land use change reflects the intensity of human 
activities, which is the most important threat factor of habitat quality (Otto et al., 2016; 
Lohse et al., 2008). In this sense, it is of great significance for regional biodiversity conser-
vation and the sustainable use of land resources to explore changes in regional habitat qual-
ity and to analyze the spatial distribution characteristics of habitat quality degradation based 
on land use change. 

In the field of land use spatial pattern reconstruction, the most representative research 
achievements are the establishment of the global history environment dataset (HYDE) 
(Goldewijk et al., 2010) and the global land use dataset (SAGE) (Ramankutty and Foley, 
2010). Generally, spatial land use pattern reconstruction is as follows: In the case of certain 
proposed reconstruction hypotheses, the historical land quantity is first reconstructed, and 
subsequently, the conversion rules, distribution methods, and constraint conditions are iden-
tified via geographical spatial analysis; finally, the historical land quantity is spatialized to 
acquire the land use spatial dataset (Yang et al., 2015; Long et al., 2014; Zhu et al., 2012). 
The historical land quantity can be reconstructed mainly by integrating the overall statistical 
data from various kinds of historical sources and by combining them with certain assump-
tions to estimate land quantity at certain historical periods. Land use spatial reconstruction 
methods can mainly be divided into two categories: the restoration method, based on his-
torical records, and the reconstruction method, based on geographical spatial models (Yang 
et al., 2016). Since there is a limited quantity of historical data available, which are difficult 
to access, existing research on land use spatial reconstruction is given priority to the recon-
struction method based on geographical spatial models. For example, Jiang et al. (2015) and 
He et al. (2015), using spatial grids as the reconstruction basic unit, adopted the cultivated 
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land reclamation tendency index and the land reclamation suitability as the distribution 
method to reconstruct the cultivated land spatial pattern on the Songnen Plain in the late 
Qing Dynasty and the gridding forest coverage conditions of China over 1700–2000. Simi-
larly, Yang et al. (2016) reconstructed the spatial distribution of cultivated land in Shandong 
Province between 1661 and 1952 by using the multi-agent model, while Long et al. (2014) 
reconstructed the historical spatial pattern of cultivated land in Jiangsu Province via CA. 
Generally, because of the focus on cultivated land protection and food production, studies on 
the reconstruction of land use spatial patterns mostly considered a certain land use type, such 
as cultivated land. However, there is little research on the comprehensive reconstruction of 
all land use types from the ecological perspective, not to mention regional habitat quality 
analysis on the basis of land use spatial pattern reconstruction. 

Current research on habitat quality mainly concentrates on two aspects: habitat quality 
assessment on individual species (Tang et al., 2016; Zhang et al., 2014) and regional habitat 
quality assessment (Zhong and Wang, 2017; Wu et al., 2015). Habitat quality assessment on 
individual species first determines the distribution scope and characteristics of the habitat 
based on the habitat requirements of living beings and their matching relations with the local 
natural environment (Zhang et al., 2014) and then constructs the assessment index system to 
comprehensively assess habitat quality. For instance, habitat quality assessments on the 
white stork (Li and Bai, 2006), egrets (Wu and Lian, 2018), pandas (Zhang et al., 2014), 
Helan Mountain blue sheep (Liu et al., 2013), and the Qinling Mountain System musk deer 
(Luo et al., 2011) are all assessments on individual species. Nevertheless, in this method, 
data acquisition is expensive, and this method is not suitable for comprehensive, large-scale 
assessment studies. Hence, related studies are usually carried out in small-scale nature re-
serves or watersheds. Regional habitat quality assessment mostly adopts the InVEST model 
to conduct multi-scale quantitative habitat quality assessments. This model was jointly de-
veloped by Stanford University, the Nature Conservancy, and the World Wide Fund for Na-
ture (Tallis et al., 2013) and can be used for quantitative analysis of a variety of ecosystem 
service functions such as habitat quality (Lin et al., 2017), soil conservation function (Li et 
al., 2017), carbon reserves (Pechanec et al., 2017), water yield (Redhead et al., 2016), and 
water purification (Wang et al., 2017), and the analysis results can be expressed in the form 
of thematic maps. By using the InVEST model, Sallustio et al. (2017) and Terrado et al. 
(2016) respectively assessed the habitat quality of nature reserves and the watershed habitat 
quality under different scenarios of natural conservation planning in Italy. Similarly, Li et al. 
(2018) combined the InVEST model with the SLEUTH model and simulated the urban ex-
pansion situation based on habitat quality protection. Based on the InVEST model, Chu et al. 
(2015), Liu et al. (2018), and Deng et al. (2018) respectively investigated the quantitative 
relations between landscape pattern and habitat quality in coastal zones, the habitat quality 
of the transitional zone of three nature reserves, and the influences of urban expansion in the 
Beijing-Tianjin-Hebei region on the spatial-temporal pattern of habitat quality. 

Such studies complement the used study areas for regional habitat quality assessment, 
such as nature reserves, coastal zones, watershed units, and rapid urbanization areas, thereby 
promoting the development of habitat quality assessment. However, limited by the inacces-
sibility of land use data in specific historical periods or under future scenarios, these authors 
mainly focused on exploring the present situation of regional habitat quality and the spa-
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tial-temporal variation of habitat quality, but largely neglected the spatial simulation of 
habitat quality for certain historical or future periods. Hence, regional habitat quality as-
sessment based on the reconstruction of spatial land use patterns at certain historical periods 
can acquire the evolution rules of habitat quality on a longer time scale, provide long 
time-series data support for habitat quality protection and a scientific basis for habitat qual-
ity management. 

This paper aims to inversely deduce land use spatial patterns at certain historical periods 
by the CA-Markov model when historical data are lacking and to reconstruct the spatial pat-
tern of regional habitat quality at certain historical periods by using the InVEST model. On 
this basis, the spatial-temporal variation of habitat quality in the study area against the 
background of rapid economic development since China’s reform and opening-up in 1978 
was recalled. Our work provides a reference for regional biodiversity conservation and re-
gional ecological development, long time-series data support for regional eco-environmental 
studies, and new means for recalling the historical habitat quality situation and predicting 
the future habitat quality situation. 

2  Study area and research method 

2.1  General situation of the study area 

The Pan-Yangtze River Delta region is located in eastern China within the scope of 
114°54'–122°12'E and 27°09'–35°20'N. It includes one municipality and three provinces, i.e., 
Shanghai, Zhejiang, Jiangsu, and Anhui (Figure 1). The climate is subtropical humid mon-
soon climate, with warm winters and cool summers; there are four distinct seasons and 
abundant rain. The terrain is high in the south and low in the north, and the landforms are 
mainly plains, mountains, and hills. This region covers an area of about 359,000 km2. The 
population of permanent residents increases yearly and reached 223 million capita in 2017. 
Population aggregation promotes the economic development and urban expansion. Accord-
ing to statistical data, from 2010 to 2016, the GDP increased by 1.8 times to 17.72 trillion 
yuan, with an average annual increase rate of 10.30%. The urban area also increases con-
stantly, with an average annual growth rate of 2.28%. Rapid economic development and ur-
ban expansion lead to the conversion of regional land use types, regional habitat segmenta-
tion, and increased habitat fragmentation, thus resulting in the degradation of habitat quality. 

2.2  Data sources 

We obtained land use data for 2000, 2005, and 2010 from the Resources and Environment 
Data Sharing Center of the Chinese Academy of Sciences. There were six land use types, 
including cultivated land, forest land, grassland, water area, construction land, and unused 
land. Social and economic data were obtained in the form of 1-km grid interpolation data of 
China’s GDP and population in 2010 from the Resources and Environment Data Sharing 
Center of the Chinese Academy of Sciences. The digital elevation model (DEM) data were 
obtained from the SRTMDEM original elevation map of 90 m on the geospatial data cloud, 
and the slope and aspect data were extracted from the downloaded DEM data. Climate data 
were represented by the annual average air temperature and rainfall data downloaded from 
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the China Meteorological Data Sharing Network. The cell size in the CA model of this study 
was 1 km2, and the above data were all processed into grid data of 1 km × 1 km. 

 

 
 

Figure 1  Location and topography of the Pan-Yangtze River Delta region 
 

2.3  Research methods 

2.3.1  CA-Markov model 

The Markov model can predict the status of a certain event in the following period based on 
its status in the current period. The model is a long-term prediction method, and the key of 
using it is to determine the conversion probability of the event (Anderson and Goodman, 
1957). In the Markov process, land use change can be expressed as follows (Zhou et al., 
2018): 
    1X t X t P   , (1) 

where X(t+1) represents the state of the random event at time t + 1, namely the prediction 
results by the Markov model; X(t) represents the state of the random event at time t; P is the 
conversion probability matrix, representing the probability of the conversion between dif-
ferent states of the random event. 

The CA model is a complex dynamic model and composed of cell space, cell unit size, 
states collection, and neighborhood scope. In the CA model, it is important to determine the 
cell state conversion rules (Li, 2007); the model can be expressed as follows (Zhou et al., 
2018): 
  , 1 [ ( ), ]S t t f S t N  , (2) 

where S is the limited, discrete states collection of the cell; f is the state conversion rule; N is 
the neighborhood scope of the cell. 

Both models are widely used in the simulation and prediction of land use changes (Lv et 
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al., 2017; Chen et al., 2017). However, the Markov model can only predict the land use 
quantity, while the CA model ignores the influencing factors. We can overcome these limita-
tions by combining these two models, namely by making full use of the strong spatial simu-
lation ability of the CA model and the long-term prediction ability of the Markov model 
(Pan et al., 2018; Hu et al., 2018). 

In this study, we used the two-dimensional cellular space, and the grid type in the cellular 
space was square grid. The domain of the cell was the 5×5 extendable Moore domain. Land 
use conversion was based on the adaptability of various land use types in the adaptability 
maps, and the land use type with the strongest adaptability was chosen for conversion. When 
running the model, the number of iterations was set according to the predictionuration. For 
example, if the prediction interval was 5 years, the number of iterations was set at 5. When 
we used the Markov model to predict the future land use quantity, the conversion quantity of 
various land use types was computed in the running process of the model. When the conver-
sion quantity achieved the predicted quantity of the Markov model, the model was stopped, 
and the reconstruction of the spatial land use pattern was completed. Compared with tradi-
tional predictions on future land use scenarios, the selection of driving forces in historical 
land use simulation places more emphasis on the driving force factors in terms of natural 
conditions. 

2.3.2  Kappa consistency check 

The Kappa consistency check is used to measure the precision of the prediction results from 
a certain model. After the completion of the consistency check, the Kappa coefficient can be 
acquired, which is an indicator to measure the precision of prediction results. The Kappa 
consistency check is based on the confusion matrix, and the calculation formula is as fol-
lows: 

 
1
o e

e

p pKappa
p





 (3) 

 1 2o cp a a a     (4) 

 1 1 2 2e c cp b d b d b d       , (5) 
where Kappa is the calculated test precision; Po and Pe are the overall simulation precision 
and the theoretical simulation precision, respectively; 1 2, , , ca a a  are the percentages of 
correct simulations for each land use type; 1 2 , , , cb b b  are the predicted percentages of 
each land use type; 1 2, , , cd d d  are the actual percentages of each land use type. If the 
Kappa coefficient varies within 0–0.20, the precision of simulation result is very low; if it 
varies within 0.20–0.40, the simulation precision is low; if it varies within 0.40–0.60, the 
simulation precision is medium; if it varies within 0.60–0.80, the simulation precision is 
high; if it varies within 0.80–1.00, the simulation precision is very high. 

2.3.3  Habitat quality model 

We used the habitat quality module of the InVEST model to assess habitat quality. The as-
sessment by this module reflects the influences of human activities on the eco-environment. 
The stronger the intensity of human activities, the greater the threat to the habitat and the 
lower the habitat quality and the biodiversity level in this region; on the contrary, the higher 
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the habitat quality, the lower the interferences from human activities and the higher the bio-
diversity level in this region (Xie et al., 2018). Our study combines the sensitivity of differ-
ent land use types to threat factors and the intensity of external threats, computes the degra-
dation degree of habitat quality, and further calculates habitat quality, using the following 
equations (Liu et al., 2017): 
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where r is the weight of different threat factors; ry is the intensity of the threat factor; x  
is the anti-interference level of habitat; Sir is the relative sensitivity degree of different habi-
tats to different threat factors; r is the habitat threat factor; y is the grid in the threat factor r; 
dxy is the distance between grid x and grid y; maxrd is the influencing scope of the threat 
factor r. The habitat degradation degree varies between 0 and 1; the higher the value, the 
higher the habitat degradation degree. 

The calculation formula of habitat quality is as follows (Liu et al., 2017): 
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, (9) 

where Qxj is the habitat quality of grid x in land use type j; Dxj is the habitat degradation de-
gree, which represents the habitat degradation degree of grid x in land use type j; Hj is the 
habitat adaptability of grid x in land use type j; k is a half-saturation constant. The habitat 
quality value is between 0 and 1; the higher the value, the higher the habitat quality. 

Based on the comprehensive consideration of the situation of the study area, relevant re-
search results, and expert opinions, we selected cultivated land, construction land, and un-
used land as threat factors. The parameters of threat factors that need to be set include the 
longest threat distance, weight, and spatial decay type; the sensitivities of land use types to 
threat factors need to set the parameters of the habitat suitability of each land use type and 
the sensitivity of each land use type to the threat factor. The above parameters were set after 
referring to the user manual of the InVEST model (Tallis et al., 2013), previous results 
(Zhong and Wang, 2017; Wu et al., 2015; Liu et al., 2017), and expert opinions. The specific 
parameter settings are listed in Tables 1 and 2. 

 
Table 1  Threat factors and their stress intensities 

Threat factor Longest threat distance (km) Weight Spatial decay type 

Cultivated land 4 0.6 Linear decay 

Construction land 8 0.4 Exponential decay 

Unused land 6 0.5 Linear decay 
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Table 2  Sensitivity of land use type to habitat threat factors 

Threat factors 
Land use type Habitat adaptability

Cultivated land Construction land Unused land 

Cultivated land 0.3 0.0 0.8 0.4 

Forest land 1.0 0.6 0.4 0.2 

Grassland 1.0 0.8 0.6 0.6 

Water areas 0.7 0.5 0.4 0.2 

Construction land 0.0 0.0 0.0 0.1 

Unused land 0.6 0.6 0.4 0.0 
 

2.3.4  Habitat quality change rate and habitat degradation degree change rate 

The habitat quality change rate refers to the change percentage of regional habitat quality at 
the end of a certain period relative to that at the beginning of the period. The habitat degra-
dation degree change rate describes the change rate of habitat degradation degree at the end 
and the beginning of a certain period. Both rates have the same calculation formula: 
 

1 0 0

( ) 100%
t t t

v P P P   ,  (10) 
where v denotes the change rate of habitat quality or habitat degradation degree; 

0t
P and 

1t
P  are the values of habitat quality (or habitat degradation degree) at the beginning and the 

end of a certain period, respectively. When the value of v is negative, the habitat quality or 
habitat degradation degree declines and vice versa. 

3  Spatial simulation of land use patterns 
We selected elevation, slope, aspect, GDP, population, temperature, precipitation, river dis-
tance, urban distance, and coastline distance, a total of 10 indicators, as the driving force 
factors of land use changes. Via logistical analysis, the land adaptability atlas was drawn, 
using the following equation: 

   0 1 1 2 2 3 3logit ln ,
1

i
i n n

i

PP x x x x
P

     
 

        
  (11) 

where Pi represents the probability of the i-th land use type appearing in each grid in the grid 
diagram; x1, x2, …, xn represents the driving force factors that affect the conversion of land 
use types (Zhou et al., 2018). 

The ROC test method was adopted to test the logistical analysis results. It represents a 
quantitative measurement method applied to the model precision test of the model that gen-
erates the land use adaptability graphs (Jr and Schneider, 2001). The test values of the 
method are between 0 and 1; the closer the ROC value is to 1.0, the more ideal the fitting 
results. When ROC≥0.9, the fitting results have a higher precision; when 0.9>ROC≥0.7, 
the fitting results have a certain precision; when 0.7 > ROC > 0.5, the fitting results have a 
lower precision; when ROC = 0.5, the fitting method is completely ineffective; when ROC < 
0.5, the fitting results do not conform to the real situation. Generally, fitting results are con-
sidered good when ROC > 0.7. Table 3 provides the coefficients of the logistical regression 
results and the test results; all ROC values in the table are greater than 0.8. 
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According to the land use data for 2010 and 2005, we obtained the land use conversion 
matrix. Via the CA-Markov module in IDRISI, we acquired six periods of land use data for 
1975, 1980, 1985, 1990, 1995, and 2000. By using the real land use data for 2000 and the 
simulated land use data for the same year, we conducted the model simulation precision test. 
Figures 2 and 3 show the real land use maps and the simulated land use maps by 
CA-Markov simulation, respectively, for 2000, 2005, and 2010. 

 

 
 

Figure 2  Land use maps of the Pan-Yangtze River Delta region for 2010, 2005, and 2000 
 

The simulation results were tested by using the Kappa consistency check, and the pre-
dicted results were tested via the CROSSTAB module in IDRISI. First, the confusion matrix 
was generated, and then, according to Eqs. (3)–(5), we obtained the overall simulation pre-
cision, the theoretical simulation precision, and the Kappa coefficients of 0.93, 0.42, and 
0.88 respectively. These results indicate that the CA-Markov model has a high simulation 
precision, and that the simulation results can support the reconstruction simulation of habitat 
quality by the InVEST model. In the seven periods (from 1975 to 2010), in the study area, 
the area of cultivated land decreased constantly, with change rates of 0.13%, 0.22%, 0.45%, 
0.85%, 2.39%, 2.23%, and 7.10%. The area of forest land showed an overall decreasing 
trend; except for a slight increase by 1.96% between 2000 and 2005, the change rates in the 
other periods were 0.40%, 0.46%, 0.57%, 0.72%, 3.95%, and 1.25%. The areas of grassland 
and construction land both showed an increasing trend. The grassland area increased by 
1.27%, 1.72%, 2.31%, 2.86%, 2.785, 2.715, and 3.18%, while the construction area in-
creased by 2.08%, 3.64%, 7.03%, 13.80%, 32.39%, 31.85%, and 64.28%. The water area 
only changed slightly. The area of unused land accounted for a small proportion of the total 
study area and only changed slightly. 

4  Reconstruction of habitat quality spatial pattern 
The habitat quality module in the InVEST model was employed to reconstruct the spatial 
pattern of habitat quality, obtaining the spatial patterns of habitat degradation degree and 
habitat quality at eight periods in 2010, 2005, 2000, 1995, 1990, 1985, 1980, and 1975. 
Among these, the spatial patterns in 2010, 2005, and 2000 represent the assessment results 
based on existing monitoring data, while those for other periods represent the assessment 
results based on simulation reconstruction. 
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Figure 3  Map of land use simulation in the Pan-Yangtze River Delta region 
 

4.1  Habitat degradation degree 

The habitat degradation degree varies between 0 and 1; the higher the value, the higher the 
habitat degradation degree. According to the computational results of the InVEST model, we 
obtained the average habitat degradation degree (Figure 4) and the spatial distribution of the 
habitat degradation degree (Figure 5) in the study area from 1975 to 2010. Subsequently, 
according to Eq. (10), we calculated the change rate of the habitat degradation degree. The 
results show that from 1975 to 2010, the habitat degradation degree in the study area in-
creased constantly. From 2000 to 2005 and from 2005 to 2010, the habitat degradation de-

gree increased by 3.53% and 7.30%, respec-
tively. During the four periods from 1975 to 
1995, the habitat degradation degree increased 
by 5.47%, 6.98%, 9.12%, and 12.32%, respec-
tively, and the change rate of the degradation 
degree increased constantly, which was consis-
tent with the actual change trend from 2000 to 
2010. The above results show that during the 
period from 1975 to 2010, the intensity of hu-
man activities was enhanced, and their inter-
ference with the ecosystem was aggravated, 

 
 

Figure 4  Degrees of habitat deterioration in 
the Pan-Yangtze River Delta region from 1975 to 
2010 
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leading to the gradual increase in habitat degradation. 

4.1.1  Spatial-temporal variation of habitat degradation degree 

According to Figure 5, in terms of the spatial distribution of habitat degradation, the 
high-value zones were mainly distributed in the core areas of regional economic develop-
ment, such as Shanghai, the south of the stem stream of the Yangtze River (the section from 
Nanjing to Shanghai), and the Hangzhou Bay region. Other high-value zones were distrib-
uted in plains, basins, mountainous areas, rivers, and lakes, where the economy develops 
rapidly, such as the plains along the Yangtze River in Anhui Province (the stem stream of the 
Yangtze River from Awning to Maanshan), the Jinqu Basin in Zhejiang Province, the Dabie 
Mountain, the Huangshan Mountain, and the mountainous areas in southern Zhejiang Prov-
ince, as well as Lake Taihu, Lake Hongze, and Lake Chaohu. Overall, zones with a high 
habitat degeneration were marginally distributed along the built-up areas, mountains, and 
lakes, with a circular structure. In contrast, zones with low habitat degradation presented a 
spatial distribution of ‘more in the north and less in the south’. Such low-value zones were 
mainly distributed in northwestern Anhui, eastern Jiangsu, and the mountainous areas of 
southern Zhejiang. Other low-value zones were surrounded by high-value zones, and the 
interiors of urban built-up areas, mountains, rivers, and lakes were all low-value zones. In 
terms of the spatial-temporal variation, the distribution of high-value zones changed only 
slightly from 1975 to 2010, but the number of plaques presented an increasing trend. The 
added plaques were mainly concentrated in Suzhou-Zhenjiang, the plains along the Yangtze 
River in Anhui, and the Jinqu Basin. Low-value zones were continuously segmented, and the 
plaques became more and more fragmented. Three kinds of low-value zones, namely 
built-up areas, rivers, and lakes, remained their original state. 

The spatial variation in habitat degradation reflects the severity of regional habitat quality 
degradation. The distribution and variation of habitat degradation show that habitat quality is 
more likely to be destroyed in regions with higher economic development rates. In particular, 
urban expansion has significant destruction effects on habitats, and consequently, the 
high-value zones of habitat degradation are mainly distributed around urban built-up areas; at 
the same time, within these areas, habitat degradation remains low because of the serious ini-
tial degradation. In regions which are difficult to develop, such as mountains, rivers, and lakes, 
habitat quality basically remains constant. In the marginal areas of the above regions, although 
human activities have a low intensity, interferences are possible. As a result, the degradation in 
these marginal areas is lower, and the scope of these marginal areas is limited. 

4.1.2  Variation characteristics of habitat degradation degree grades 

According to the model assessment results, we graded the habitat degradation degrees in 
ArcGIS by the NBC (natural break-point classification) method into five grades (Figure 6), 
including no degradation (0), mild degradation (0–0.005), moderate degradation 
(0.005–0.015), high degradation (0.015–0.03), and severe degradation (0.03–Max). Spatially, 
the habitat degradation degree showed a trend of layered progressive distribution. At the 
center of the layers, habitat degradation was absent or mild. From the center to the outside, 
degradation can be divided into two types: a progressive increasing trend from moderate 
degradation over high to severe degradation and a progressive decreasing trend from severe 
degradation over high to moderate degradation. 
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Figure 5  Map showing habitat degeneration in the Pan-Yangtze River Delta region from 1975 to 2010 
 
The center of the first type of the layered structure is located in mountainous areas, nature 

reserves, or lakes, which are difficult to develop and use and therefore hardly affected by 
human activities. As a result, the center of the layered structure is not or only mildly de-
graded. The closer the regions are to the center, the lower the interference of human activi-
ties and the lower the habitat degradation degree grade. In the marginal regions of the Dabie 
Mountain, the Huangshan Mountain, the mountainous areas in southern Zhejiang Province, 
Lake Taihu, Lake Hongze, and Lake Chaohu, the habitat degradation degree grade presents 
this type of layered structure. In these marginal regions, human activities are frequent, but 
the internal regions are not suitable for large-scale agricultural production and economic 
development. Consequently, the intensity of human activities is low in the internal regions, 
with neglectable interferences. Hence, the habitat degradation degree in the marginal regions 
presents an increasing trend. 
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Figure 6  Map showing the habitat degradation degree classification of the Pan-Yangtze River Delta re-
gion from 1975 to 2010 

 
The center of the second type of layered structure is located in urban areas which are dif-

ficult to change in terms of land cover type, and the habitat degradation degree grade is 
therefore low. The closer the regions are to the built-up areas, the more significantly they are 
affected by urban expansion and the higher the habitat degradation degree grade due to 
changes in land cover types. (1) Shanghai-Suzhou-Wuxi-Zhenjiang-Nanjing on-axis regions 
and their surrounding regions as well as the Hangzhou-Ningbo on-axis regions have the 
most significant second-type layered structure. These regions are located in the core devel-
opment region of the Pan-Yangtze River Delta region, with rapid urban and economic 
growth. Hence, land use changes are significant, and the intensity of human activities in 
these regions is higher than in other regions of the study area. As a result, the habitat degra-
dation degree in these regions is higher than in other regions. (2) Hefei, Xuzhou, Lianyun-
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gang, Huai’an, Yancheng, Jinqu Basin of central Zhejiang, Wentai Plain of southeastern 
Zhejiang, and the north of Hangzhou Bay area also present such type of layered structure. 
Hefei is the capital city of Anhui Province, and Xuzhou, Lianyungang, Huai’an, and 
Yancheng are important cities of Jiangsu Province. They are hotspots of regional economic 
growth and development, with rapid urban expansion. As a result, land use changes around 
the original built-up areas are significant, leading to an increased habitat degradation degree 
in these regions. The Jinqu Basin of central Zhejiang and the Wentai Plain of southeastern 
Zhejiang have a flat terrain and are therefore suited for economic development. Under the 
influences of two large economic growth poles (Hangzhou and Shanghai), the economic 
development level in the north of Hangzhou Bay is constantly being improved, with rapid 
land use changes and, consequently, increased habitat degeneration. 

4.2  Habitat quality 

The habitat quality index ranges between 0 and 1, with higher values indicating a higher 
habitat quality. Figure 7 shows the statistical habitat quality values from 1975 to 2010 in the 
study area. According to Eq. (10), we calculated the habitat quality change rate. Habitat 
quality in the study area presented a downward trend from 1975 to 2010. In the two periods 

from 2000 to 2005 and from 2005 to 2010, 
habitat quality decreased by 0.72 and 2.18% 
respectively, and the change rate of habitat 
quality degradation degree increased consis-
tently. In the four periods from 1975 to 1995, 
habitat quality successively decreased by 
0.06%, 0.08%, 0.12%, and 0.25%, which is in 
accordance with the change trend of the actual 
results. Overall, habitat quality decreased, and 
the change rate of the habitat quality degrada-
tion degree increased. 

By using the InVEST model, we reconstructed the spatial pattern of habitat quality from 
1975 to 2010 in the study area (Figure 8). To better study the changes in habitat quality, 
based on the classification standard (He et al., 2017), we equally classified habitat quality 
into five grades of ‘bad’, ‘poor’, ‘moderate’, ‘good’, and ‘excellent’, successively corre-
sponding to the habitat quality intervals of 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1. In 
ArcGIS, the spatial distribution results of the habitat quality grades in 2010 and 1975 were 
spatially superposed to acquire the conversion results matrix of habitat quality grades and to 
obtain the conversion matrix. 

4.2.1  Spatial-temporal evolution of habitat quality 

(1) Spatial-temporal changes in habitat quality. Spatially, the regions with higher habitat 
quality are mostly distributed in the southern part of the study area, especially the moun-
tainous areas of southern Zhejiang, Dabie Mountain, and Huangshan Mountain; the regions 
with lower habitat quality are mostly distributed in the urban built-up areas, especially the 
circum-Hangzhou Bay and the on-axis area from Nanjing to Shanghai. From the perspective  

 
 

Figure 7  Map of habitat quality in the Pan- 
Yangtze River Delta region from 1975 to 2010 
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Figure 8  Spatial distribution of habitat quality in the Pan-Yangtze River Delta region from 1975 to 2010 
 

of spatial-temporal changes, from 2000 to 2010, the overall habitat quality in the study area 
presented a decreasing trend. The unceasing urban expansion promotes the gradual expan-
sion of regions with lower habitat quality around the urban built-up areas towards the sur-
rounding areas, thus integrating the surrounding regions with higher habitat quality. In some 
regions with higher habitat quality, such as the mountainous areas of southwestern Zhejiang, 
the interior of Dabie Mountain, and the interior of Huangshan Mountain, the habitat has 
been continuously segmented and fragmented with the construction of transport infrastruc-
ture and buildings along the roads. At the marginal areas of lake waters, Dabie Mountain, 
and Huangshan Mountain, habitat quality decreased consistently, with a high degree of 
fragmentation. The spatial-temporal changes in habitat quality from 1975 to 1995 were ba-
sically similar to the change patterns from 2000 to 2010, except for the slight difference in 
the change degree of habitat quality.  
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(2) Area change of habitat quality grade. In the study area, the area of the regions with 
poor and bad habitat quality grades always accounted for more than 60% of the total area 
from 1975 to 2010, indicating low regional habitat quality. In all periods, the area proportion 
of the regions with poor habitat quality was the largest and decreased consistently from 1975 
to 2010, mainly because the area proportion of cultivated land was more than 50% in each 
year and the cultivated land area decreased from 1975 to 2010. Cultivated land is a threat 
factor to habitat quality; the habitat adaptability is higher than that of construction land, but 
lower than that of unused land. Cultivated land is mostly distributed in the northern plains of 
the study area, and the regions with poor habitat quality are therefore mostly distributed in 
the north of the study area. The area proportion of forest land and grassland in each year was 
higher than 30%. These land use types have the highest habitat adaptability, so the area of 
the regions with excellent habitat quality ranks only second after that of the regions with 
poor habitat quality. These regions with excellent habitat quality are mostly distributed 
throughout the mountainous areas in the south of the study area. The habitat adaptability of 
water areas is lower than that of forest land and grassland, while that of construction land is 
the lowest. From 1975 to 2010, the area proportion of water areas stabilized between 5 and 
6%, while that of construction land increased consistently. Consequently, the area of the re-
gions with low habitat quality increased consistently, while that of the regions with good 
habitat quality varied only slightly. The area of unused land is relatively small, and its habi-
tat adaptability was 0.6. The habitat adaptability values of forest land and grassland were 1, 
while those of water areas, cultivated land, and construction land were 0.7, 0.3, and 0, re-
spectively. The area proportion of land use types with a habitat adaptability around 0.5 was 
relatively low. 

4.2.2  Influences of land use changes on habitat quality 

Land use change is an important factor causing habitat quality changes and habitat fragmen-
tation. Cultivated land, construction land, and unused land threaten habitat quality, and their 
area changes directly affect the quality of a habitat. From 1975 to 2010, habitat quality de-
creased constantly, with an accelerating decrease rate; at the same time, the changes in land 
use area were significant during this period. On the basis of the analysis results of land use 
changes, the area of construction land increased rapidly during this period, with an acceler-
ated increase rate. The area of unused land remained relatively stable, with a low impact on 
habitat quality. Further, the area of cultivated land decreased constantly, and the decrement 
was 1.09 times higher than that of construction land. However, because the destruction de-
gree of construction land on the surrounding habitat is twice as high as that of cultivated 
land under the premise of the same land area (Tallis et al., 2013), habitat quality still follows 
a decreasing trend under the condition of an increasing construction land area and a de-
creasing cultivated land area. In this sense, the increase in construction land area is the larg-
est factor threatening habitat quality in the study area. 

5  Discussion 
In this study, we used the CA-Markov model to reconstruct the spatial pattern of land use 
and further reconstructed the spatial pattern of habitat quality in the study area via the In-
VEST model. On this basis, we investigated the variation in the spatial pattern of regional 
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habitat quality in the study area since the reform and opening-up of China in 1978. Accord-
ing to the reconstruction results, the habitat degradation degree in the study area increased 
consistently from 1975 to 2010, while habitat quality decreased. Hence, during this period, 
the habitat of the study area suffered external disturbance and was considerably damaged 
without an alleviating trend. This is associated with the development situation in the study 
area during this period. The Pan-Yangtze River Delta region has been at the top position in 
terms of economic development since China’s reform and opening-up in 1978. This region is 
densely populated, the urban built-up areas expand continuously, and various fundamental 
traffic facilities have been constructed, destroying the habitat and causing habitat segmenta-
tion and fragmentation. The habitat degradation degree around urban areas increased con-
stantly, and the urban habitat quality is extremely low, calling for measures to prevent fur-
ther deterioration. Our study illustrates the habitat changes in the study area from the two 
perspectives of habitat degradation degree and habitat quality, which can provide powerful 
references for the formulation of regional habitat protection policies and spark long 
time-series investigations of habitat quality. 

The CA-Markov model can recall the historical land use status and can also be used to 
simulate the future land use status, providing a new means for recalling historical habitat 
quality and predicting future habitat quality. Land use simulation results can affect the sub-
sequent habitat quality assessment results, and in this sense, adopting more reliable simula-
tion methods can obtain more precise results. Previous studies have applied numerous dif-
ferent models for land use simulation, such as the multi-agent model, the CLUES model, the 
improved FLUS model based on the CA model, and composite models based on CA 
(ANN-CA, SVM-CA, RF-CA, etc.). The above listed models have been extensively used in 
existing research. In our study, after simulation precision testing of the CA-Markov model, 
the Kappa coefficient was 0.88, which is high enough to meet the requirements of further 
research. However, we did not explore whether there were some models with a higher simu-
lation precision. In our follow-up research work, we will pay close attention to this in order 
to more accurately assess the habitat quality condition in certain historical and prospective 
periods. 

6  Conclusions 
Here, the CA-Markov model was combined with the InVEST model to reconstruct the spa-
tial pattern of habitat quality in the Pan-Yangtze River Delta region from 1975 to 1995, and 
the spatial-temporal pattern evolution was analyzed. Our conclusions are as follows: 

(1) Based on land use data for 2005, land use data from 1975 to 2000 were acquired by 
simulation. Through precision testing via land use data for 2000, the Kappa coefficient was 
0.88, indicating a higher simulation precision of the model. This suggests that the 
CA-Markov model is suitable for the simulation of land use in the study area, and the recon-
struction method is feasible. 

(2) From 1975 to 2010, the habitat degradation degree increased constantly, with a lay-
ered progressive distribution. Habitat quality showed an increasing trend. The high-value 
zones were mainly distributed in the mountainous areas, while the low-value zones were 
mostly located in built-up areas. During the period from 1975 to 2010, the low-value zones 



618  Journal of Geographical Sciences 

 

gradually evolved toward the high-value zones, and the habitat high-value zones tended to 
be more fragmented. 

(3) In the changing process of habitat quality from 1975 to 2010, the regions with low 
habitat quality were difficult to be restored. The area proportion of the regions with poor 
habitat quality was high and accounted for 6.40% of the total study area. In the process of 
social development, the habitat quality in these regions further deteriorated, mainly around 
the built-up areas. The regions with good and excellent habitat quality could easily be con-
verted into regions with bad and poor quality, and their area proportion accounted for 5.68% 
of the total area, indicating a high fragmentation. 

(4) From 1975 to 2010, the land use changes were significant in the study area, with a 
large impact on habitat quality. During this period, the habitat quality in the study area was 
poor and decreased consistently. The area proportion of the regions with poor and bad habi-
tat quality was more than 60%. Construction land area increased rapidly, severely damaging 
the habitat quality in the study area, and construction land became the largest threat factor to 
habitat quality. 
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