
J. Geogr. Sci. 2020, 30(4): 535-552 
DOI: https://doi.org/10.1007/s11442-020-1741-8 

© 2020    Science Press    Springer-Verlag 

                    
Received: 2019-04-25  Accepted: 2019-12-29 
Foundation: National Natural Science Foundation of China, No.71947071, No.71904151, No.71774066; Hong Kong 

Research Grant Council, No.ECS27604016; Financially Supported by Self-Determined Research Funds of 
CCNU from the Colleges’ Basic Research and Operation of MOE, No.CCNU19TD004. 

Author: Luo Xiang (1978–), Associate Professor, specialized in regional economics and development of economics.  
E-mail: philiplaw@163.com 

*Corresponding author: Wan Qing (1989–), PhD, specialized in economic geography and spatial economics.  
E-mail: wanqing1989@126.com 

   www.geogsci.com   www.springerlink.com/content/1009-637x 

Spatiotemporal variations of cultivated land use 
efficiency in the Yangtze River Economic Belt  
based on carbon emission constraints 
LUO Xiang1, AO Xinhe1, ZHANG Zuo1, *WAN Qing2, LIU Xingjian3 
1. College of Public Administration, Central China Normal University, Wuhan 430079, China; 
2. School of Management, Wuhan Institute of Technology, Wuhan 430205, China; 
3. Department of Urban Planning and Design, University of Hong Kong, Hong Kong 999077, China 
 

Abstract: In this study, the carbon emissions (CEs) from cultivated land (CL) were included as 
an undesirable output in the utilization efficiency of such land. A slack-based model was used 
to calculate the CL use efficiency (CLUE) for 11 provinces and cities in the Yangtze River 
Economic Belt (YREB) from 2007 to 2016, and then a kernel density estimation map was 
drawn to analyze the spatiotemporal variations of CLUE. The Tobit model was also employed 
to analyze the factors affecting the CLUE. The results show the following. 1) In the YREB, the 
CEs from CL showed a rising and then a slowly decreasing trend. In this paper, we calculate 
CEs by carbon emission factors and major carbon sources, and the CEs from CL in the YREB 
totaled 25.2354 million tons in 2007. By 2014, the value had increased gradually to 28.4400 
million tons, and by 2016 it had declined to 27.8922 million tons, suggesting that the car-
bon-emission reduction measures of the government had an impact. 2) The CLUE of various 
provinces and cities in the YREB showed an upward trend in the time dimension, while for the 
spatial dimension, the kernel density was high in the east and low in the west, and the areas 
with high kernel density were mainly located in the Yangtze River Delta. 3) The per capita 
gross domestic product, the primary industrial output, and the number of agricultural techni-
cians per 10,000 people had positive effects on the CLUE. The CL area per capita and the 
electrical power per hectare for agricultural machinery had significant negative impacts on 
CLUE. In addition, every 1% increase in the number of agricultural technicians increased the 
CLUE by 0.057%. 
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1  Introduction 
As one of the most basic means of agriculture, cultivated land (CL) provides the basis for 
human survival, reproduction, and development. However, the rapid growth of the world’s 
population has put tremendous pressure on the limited CL resources (Yang et al., 2000; 
Deng et al., 2005; Jin et al., 2017). In recent years, the CL resources in China have faced the 
problems of low quantity, low quality, low utilization efficiency, and insufficient reserve 
resources (Deng et al., 2015; Jin et al., 2013). In the 20th century, Brown (1995) asked who 
will feed China, believing that China’s food shortage would lead to an overall increase in 
world food prices, which would bring about a global crisis. However, in the 21st century 
China has paid much attention to planting high-yield varieties and constantly improving its 
agricultural infrastructure and technology. With less than 10% of the world’s CL, China has 
succeeded in feeding more than 20% of the world’s total population, effectively protecting 
China’s food security (Lyle et al., 2015; Huang et al., 2004; Chen et al., 2011). In addition, 
China has formulated relevant policies for the strict control of the land minimum concerning 
CL and intensive utilization of land resources, and measures for the remediation of farmland 
and land reclamation have been proposed (Liu et al., 2017; Jin et al., 2019). 

However, with the continuous improvement in fertilization and irrigation technology for 
farmland, CL in China is facing new risks and challenges (Feng et al., 2014; Skevas et al., 
2014). The use of pesticides, fertilizers, agricultural plastic sheets, and other products may 
lead to various environmental spillover effects, making the utilization of farmland in China 
more unstable and riskier. Increasing risks in CL production will seriously threaten national 
food security and stable operation of the national socio-economic system (Buyanovsky et al., 
1998). The Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC 
AR5) pointed out that rising greenhouse gas concentrations will cause frequent temperature 
changes, which will seriously affect the growth of food crops. Many researchers believe that 
the rapid development of production using agricultural land as a carrier is an important 
cause of accelerated global warming (Liu et al., 2015). Therefore, to effectively enhance the 
output–input ratio in CL use (CLU), top priority should be given to the sustainable devel-
opment of agriculture, and the evaluation of agricultural land use efficiency should not only 
focus on economic input and output but also take into account the social and ecological 
functions of the agro-ecosystem (Dalgaard et al., 2001). 

CLU efficiency (CLUE) is an important indicator for measuring the input–output ratio in 
CLU. In recent years, research in China and abroad has explored CLUE fully, and much re-
lated work has been conducted on its evaluation methods and influencing factors and on the 
spatiotemporal differentiation of agricultural land use efficiency at different levels (Ye et al., 
2011; Quaye et al., 2010; Wang et al., 2015). At the national level, Zhang (2015) examined 
China’s provinces (except Hong Kong, Macao, and Taiwan), constructed an indicator system 
from two dimensions of input and output, and used an improved data envelopment analysis 
(DEA) model to measure the CLUE from 1994 to 2012.The exploratory spatial data analysis 
(ESDA) correlation model and the rescaled range analysis (R/S) fractal model were used to 
analyze the differentiation characteristics of the spatiotemporal pattern of interprovincial 
CLUE; this revealed the driving mechanism of the spatiotemporal differentiation via the 
Tobit regression model. At the provincial level, Wang (2013) calculated the CLUE in Henan 
province based on data from 1999 to 2008 and found that the CL area remained essentially 
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stable in this decade, and population density, urbanization rate, per capita gross domestic 
product (GDP), multi-cropping index, and fertilizer rate per hectare were the dominant fac-
tors influencing utilization efficiency of the CL resource. At present, the CLUE in China is 
assessed mainly at national or provincial level. The decision-making unit is a province or a 
city, and relatively few studies have been based on the units of urban agglomerations and 
economic belts (Song et al., 2014). In addition, when constructing the input–output model of 
CLUE, most studies have considered only economic inputs and outputs and ignored the im-
portance of environment and ecosystem (Li et al., 2013). However, related research has 
shown that the latter is even more important than economic output (Zhang, 2008; 
Chabi-Olaye et al., 2005). 

To date, research on CLUE in China and abroad has achieved remarkable results in dif-
ferent aspects, such as methods and perspectives. Yang (2011) used the DEA–Tobit two-step 
method to calculate the CLUE in Shaanxi province using the Banker–Charnes–Cooper (BCC) 
model and analyzed the factors influencing the results using the Tobit model.He found that 
the electrical power of agricultural machinery, the effective irrigation rate, the crop area, the 
per capita GDP, and policy dummy variables had significant effects on the CLUE in the 
province. Ye et al. (2011) studied the CLUE for each province per year and its spa-
tio-temporal variations using the stochastic frontier production function method, which is 
based mainly on the basic principles of the Battese and Coelli models (1992) and uses the 
log-type Cobb–Douglas production function to determine the CLUE. Currently, the most 
common way to measure the CLUE is by applying the DEA model. In the DEA methodology, 
the most widely used model should be the CCR model named after Charnes, Cooper, and 
Rhode (1978) and the BCC model named after Banker, Charnes, and Cooper (1984). How-
ever, the traditional DEA methodology adopts the measurement of the radial angle without 
considering the problem of slack variables. On this basis, Tone (2001) proposed a 
slack-based model (SBM) of the DEA, which not only improves the accuracy of measure-
ment and compatibility with other measurement methods but also effectively promotes re-
search on the utilization of CL. Based on previous research, many researchers have included 
undesirable outputs in consideration of both energy and environment and used the SBM to 
calculate the CLUE more accurately. Also, the ways and means of improving the in-
put–output structure of CLU have been elaborated (Li et al., 2014; Zhang et al., 2017). 

In recent years, with the improvement in the levels of consumption and the rapid expan-
sion of exports, carbon emissions (CEs) in China have been increasing (Pan et al., 2008; 
Guo et al., 2012; Liu et al., 2015). In 2007, China surpassed the United States to become the 
country with the highest CO2 emissions (Gregg et al., 2008). Yao et al. (2015) pointed out 
that China’s primary energy consumption reached 2852.36 Mtoe in 2013, accounting for 
22.41% of the world’s total, and China consumed 50.31% of the world’s total coal, exhibit-
ing a typical coal-dominant energy consumption pattern. Based on this situation, the Chinese 
government is committed to reducing CEs in 2020 by 40%–45% as compared with those in 
2005. The increase in CO2 is one of the main causes of the greenhouse effect, and human 
activities are the main pathway for CO2 production (Paustian et al., 1998). Agriculture is the 
main source of greenhouse gases. In the process of arable land utilization, not only do the 
actions of plowing, irrigation, and fertilization directly produce CO2 emissions, but also in-
direct agricultural practices such as the production of agricultural plastic sheets and the 
transformation of agricultural land use generate a large amount of CO2 gas (Lee et al., 2006; 
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Johnson et al., 2007). 
The Yangtze River Economic Belt (YREB) is an important grain production area in China, 

where the annual total amount of grain produced can reach more than 30% of the country’s 
total. This area is one of China’s three major food production bases, the other two being the 
Northeast China Plain and the North China Plain (Xu et al., 2019). Although its strategic 
position has been enhanced continuously, the ecological environment and CL protection of 
the YREB have faced serious crises in recent years, and the problem of excessive green-
house gas emissions is one of them (Chen et al., 2017; Li et al., 2019). In the present paper, 
the CEs from CL are included as an undesirable output when examining the CLUE. This 
paper calculated the CLUE for 11 provinces and cities in the YREB from 2007 to 2016 by 
SBM with CEs as undesirable output, and then the kernel density was mapped to analyze the 
spatiotemporal variations of CLUE. Finally, the Tobit model was used to analyze the factors 
affecting the CLUE. Inclusion of CEs as an undesirable output to calculate the CLUE is a 
new way to further improve the land use efficiency and consolidate the strength of the 
YREB. 

2  Study area and methods 

2.1  General profile of the study area 

The Yangtze River Economic Belt (YREB) refers to the provinces and cities distributed 
along the Yangtze River. According to the Guiding Opinions of the State Council on Pro-
moting the Development of the Yangtze River Economic Belt Based on the Golden Waterway 
issued by the State Council on September 25, 2014, the YREB covers 11 provinces and cit-
ies, including Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan, Chongqing, Si-
chuan, Yunnan, and Guizhou, and with an area of about 2.05 million square kilometers. The 
main branch of the Yangtze River flows from west to east and traverses the central part of 
China. The maximum difference in elevation can reach 6000 m, and the elevation decreases 
gradually from west to east (Figure 1). Based on the geographical location, resource envi-
ronment, economic development, and other factors, the Yangtze River can be divided into 
three regions, namely upstream, midstream, and downstream. The upper reaches of the 
Yangtze River include Guizhou, Yunnan, Sichuan, and Chongqing, its middle reaches com-
prise Hunan, Hubei, and Jiangxi, and its downstream part includes four provinces and the 
cities of Anhui, Zhejiang, Jiangsu, and Shanghai. In September 2016, the Outline of the 
Yangtze River Economic Belt Development Plan was officially issued, and the YREB was 
established as “one axis, two wings, three poles and multiple spots,” which clearly defines 
the new direction for the construction of the YREB. It can also be anticipated that China will 
build a region comprising a distribution center with great comprehensive strength and that 
relies on the Yangtze River Golden Waterway. As one of the most active and developed areas 
in China, the elements such as technology and talent can flow freely within the YREB, and 
developing the YREB has great potential. The development of a basin economy is a strategic 
choice for some countries that are in the process of modernization (Zhang et al., 2010; Jin et 
al., 2018). In addition, the YREB is one of the main grain production regions of China, with 
a CL area accounting for more than 30% of the total in the country. Large lakes and rivers 
such as the Yangtze River, Taihu Lake, Dongting Lake, and Poyang Lake are located in the 
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YREB, providing rich water resources and an ecological environment for agricultural and 
economic development. Therefore, it is of great practical significance to study the spatio-
temporal variations of the CLUE in the YREB. 

 
Figure 1  Geographical location of the Yangtze River Economic Belt (YREB) 

The Yangtze River is the longest river in China, and the YREB spans its three major re-
gions of eastern, central, and western parts, which offer unique advantages and tremendous 
development potential. In 2016, the population of the YREB reached 629 million, account-
ing for 45.47% of the country’s total. The regional GDP reached 33718.194 billion yuan, or 
45.5% of the country’s total, making it the one with the greatest comprehensive strength in 
China. In addition, the YREB is also one of the most important food production regions in 
China; the total grain output (231 million tons in 2016) accounts for 37.5% of the national 
total. However, the YREB is currently facing the dilemma of having uncoordinated eco-
nomic development and ecological protection plans. The total discharge of wastewater in the 
YREB in 2016 reached 31.4 billion tons, accounting for 44% of the national total. In this 
regard, the State Council issued the “Environmental Protection Plan for the Yangtze River 
Economic Belt” in 2017, and pointed out that while promoting the development of the 
YREB, it was mandatory to set ecological protection as the priority and stick to a green and 
low-carbon sustainable development model. The YREB is one of the important areas re-
ceiving strategic support in China. Against this background, the present study analyzes the 
spatiotemporal variations of CLUE by including CEs as an output factor and explores the 
variation characteristics and factors influencing CLUE in the YREB from a low-carbon per-
spective. Our findings may help to ensure national food security as well as provide some 
clues for how to implement an environmentally friendly economic development model. 

2.2  Data and indicators 

2.2.1  Indicator system for measuring the efficiency of cultivated land use 

The CLUE is a measure that is used to evaluate the comprehensive utilization level of vari-
ous input resources as determined by input and output indicators. Lin et al. (2017) believed 
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that when constructing the input indicator system, the input factors for agricultural produc-
tion should include CL endowment, labor, agricultural machinery, fertilizer, and pesticides. 
Therefore, the input resources for all aspects of CLU should be taken into account when set-
ting up the indicator system. According to previous studies, the input indicator system for 
CL is mainly considered from three aspects: land input, labor input, and material input (Li et 
al., 2013; Wang et al., 2013, 2015). Specifically, the following seven input indicators were 
selected: (i) crop planting, I1 (103 hm2); (ii) the number of laborers in primary industry, I2 
(104); (iii) the total electrical power consumption of agricultural machinery, I3 (104 kW); (iv) 
the amount of agricultural fertilizers applied, I4 (104 t); (v) the use of pesticides, I5 (t); (vi) 
the amount of agricultural plastic film used, I6 (t); and (vii) the effective irrigation area, I7 
(103 hm2). The two main output indicators were the desirable output and the undesirable 
output. The desirable output mainly concerns the economic and agricultural aspects with the 
desirable output indicators including the total output values for agriculture, forestry, animal 
husbandry, and fisheries, O1 (108 yuan) and total grain output, O2 (104 t). The undesirable 
output indicators mainly comprise total CEs, O3 (104 t), including the following six catego-
ries: (i) loss of organic carbon caused by agricultural tillage; (ii) CEs from agricultural ma-
chinery operations; (iii) CEs from manufacturing and use of agricultural fertilizers; (iv) CEs 
from manufacturing and use of pesticides; (v) CEs from manufacturing and use of agricul-
tural plastic sheets; and (vi) indirect generation of CEs via activities such as farmland irriga-
tion and electricity consumption. The total amount of CEs is calculated 
by i i iE E T     , where Ti and δi are the values of each carbon source and the CE coeffi-
cient, respectively. The specific relevant CE indicator coefficients are given in Table 1. 

Table 1  Carbon emission (CE) coefficients of major carbon sources arising from cultivated land use (CLU) 

Source Coefficient Unit Reference 

Tillage 312.6 kg/km2 Wu et al., 2007 

Machinery 0.18 kg/kW West et al., 2002 

Fertilizers 0.8956 kg/kg West et al., 2002 

Pesticides 4.9341 kg/kg Post et al., 2000 

Plastic sheets 5.18 kg/kg Li et al., 2011 

Irrigation 25 kg/hm2 Li et al., 2011 

2.2.2  Indicators of factors influencing cultivated land use efficiency 
When selecting CLUE indicators, Li et al. (2011) measured the intensity of CLU in Shan-
dong province based on five aspects, namely multi-cropping index, labor intensity, capital 
intensity, land productivity, and labor productivity. Wang et al. (2013) pointed out that the 
factors influencing CLUE include population density, urbanization rate, per capita GDP, 
multi-cropping index, and per hectare fertilizer rate. The main factor that influences grain 
output has been converted from a per hectare fertilizer basis to the quantity and quality of 
labor per hectare. Based on the above research and in full consideration of the effectiveness 
and availability of data, the following indicators were selected to construct the indicator sys-
tem for CLU. 1) From the perspective of CL characteristics, the per capita CL area (PC) for 
each province and city in the YREB was selected as an indicator. 2) From the perspective of 
the development level of the study area, the per capita GDP (PG) and the primary industry 
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product (PP) were selected as indicators. 3) From the perspective of the level of technologi-
cal development, the electrical power consumption for agricultural machinery (MP) per 
hectare and the number of agricultural technicians per 10,000 people (AT) were selected as 
indicators. 4) From the perspective of policy, the per capita environmental pollution control 
investment (PI) was selected as an indicator. 

2.2.3  Data sources 
In the input indicator system for CLUE, most of the data were derived from the China Rural 
Statistical Yearbook (2008–2017). The number of laborers in primary industry was derived 
from the statistical yearbooks of the provinces and cities in the YREB from 2008 to 2017. In 
analyzing the factors influencing the CLUE, the following data sources were also consulted: the 
Land Survey Results Sharing Application Service Platform (http://tddc.mlr.gov.cn/to_Login), 
the China Science and Technology Database in the EPS data platform (http://olap.epsnet. 
com.cn/), and the China Environmental Protection Database (http://hbk.cei.cn/aspx/default. 
aspx). The specific data sources are listed in Table 2. 

Table 2  Indicators and data sources 

 Indicators Data sources 

I1 China Rural Statistical Yearbook (2008–2017) 

I2 China Rural Statistical Yearbook (2008–2017) 

I3 China Rural Statistical Yearbook (2008–2017) 

I4 China Rural Statistical Yearbook (2008–2017) 

I5 China Rural Statistical Yearbook (2008–2017) 

I6 China Rural Statistical Yearbook (2008–2017) 

Input 

I7 China Rural Statistical Yearbook (2008–2017) 
O1 China Rural Statistical Yearbook (2008–2017) 
O2 China Rural Statistical Yearbook (2008–2017) 

Output 

O3 i i iE E T     , where Ti and δi are the values of each carbon source 

and the CE coefficient, respectively. 
PC Land Survey Results Sharing Application Service Platform 
PG Statistical yearbooks of the provinces and cities in the YREB from 

2008 to 2017 
PP Statistical yearbooks of the provinces and cities in the YREB from 

2008 to 2017 
MP Statistical yearbooks of the provinces and cities in the YREB from 

2008 to 2017 
AT EPS data platform 

Influencing 
factors 

PI China Environmental Protection Database 

2.3  Methods 

2.3.1  Cultivated land use efficiency model 

First proposed by Tone (2001) on the basis of the traditional DEA model, the SBM solved 
the problem that the radial model does not contain slack variables for inefficiency measure-
ments. The SBM is very closely related to the CCR and BCC models. The calculation prin-
ciple of the SBM-undesirable model is to incorporate both the desirable and undesirable outputs 
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into the measurement model of efficiency. A decision unit uses N inputs  1, , N Nx x x R  , 
which can produce M kinds of expected outputs  1, , M My y y R   and I kinds of unex-
pected outputs  1, , I Ib b b R  . Considering each province as a decision-making unit 
(DMU) and assuming that there are KDUMs  1, ,k K  , the SBM-undesirable model is 
expressed as  
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cient CLU in each DMU, the inefficient value of CLU is decomposed as 
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where IEx is the inefficiency due to input redundancy, IEy is that due to inadequate desirable 
output, and IEb is that due to redundant undesirable output. 

Equation 3 can be used to calculate the reducible ratio of the input and undesirable output 
variables of the DMU from the perspective of input and output, and the expandable ratio of 
the desirable output variable, namely  
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where P1 is the reducible ratio of the n-th input of the DMU, P2 is the expandable ratio of the 
desirable output of the m-th item of the DMU, and P3 is the reducible ratio of the undesirable 
output of the i-th item of the DMU. 

2.3.2  The Tobit model 

The Tobit model is a type of model in which the dependent variable has roughly continuous 
positive values but contains a part of the observation values with a positive probability of 
zero. Tobin (1958) performed probit regression on the consumption of durable goods, and 
probit regression is now widely used in various types of research. Given that the model pa-
rameters with censored data are estimated by the least-squares method and the estimators are 
inconsistent, the Tobit model was used in the present study for regression analysis when 
examining the factors influencing CLUE. The basic structure of the Tobit model is 
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where yit is the observed dependent variable, xit is the independent variable, βT is the pa-

rameter vector to be estimated, and it ~  20,N  . 

After selecting six indicators as the factors influencing CLUE—namely (i) per capita CL 
area (PC), (ii) per capita GDP (PG), (iii) primary industrial product (PP), (iv) electrical 
power consumption of agricultural machinery (MP) per hectare, (v) number of agricultural 
technicians per 10,000 people (AT), and (vi) per capita environmental pollution control in-
vestment (PI)—the following regression model was constructed according to the basic prin-
ciples of the Tobit model: 

 1 2 3 4 5 6it it it it it it it itCE c PC PG PP MP AT PI               (5) 
where CE is the CLUE of the provinces and cities in the YREB in the SBM, c is a constant 
term, εit is a random error term, t is the year from 2007 to 2016, and i represents different 
provinces and cities within the YREB. 

2.3.3  Normalization 

Because of the influences of socio-economic development, geographical location, adminis-
trative area, and other factors, CEs differ greatly among provinces and cities. To better 
evaluate the spatiotemporal variations of CEs in the YREB as a whole, the data must be 
normalized before being analyzed, that is, the exponential processing of the statistical data. 
There are many methods for data normalization, with min-max normalization and Z-score 
normalization being commonly used. Min-max normalization is a linear transformation of 
the original data and was adopted in the present study. The formula is 

 

min

max min
' x xx

x x





 (6) 

where x is a raw datum, xmax is the maximum value in that year, xmin is the minimum value in 
that year, and x ʹ is the normalized value. 

3  Results and discussion 

3.1  Analysis of spatiotemporal variations of carbon emissions 

According to the CE sources and the CE coefficients presented in Table 1, combined with 
the CE calculation formula i i iE E T     , the utilization coefficients for CL in the 11 
provinces and cities in 2007–2016 in the YREB were calculated. The specific CEs from 
CLU are given in Table 3, from which the following can be seen. 1) From the perspective of 
the YREB as a whole, the total CEs from CLU showed an upward trend before 2014 and 
decreased gradually thereafter. At province and city level, the CEs for CL also showed a rise 
at first and then a slowly decreasing trend. The turning points occurred around 2013–2014, 
suggesting that in the YREB, the CEs from CL in various provinces and cities showed the 
same trend over time. 2) In 2007, the CEs from CL in Jiangsu province were the highest 
(4,082,200 tons). By 2016, the province with the highest CEs from CL in the whole year was 
Anhui province (4,013,600 tons). However, between 2007 and 2016, the region with the 
highest average CEs was Hubei province, with 4,119,500 tons. The above three provinces 
are concentrated in the southeastern part of the YREB and show a certain spatial agglomera-
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tion. The region with the lowest average CEs was Shanghai, with only 424,400 tons. The 
main reason for this is that Shanghai has the smallest urban area as well as the smallest CL 
area in the YREB compared with the other regions; also the agricultural industrial produc-
tion of Shanghai accounts for only a small proportion of its gross regional product. 3) The 
CEs for provinces and cities in the YREB tended to be unified over time, with average CEs 
over three million tons accounting for nearly half of the total number of provinces and cities. 
These were Jiangsu, Anhui, Hubei, Hunan, and Sichuan provinces, with CEs of 4,064,400, 
4,051,900, 4,119,500, 3,234,400, and 3,242,300 tons, respectively. 

Table 3  CEs from CLU in the Yangtze River Economic Belt 

Year 
Regions 

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
Average 

Shanghai 28.29 28.55 26.09 25.63 25.11 23.36 22.82 22.02 20.98 19.60 24.24 

Jiangsu 408.22 408.29 415.04 414.50 412.49 409.01 405.91 404.10 396.96 389.90 406.44 

Zhejiang 145.38 147.53 149.13 148.23 149.11 150.71 151.63 147.96 145.89 139.67 147.52 

Anhui 374.26 379.77 386.80 398.38 410.56 416.34 425.00 426.57 423.85 410.36 405.19 

Jiangxi 189.09 195.18 199.31 206.38 207.07 209.46 209.83 209.38 210.11 207.22 204.30 

Hubei 373.63 401.05 413.84 425.33 429.67 429.97 422.50 420.44 406.07 397.02 411.95 

Hunan 295.49 301.53 311.39 318.65 325.22 335.36 337.70 337.73 336.21 334.77 323.40 

Chongqing 103.84 108.08 113.40 114.42 119.03 119.84 120.78 121.96 122.94 121.38 116.57 

Sichuan 304.20 310.62 319.02 321.84 328.94 332.38 330.97 331.29 331.91 331.06 324.23 

Yunnan 201.27 216.21 222.93 238.92 257.23 274.89 285.33 296.04 302.46 307.35 260.26 

Huizhou 99.88 109.56 112.01 107.26 117.48 122.94 122.89 127.33 130.09 130.90 118.03 

Total 2523.54 2606.35 2668.97 2719.56 2781.90 2824.26 2835.34 2844.84 2827.47 2789.22 2742.14 

To represent more directly the spatiotemporal evolutions of CEs from CLU for the prov-
inces and cities in the YREB, CEs for 2007, 2010, 2013, and 2016 were selected as repre-
sentative data; the data were normalized by Equation 6, and the processed results were di-
vided into four levels, namely micro-emissions (0–0.25), mild emissions (0.25–0.5), inter-
mediate emissions (0.5–0.75), and heavy emissions (0.75–1). The ArcGIS software (version 
10.2) was used to characterize spatially the differences in CEs for CL from the various 
provinces and cities in the YREB. The deeper colors represent higher relative CEs (Figure 2). 

Figure 2 shows that with time, the overall color of the YREB gradually deepens, indicat-
ing that the CEs show certain spatial clustering and positive correlation with respect to spa-
tial distribution. The focus of the spatial distribution of CEs in the YREB shifted from the 
southeast to an equilibrium position involving the east and the west, and the mild emission 
areas in the west gradually shifted to the intermediate emission areas; while the intermediate 
emission areas gradually shifted to the heavy emission areas. Overall, the regional CEs from 
CL tended to be balanced. These results showed a gradually increasing spatial agglomeration 
of the CE intensities for the various provinces and cities in the YREB, and that the arable 
land use efficiency and agricultural technology levels between adjacent cities had a certain 
spillover effect, and that exchange and cooperation between adjacent regions were frequent. 
On the whole, there was a convergence of the time dimension in the regions with high CEs 
in the YREB. The provinces and cities with initially high CEs had a higher probability of 
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maintaining this status. By 2016, except for Shanghai, which was still characterized by mi-
cro-emissions, no provinces and cities were classified as micro-emission areas due to two 
reasons. First, the CEs from CL in the various provinces and cities in the YREB showed a 
generally increasing trend over the past 10 years. Second, secondary and tertiary industries 
are the pillar industries of Shanghai, and thus the CEs from CL in Shanghai were much 
lower than those of other areas, leading to the relatively higher CEs from CL in other areas. 

 
Figure 2  Spatiotemporal variations of cultivated CEs in the Yangtze River Economic Belt 

3.2  Dynamic variations of cultivated land use efficiency 

To determine how CEs affect CLUE, the CCR model and SBM with the DEA Solver Pro 
software (version 5.0) were used to measure the utilization rate of CL in the various prov-
inces and cities in the YREB. In the SBM, CEs were used as an undesirable output to meas-
ure the CLUE. The results for CLUE by the CCR model and SBM for 2007, 2010, 2013, and 
2016 were selected as shown in Table 4, from which the following can be seen. 1) The 
CLUE from the perspective of CEs can more accurately represent the comprehensive level 
of CLU in the local area. The CLUE is a significant indicator that reflects the level of re-
gional agricultural economic development. The CLUE under CE constraints not only has high 
dependence on agricultural technology, but also fully reflects the sustainable development of 
CLU. After the inclusion of CEs as an undesirable output, the CLUE in the various prov-
inces and cities in the YREB was generally reduced. 2) Regardless of whether the CCR 
model or SBM was used, the CLUE for the provinces and cities in the YREB showed an 
overall upward trend with time. Given that the DEA model is based on the relative utiliza-
tion efficiency, for comparison purposes (vertical basis), it can be seen that the CLUE for 
some regions in 2016 attained a value of one. Compared with other provinces and cities, 
some regions have maintained high CLUE since 2007, and their CLUE shows a value of one 
in 2007 and 2013. 
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Table 4  CLUE for each province or city of the Yangtze River Economic Belt in specific years 

2007 2010 2013 2016 
Region 

CCR SBM CCR SBM CCR SBM CCR SBM 

Shanghai 0.9135 0.6728 0.9844 0.8853 1 1 1 1 
Jiangsu 1 1 0.9822 0.7922 0.9986 0.9338 1 1 

Zhejiang 0.6957 0.4185 0.7997 0.5749 0.9321 0.7798 1 1 
Anhui 0.9006 0.5860 0.9113 0.6419 0.8974 0.6633 0.9527 0.7483 
Jiangxi 1 1 0.9653 0.7987 1 1 1 1 
Hubei 0.8922 0.5689 0.9017 0.5717 0.9576 0.7586 1 1 
Hunan 0.9487 0.7318 0.9482 0.7720 0.9401 0.7738 1 1 

Chongqing 0.9905 0.9267 0.9824 0.9087 0.9974 0.9319 1 1 
Sichuan 1 1 0.9701 0.8881 0.9784 0.9371 1 1 
Yunnan 0.7185 0.4993 0.6519 0.4753 0.7441 0.5431 0.7821 0.5461 
Huizhou 1 1 0.9819 0.8595 0.8672 0.7141 1 1 

 

On the basis that including CEs as an undesirable output represents the CLUE more ob-
jectively, the CLUE was mainly analyzed from a low-carbon perspective. To analyze the 
spatiotemporal variations of CLUE in the various provinces and cities of the YREB, the 
years 2007, 2010, 2013, and 2016 were selected as representative time points, and a kernel 
density analysis was performed using the ArcGIS (version 10.2) spatial analysis software. 
As shown in Figure 3, different colors represent different levels of CLUE. 

 

 
Figure 3  Kernel density map of CLU efficiency (CLUE) in the Yangtze River Economic Belt 

The results in the above figures and tables can be summarized as follows.1) In the YREB, 
the CLUE under the constraint of CEs has spatial spillover effects and regional synergies. 
Specifically, the areas with high utilization efficiency for CL radiated to those with low 
utilization efficiency. The kernel density circle centered on Jiangsu–Shanghai in the south-
east expanded year by year and gradually spread to the central area of Zhejiang province. 
Among all the provinces and cities, Zhejiang showed the most obvious increase (from 0.418 
to 1.000) in CLUE over 10 years. 2) The CLUE for various provinces and cities in the 
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YREB showed an upward trend in the time dimension, while the kernel density showed that 
the spatial dimension was high in the east and low in the west. High-nuclear-density areas 
are concentrated in the Yangtze River Delta. However, the CLUE in the middle reaches of 
the Yangtze River was maintained overall at equilibrium. Among the areas, Shanghai, Ji-
angsu, Jiangxi, Hunan, Chongqing and Sichuan were the provinces and cities with the high-
est CLUE. 3) In the YREB, the kernel density circle for the CLUE for Yunnan indicated that 
this province was always sluggish compared with the other regions. For instance, Yunnan 
has been displaying a lower growth rate of CLUE for a considerable time, that is, from 2007 
to 2016 the CLUE only increased from 0.4993 to 0.5461, which may be attributed to the low 
soil quality and the sloping nature of the CL in this region. Most of the topography of Yun-
nan province is mountainous or plateaus with steep slopes. Besides, the positive effects of 
technological progress have lagged to some extent with Yunnan's agricultural production 
technology being relatively underdeveloped, thus the feedback effect on the CLUE may not 
yet have been realized. Therefore, the local government should do more to promote CLUE 
in Yunnan province through policy encouragement, active prevention and control of soil 
erosion, and construction of terraces. 4) The CLUE in Jiangxi and Jiangsu was at relatively 
high levels during the study period, but there was a slight decline in the two provinces from 
2007 to 2010. In 2010, the CLUE of Jiangsu province fell from 1 to 0.7922, and that of Ji-
angxi province decreased from 1 to 0.7987. According to the indicator data, the reason for 
this phenomenon in Jiangsu was that the CEs increased rapidly in 2007–2010 and declined 
slowly thereafter, which may be due to the fact that during this period, the total grain output 
of the province declined to some extent, but has been increasing rapidly since 2010. 5) The 
CLUE in Guizhou was variable, first decreasing and then increasing, thus continuous obser-
vation and monitoring are needed in this province. The government should actively encour-
age the uptake of scientific and technological innovations and other initiatives, and promote 
a steady increase in CLUE in province with the assistance of surrounding areas (i.e., 
Chongqing and Hubei) where there is a higher CLUE. 

3.3  Analysis of factors influencing cultivated land use efficiency 

Using the Tobit model established in Equation 5, the Stata software (version 12) was used to 
analyze the correlation between CLUE and the factors influencing it. The indicators include 
the per capita CL area (PC), the per capita GDP (PG), the primary industrial product (PP), 
the electrical power consumption of agricultural machinery (MP) per hectare, the number of 
agricultural technicians per 10,000 people (AT) and the per capita environmental pollution 
control investment (PI). The results of the regression analysis are given in Table 5. 
Table 5  Regression results of CLUE using the Tobit model 

Variables Coefficient Std. Err. Z Significance 

PC –0.0004409 0.0001838 –2.4 0.016 

PG 3.14E-06 1.08E-06 2.9 0.004 

PP 0.0000704 0.0000279 2.52 0.012 

MP –0.0208301 0.0070656 –2.95 0.003 

AT 0.0573215 0.0258476 2.22 0.027 

PI –1.16E-06 0.0000392 –0.03 0.976 
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From the regression results, the PC, PG, PP, MP, and AT all passed the 5% statistical sig-
nificance test, among which PC and MP passed the 1% statistical significance test. However, 
PI did not pass any statistical significance test, indicating that it had no significant effect on 
the CLUE. 

The CL endowment, the economic development level and agricultural technology input 
for an area can significantly affect the local CLUE. 1) From the perspective of CL endow-
ment, the per capita CL area had a significant negative impact on CLUE, indicating that 
controlling the CL area to a certain extent can effectively enhance the CLUE. This result 
indirectly reflects the possible fact that the intensity of CLU in the YREB was still not high 
enough, and that, despite there being extensive cultivation of large areas of land, the produc-
tion capacity of CL may be rather low. The government should make more efforts to pro-
mote farmland consolidation and intensify the cultivation of land, which may help to effec-
tively improve the CLUE. 2) The level of economic development in a region also had a sig-
nificant impact on the CLUE. The significance level between per capita GDP and CLUE in 
the provinces and cities of the YREB was 0.004, and that between the primary industrial 
output value and the CLUE was 0.012, both of which pass the significance level test of 0.05 
and are positively correlated. The per capita GDP is one of the important indicators to 
measure the level of economic development, and the primary industrial product can reflect 
the development level of local primary industry. Generally, economic development improves 
mainly the CLUE by promoting modern technology, but technological progress can also play 
a negative role with respect to the intensity of CEs. However, for underdeveloped areas, it 
will take a long time for technological progress to show reducing effects on CEs. 3) From 
the perspective of the relevant technical level, the number of agricultural technicians can 
have a significant positive impact on the CLUE, while the electrical power consumption of 
agricultural machinery per hectare has a negative impact. In other words, an increase in the 
number of agricultural technicians can realize an improvement of local CLUE. For example, 
every 1% increase in the number of agricultural technicians will increase the CLUE by 
0.057%. The electrical power consumption of agricultural machinery per hectare is nega-
tively correlated with the CLUE, indicating that the current mechanized production mode 
does not fully exploit the potential of the CL. This phenomenon may be attributable to the 
fragmentation and dispersion of CL in the YREB. To improve the CLUE in the region cor-
responding to realizing high output and low input, the government must actively encourage 
the recruitment of relevant technical professionals to promote improvements in agricultural 
technology. 4) From the perspective of policy factors, there was no significant correlation 
between the per capita investment in environmental pollution control and the CLUE. How-
ever, the urbanization process can have a major impact on the quantity and quality of CL. 
Thus, the government should actively formulate policies related to agricultural land con-
solidation and protection to ensure the sustainable use of CL resources and develop a green 
and low-carbon management system for CLU. 

4  Conclusions 
This paper has examined the YREB as a research unit and used the SBM-undesirable model 
to measure the CLUE of the provinces and cities in the study area by including CEs as an 
undesirable output. The results were compared with those obtained by the CCR model. In 
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addition, kernel density mapping was used to analyze the dynamic variations of CLUE in the 
provinces and cities of the YREB and determine the factors influencing CLUE. The follow-
ing conclusions can be drawn. 

1) In the YREB, the CEs for CL at first showed a rise and then exhibited a slowly de-
creasing trend. In 2007, the CEs for CL in the YREB were 25.2354 million tons, and gradu-
ally increased to 28.44 million tons in 2014. After 2014, the CEs for CL decreased year by 
year and fell to 27.8922 million tons in 2016, indicating that the government’s CE reduction 
measures had achieved a certain level of impact. In the YREB, the CEs from CL in various 
provinces and cities overlapped to some extent and showed the same trend over time. Be-
tween 2007 and 2016, the region with the highest average CEs was Hubei province, with 
average CEs of 4,119,500 tons. The region with the lowest average CEs was Shanghai, with 
an average annual amount of only 424,400 tons. The main reason for this is that the city`s 
urban area is the smallest in the YREB, and its agricultural industrial production accounts 
for only a small proportion of its GDP. 

2) The CLUE from the perspective of CEs can more accurately represent a comprehensive 
assessment of the level of CLU in the local area. The CLUE is a significant indicator that 
reflects the level of regional agricultural economic development. The CLUE under the con-
straint of CEs not only has a high dependence on agricultural technology, but also considers 
the CLUE from an ecological perspective. Previous research has mostly focused on favor-
able and desirable outputs, and often ignored the undesirable outputs caused by excessive 
energy consumption. The evaluation of CLUE which takes into consideration CEs not only 
directly reflects the input–output ratio of CLU, but also takes into account the external ef-
fects and sustainable utilization from an ecological perspective. 

3) The CLUE of various provinces and cities in the YREB showed an upward trend in the 
time dimension, while the kernel density maps showed that the spatial dimension was high 
in the east and low in the west. High-nuclear-density areas were concentrated in the Yangtze 
River Delta. In the YREB, the CLUE under carbon constraints had spatial spillover effects 
and regional synergies: the kernel density circle centered on Jiangsu–Shanghai in the south-
east gradually radiated to the surrounding CL which were areas with low utilization effi-
ciency. The CLUE in Zhejiang showed the most obvious increase, rising from 0.418 to 1.000 
over the past 10 years. Yunnan’s arable land use efficiency increased slowly, only rising 
from 0.4993 to 0.5461 over the period 2007–2016, which may reflect the level of the local 
natural environment and the level of technology infrastructure in the area. The local gov-
ernment should promote efficiency through policy measures, including the control of soil 
erosion and construction of terraces. 

4) The provinces and cities within the YREB show a clear trend towards equilibrium in 
terms of CEs and CLUE. This may be due to the fact that certain factors within the YREB 
were freely circulating, and the exchange of science and technology was unimpeded. The 
Tobit model estimates show that the per capita GDP, the primary industrial production, and 
the number of agricultural technicians per 10,000 people have positive effects on the CLUE. 
The significance level of the per capita GDP was 0.004, and that of primary industrial pro-
duction was 0.012, both variables passing the significance test at the 0.05 level. The number 
of agricultural technicians per 10,000 people has a positive impact on the CLUE: every 1% 
increase in the number of agricultural technicians would increase the CLUE by 0.057%. The 
per capita CL area and the electrical power consumption for agricultural machinery per hec-
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tare had significant negative impacts on the local arable land use efficiency, demonstrating 
that the level of urban economic development, population density and technological progress 
affected adversely the development of arable land use efficiency. 

According to the above findings, the government should make efforts to improve the 
CLUE from the following two aspects. First, the government should effectively control the 
total amount of CEs and establish a scientific management system for CEs by increasing 
policy support, strengthening relevant scientific research and improving the endowment of 
CL resources. Second, the government should maintain a balance between economic devel-
opment and ecological protection, focusing on finding an equilibrium position between the 
‘desirable output’ and the ‘undesirable output’ of CL. The agricultural production of the 
YREB should keep pace with economic developments by actively improving the utilization 
of CL on a large-scale, strengthening agricultural land consolidation, rationally controlling 
the area of CL and improving the construction of agricultural infrastructure. 

5  Limitations and future work 
This paper incorporates CEs as an undesirable output in the indicator system and uses the 
DEA model to calculate more accurately the CLUE for the YREB from a new perspective. 
However, there are still several issues that need to be addressed. First, this study has consid-
ered comprehensively the factors that may affect the CLUE from four aspects, that is, soci-
ety, the economy, the environment and government policy. These aspects are all about the 
technical capabilities and development levels of each region, and thus the relevant ap-
proaches for improving CLUE should also consider these aspects. However, the regions in 
the study are not mutually independent from other regions, and the changes in CLUE in 
these regions are not determined solely by internal factors, but also by influences from the 
adjacent provinces and cities. Hence, follow-up research should focus on the dissection of 
the influence of neighboring provinces and cities on the variations in CLUE in the various 
regions and the corresponding optimization measures. Second, when constructing the indi-
cator system for CLUE, indicators were selected that were relatively easy to define and 
quantify. However, other indicators which are difficult to quantify such as the overall quality 
of CL resources, the degree of pollution from CL, the degree of fragmentation of CL and the 
farmers’ willingness to participate can also impact on the CLUE. With a continuous transfer 
of rural labor and a deterioration of the ecological environment, the improvement of CLUE 
is faced with significant challenges. Future research should seek to evaluate CLUE by also 
addressing the aforementioned aspects. 
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