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Abstract: Extreme weather is an important noise factor in affecting dynamic access to river 
morphology information. The response characteristics of river channel on climate distur-
bances draw us to develop a method to investigate the dynamic evolution of bankfull channel 
geometries (including the hydraulic geometry variables and bankfull discharges) with sto-
chastic differential equations in this study. Three different forms of random inputs, including 
single Gaussian white noise and compound Gaussian/Fractional white noise plus Poisson 
noise, are explored respectively on the basis of the classical deterministic models. The model 
parameters are consistently estimated by applying a composite nonparametric maximum 
likelihood estimation (MLE) method. Results of the model application in the Lower Yellow 
River reveal the potential responses of bankfull channel geometries to climate disturbances in 
a probabilistic way, and, the calculated average trends mainly run to synchronize with the 
measured values. Comparisons among the three models confirm the advantage of Fractional 
jump-diffusion model, and through further discussion, stream power based on such a model is 
concluded as a better systematic measure of river dynamics. The proposed method helps to 
offer an effective tool for analyzing fluvial relationships and improves the ability of crisis 
management of river system under varying environment conditions. 

Keywords: stochastic differential equation; bankfull channel geometry; river system; extreme weather; Lower 
Yellow River 

1  Introduction 
Earth’s surface is an intersectional study point of geology, hydrology, and meteorology. 
Geomorphologists have always been taking the most time to pay attention to the full use of 
Earth surface resources. Along with the development of the knowledge-based economy and 
sci-tech globalization, numerous approaches have been used to help understanding landform 
dynamics. Deeper insights into basic principles in turn suggest the interactions of various 
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surface processes that represented by fluvial processes varying with climate processes need 
to be concentrated more due to the increase of extreme weather events attributed by hu-
man-induced global warming (Hansen et al., 2000). In general, rivers are thought of key 
links for connecting different landscape elements. Coordinating large number of river issues 
including the investigation of river dynamics and overall river management, is one of the 
most significant topics in many developing countries. However, extreme weather events 
impose a considerable burden upon balancing human activities and the sustainable utiliza-
tion of earth’s resources (Wang et al., 2015). River is well known as a high complex system, 
we must face the fact that conquering nature is a phased process that requires a great deal of 
treatments for existing classical problems and some new difficulties on the local scale 
brought about by the inherent nonlinearity and abruptness in river system. 

Some linear/nonlinear bend theories help us understand some unexplored nonlinear as-
pects of meandering channels for a long time. However, contradictions and limitations are 
inevitable in the development course of river theory. Driven by seasonal and abnormal 
events, the state of river channels is continuously changing with the development of hydro-
logic force, which undoubtedly makes us question the traditional model assumption that 
whether river could reach a dynamic equilibrium state subjecting to repeated sequence of 
external disturbances. The frequent occurrence of storms and floods adds to some confu-
sions: how the morphology fluctuations and event characteristics relate to each other; 
whether it is reasonable to define a singular and dominant discharge to account for unsteady 
factors that affect the shape of landscape (Wolman and Ran, 1978), meanwhile as there also 
exists the objection that river structure may be an integrated result of historical disturbances 
(Graf, 1979), not a quasi-equilibrium state with flood disasters (Pittaluga and Seminara, 
2011). Some researchers exploited the sensitivity of hydrological response of river channels 
to extreme rainfall events by natural experiment statistics or remote sensing in some specific 
areas (Bauch and Hickin, 2011; Harrison et al., 2017), but few mechanistic description to 
fluvial relationships for balancing engineering benefit and environmental protection in the 
planning and design of flood channels. 

Recently, many physicists turned to system theory to study complicated dynamic process 
with biological and ecological factors to participate in. In particular, transfer function, a sin-
gle-input single-output filter based on differential equations, has occupied a primary and 
central place within the fields of system analysis over time. Unlike some simple systems 
with specific components changing according to deterministic equations, river systems are 
observed to behave in a non-equilibrium manner with the characteristics of rich irregularity 
and interactivity. For this reason, scientists developed stochastic models, for example, the 
deformations of classic Transfer Function Noise models, for enhancing the forecast of river 
flows generated by rainfall (Liu, 2009; Wasimi and Mondal, 2005); some focused on de-
scribing the dynamic probability transformation of water quality constituents in river system 
(Boano et al., 2006); some investigated the random dynamics of riparian width and vegeta-
tion biomass with random discharge taken into account (Muneepeerakul et al., 2007; Tealdi 
et al., 2011); and there also exists the description of soil water balance dynamics over a 
schematic river basin based on a stochastic differential equation with the addition of rainfall 
forcing modeled by white noise instead of blind use of deterministic models (Manfreda and 
Fiorentino, 2008). In spite of its inherent shortcoming of unwieldy application, state space 
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representations of multiple transfer function, namely, transfer matrix, still has been largely 
proposed as an alternative approach for the analysis of multiple-input multiple-output sys-
tems. River is a systemic, dynamic and multi-factor system. The above tools offer such an 
effective way for river basin management by incorporating the randomness of flow input 
into a probabilistic framework, which can be reasonably expected to help address extreme 
climate events. 

Until now, the stochastic response of fluvial relationships is still lack of analysis as com-
plete, accurate and reliable as possible. Different minimization theories and nonlinear dy-
namic analysis (Navratil and Albert, 2010; Yang et al., 1981; Xia et al., 2014) have been 
used to study the existing most famous hydraulic geometry relationship; while surprisingly, 
most applications only work on solving the parameters of the empirical equilibrium relations 
itself, the potential catastrophic of which triggered by events was few expected in a time of 
frequent occurrence of extreme weather. This relationship carries so vital information for a 
given river system that the present paper aims to open the new potentials of which based on 
stochastic differential equations. New insights will help future realization of effective and 
space saving measures so as to avoid lagging behind time schedules and to strengthen ca-
pacity for crisis response across catchments. 

2  Stochastic model establishment 

2.1  Model description 

Classic theory presumed that the rivers are most powerfully shaped by water and sediment 
inflow at the bankfull stage where the river channel and floodplain become connected. Nu-
merous geomorphologists focused on identifying the bankfull stage and defining a single 
dominant discharge as the bankfull discharge for river channels in equilibrium. 
Real-Riverworld experience, however, suggests that this problem was oversimplified and it 
is doubtful whether the rivers could evolve into a relative steady state. In the Lower Yellow 
River, Wu et al. (2008) investigated a sequence of transitional river states, and analyzed the 
phenomenon of delayed response of bankfull discharge to flow and sediment changes. 
Herein, the variation of bankfull discharge was described as an adjustment between the cur-
rent value and its potential equilibrium value: 

 
( )t

e t
dQ Q Q
dt

 
 

(1) 

where Qt is the bankfull discharge at time t; β is the rate at which the equilibrium state is 
being approached; eQ is the equilibrium bankfull discharge represented by a formula that 
depends on flow discharge and suspended sediment concentration in flood season: 

 

b
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   
(2) 

where Qf, f , and Ctf are the mean discharge, incoming sediment coefficient, and sus-

pended sediment concentration in flood season respectively; K, b, c are the unknown pa-
rameters. 

Then for such channels, we can define a bankfull channel geometry group constituted by 



846  Journal of Geographical Sciences 

 

bankfull discharge, channel slope, width, depth and velocity in terms of simple power func-
tions: 

 
Sm

t S tS Q                          (3a) 
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t B tB Q                            (3b) 
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t D tD Q                           (3c) 

 
Um

t U tU Q                          (3d) 
where St, Bt, Dt and Ut are the down-channel bed slope, cross-sectional channel width, depth 
and velocity in bankfull stage at time t respectively, and other coefficients and exponents are 
constants. 

From the general view, Eqs.(3) can be simplified by: 

 = m
t tX Q                              (4) 

where Xt is the typical bankfull channel geometry variable. 
After taking the derivative of Eq.(4), we have: 
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Combining Eq.(5) and Eq.(1), then a deterministic differential equation set with respect to 
bankfull channel geometries are established: 
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                          (6a) 
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             (6b) 

However, highly organized river systems possess the characteristics of rich regularity and 
interactivity(Huggett, 2007), increasing non-equilibrium issues on account of continuing 
uncertainties from flow-sediment input and channel boundary conditions greatly reduce the 
effectiveness of deterministic models on reflecting the real river development. Considering 
real systems cannot completely eliminate external stochastic influence and then exist alone, 
stochastic differential equations (SDEs), which link probability theory and ordinary differ-
ential equation, could find applications in this kind of situation. Through randomizing mod-
els by adding one or more stochastic noise terms, SDEs improve the dynamical systems the-
ory significantly and have had wide applicability in modeling various physical systems such 
as molecular dynamics, stock market fluctuations and even the dynamics of the astrophysi-
cal processes. Research on rivers also benefits from the development of the stochastic theory 
(Camporeale and Ridolfi, 2006; Manfreda and Fiorentino, 2008; Wasimi and Mondal, 2005), 
and have been given new intuitive interpretations. In view of such important generalization, 
we follow them to transform deterministic models (6) into stochastic models by introducing 
random noises on a given, fixed, time-interval [0, T]: 
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                  (7b) 

where Q*
t and X*

t are stochastic bankfull discharge and hydraulic geometry variable; 
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tQ represents the average of stochastic discharge; [1]
t and [2]

t  are the same types of ex-
ternal random noise. 

The classic SDEs usually use Gaussian white noise to describe the random noise terms. 
However, the main weakness of such processing is that Gaussian white noise only represents 
kind of continuous and stable stochastic excitation, it fails to describe the sudden changes of 
variables. In fact, white noise is equivalent to white light which consists of all different visi-
ble spectrums, multiple random noises are also involved in natural noise system. Not only is 
there Gaussian white noise existing, but also works in non-Gaussian ways. Non-Gaussian 
shot noise, or Poisson noise, is a typical type of impulse noise which carries some important 
sharp information and can be modeled by Poisson process. Many stochastic studies 
(Bruti-Liberati and Platen, 2006; Chalmers et al., 2008; Rong, 2006) found evidence of the 
importance of jumps and suggested to include Poisson jumps in SDEs. Moreover, considera-
tion should also be given to nonlinearity. That is, at some point one variable may be likely to 
have unexpected overreactions on exponential level. Traditional linear thought model may 
be contradictory to the fact, that is, Real River systems are not machines, but living systems, 
just like molecular biology world, they may show some spontaneity and complexity. Studies 
(Leland et al., 1994) show that real system inputs can sometimes exhibit long-range de-
pendence and self-similarity in these fields, and the fractional Brownian motion (fBm) is 
recommended as the typical stochastic process that possesses such characteristics (De-
creusefond and Üstünel, 1999). Therefore, we may be able to try applying fractal theory into 
SDEs so as to better characterize the propagation of hydraulic geometries. Given the above, 
we use three types of combinations of popular noise models, including Gaussian white noise, 
Poisson noise, and Fractional white noise, to evaluate the effectiveness of SDEs-Eq.(7) in 
describing the dynamics of hydraulic geometries respectively. The details are as follow: 

2.1.1  Single Gaussian white noise model 
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with discrete solution (Glasserman, 2004): 
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where σ1, σ2 are the diffusion parameters of the two stochastic models (Eqs. 8a and 8b), re-
spectively; γ is exponent parameter; W represents uncorrelated multiplicative standard 
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Gaussian white noise; Z represents independent standard normal random variable. 
Here, we use a CKLS (Chan et al., 1992) type model to define the stochastic process of 

bankfull discharge, and a Black–Scholes (Black and Scholes, 1973) type model to describe 
the dynamic hydraulic geometry. 
2.1.2  Compound Gaussian white noise plus Poisson noise model: 
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 (10b) 

where Vj is the jump magnitude, Nj(j) are independent Poisson processes with intensity para-
meters j (j=u, d represent up- and down-jumps, respectively), the distribution of the logarithm 
of jump magnitudes (Y=ln(V)) is given by a mixed double exponential density function of form: 

    0 0( ) u dy y
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Here, we use a combined approach to simulate the times ( 1 2, ,  ) at which jumps occur, 

of which times difference 1 1i i iR     can be generated from the exponential distribution 
with mean 1 /  .   is estimated according to historical data (Tsai et al., 2014). Q*

t and X*
t 

evolve like an ordinary geometric Brownian motion from one jump moment to the next. 
Suppose a date t is included among the simulated dates, that is, 1i it    , then the discrete 
solutions could be expressed as follows: 
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2.1.3  Compound fractional white noise plus Poisson noise model: 
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where the difference here with Eqs. (10) is that fractional Brownian motion 
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tW and 
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tW are a set of zeros-mean Gaussian process with continuous paths and correlation coef-
ficient: 
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where H[1] and H[2] are Hurst parameters. If equal to 1/2, then the corresponding fractional 
SDEs reduce to ordinary SDEs-Eqs. (10). 

It follows that, conditional on the times 1 2, ,    of the jumps, Fractional SDEs-(13) can 
be discretized using the following improved Euler-Maruyama method: 
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For satisfying the dual criteria “accuracy and efficiency”, we use a fast one dimensional 
fBm generator (Kroese and Botev, 2015) to simulate the two fractional white noises WH

t and 
the discrete method by Yin (1996) to deal with the increment of fBm: 

 , 0H H H
t t t tW W W t   ≥                        (16) 

2.2  Nonparametric estimate in SDEs 

Parameter estimation in SDEs on the basis of short-term discrete-time measurements is an 
important and difficult task to which a large number of methods exist in the literature in this 
area. Each of these methods, including MLE method, the generalized method of moments, 
the simulated moment estimation, and MCMC methods, has particular features that made 
them valuable. A detailed survey and comparison by Sørensen (1991) proves that MLE is the 
best method under mild regularity conditions due to the consistency, asymptotically normal-
ity and asymptotically efficiency characteristics of its estimation. And also, MLE is superior 
in disentangling jumps from diffusion (Aït-Sahalia and Hansen, 2009). Thus for the SDEs 
proposed above, a non-parametric estimation procedure will be considered in the following 
to fully exert MLE’s advantage and to eliminate the traditional arbitrary restrictions brought 
by some parametric assumptions (Stanton, 1997), and especially the emphasis is given to the 
effective establishment of an approximation to the transition density function of the under-
lying stochastic process numerically. 

Let  , 0,1,ix i N  be the available real data;  denotes the parameter vector for the 
models, including the deterministic channel parameters and noise parameters; Pθ ( , ;i it x  

1 1( , ), )i it x    is defined as the transition density function from xi1 to xi. The method of 
maximum likelihood finds the values of the model parameter, θ, that maximize the likeli-
hood function: 
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                  (17) 

The detailed estimation procedure of L(θ) by Monte Carlo method is as follows: 

(1) Let  : [0, ]tF t T  denotes the time range. Sampling interval is fixed as = T
N

 . 

Consider the time interval [ti1, ti] and divide it into M subintervals of length h
M


 : dis-

cretizing the SDEs with xi1 at ti1 as the initial value, then obtaining an approximation of X 
at ti. Repeating R times leads to a R dimensional row vector  i

r
tX ( 1,2, )r R  . 

(2) Based on the sample matrix{ }
i

r
tX , in the first case, a nonparametric kernel-function 

can be constructed to estimate the transition density function of the diffusion processes dri-
ven by simple Wiener process: 
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               (18) 

where the kernel function ( )K  is given by the normal kernel: 
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with bandwidth hpi given by the popular form by Silverman (1986): 

 1/5 1/5=(4 / 3)pi ih s R                           (20) 

where Si is the sample standard deviation of the data at time ti. 
While for the jump-diffusion processes in the second case, defining ln( )r r

i il X   

1ln( )ix  (r=1, 2…R), and let mu, nd be the number of up- and down-jumps during the time 
interval () respectively, then we use the Poisson weighted sum of the four conditional den-
sities of form by Ramezani and Zeng (2007) to express the unconditional density within  
[ti1, ti], and get the transition density: 

 
1 1

1

1( , ; ( , ), )= ( )
R

r
i i i i i

r
P t x t x f l

R  



 
                (21) 
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(3) For each ix , once performed the above process, then maxi-likelihood function (17) 
can be obtained. After logarithmic deformation, we use the “fmincon” function as an opti-
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mizer (in Matlab) to seek the minimum value of the following log-likelihood function: 
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1
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  ;

 
(23) 

Then the optimum result is just the needed maximum likelihood estimate of θ. 

3  Case study 

3.1  Data 

In recent decades, the worldwide frequency of extreme weather events attributed by global 
warming has brought serious disasters to the international society, and the study predicted 
the threat will continue to increase in the future. Meanwhile, the Yellow River has always 
been suffering from frequent devastating floods, droughts, and the consequent channel 
changes. The Lower Yellow River (LYR) has a length of 786 km and an average slope of 
0.12‰ measured from the Taohuayu Valley to the estuary of the Yellow River. In general, 
this region is divided into four sub-reaches: the braided Huayuankou-Gaocun reach, the 
transitional Gaocun-Sunkou reach, Sunkou-Aishan reach, and the meandering Aishan-Lijin 
reach. Hyper-concentrated flows frequently occur in the Lower Yellow River due to the 
serious soil erosion on the Loess Plateau. Many dams were constructed along the main-
stream and have aroused the drastic changes in river regime over time. Particularly zero 
flow conditions (Yang et al., 2010) so called “hump phenomenon” occurred in the Lower 
Yellow River as a result of the climate variations and increasing water consumption. As 
shown the Gaocun-Sunkou reach in Figure 1, the flow capacity here was much less than 
both up-down streams, and Gaocun station went through a sharp rise in the elevation of 
river bed in 1994 to 2002 (Deng et al., 2015; Guo et al., 2012). For contributing more on 
the issues, the channel geometry data (Table 1) along the Gaocun station downwards are 
applied as the base data for examining the stochastic models proposed and further investi-
gating the dynamic evolution of hydraulic geometries over a long term in the sections be-
low as we will see. 

 

 
 

Figure 1  The Gaocun-Sunkou reach of the Lower Yellow River 

3.2  Parameter estimate 

We estimate the unknown parameters set of stochastic discharge in the first place, and then 
deal with the ones of stochastic hydraulic geometries. For validating the SDEs, time range is 
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assigned to be [1952, 2013], time interval is 1, iterative step is arranged as 1/12. A problem 
occurred in the application of the nonparametric estimate procedure that initial value could 
significantly affect the optimization result due to the use of “fmincon” function. Then our 
solution out of many attempts is to perform multiple calculations; every single process is 
initialized with the average of the previous results, thus greatly reducing the importance of 
initial value. After each calculation at 5,000 runs with 1,000 computer-generated sample 
datasets, the parameter estimation results are well obtained (Tables 2–7). Additionally, we 
also evaluate the deterministic Eqs.(6) with a least square fit as the control groups for ease of 
comparative study. 

 

Table 1  Flood season’s average discharge, suspended sediment concentration, and annual measured bankfull 
channel geometries along the Gaocun station downwards 

Flood season’s average value (*)
Year Discharge 

Qf (m3/s) 
IS coefficient

f (kg·s/m6) 

Bankfull discharge 
Q (m3/s) 

Slope S 
(‰) 

Width B 
(m) 

Depth D 
(m) 

Velocity U 
(m/s) 

1952 2417.073 0.0080 6700 0.120 750 1.48 1.57 
1953 2562.967 0.0153 5800 0.112 487.5 2.58 1.25 
1954 3531.862 0.0132 5500 0.104 450 3.17 1.13 
1955 3218.593 0.0095 5400 0.142 711.5 1.54 1.57 
1956 2673.740 0.0154 5420 0.121 652 2.19 0.96 
1957 1838.984 0.0197 5300 0.125 620.8 2.20 0.95 
1958 4190.626 0.0123 5500 0.124 719.5 1.32 1.07 
1959 2070.854 0.0356 6700 0.126 684 1.10 1.47 
1960 1092.754 0.0343 6500 0.121 325.5 1.02 0.90 
1961 2729.593 0.0061 7200 0.103 445 2.37 1.84 
1962 2232.033 0.0079 7800 0.114 581 1.78 1.20 
1963 2926.106 0.0065 8500 0.110 584 1.30 1.00 
1964 4969.268 0.0052 9500 0.113 1217.5 1.69 1.62 
1965 1534.878 0.0123 9800 0.128 614 1.24 1.69 
1966 2898.642 0.0176 8500 0.139 967 1.24 1.34 
1967 4232.683 0.0091 6000 0.125 957.5 1.80 1.80 
1968 3114.821 0.0110 6000 0.126 1618.8 1.16 1.63 
1969 1155.35 0.0378 5000 0.117 390 1.87 1.54 
1970 1675.976 0.0359 4300 0.124 1067 1.35 1.28 
1971 1385.22 0.0336 4300 0.123 922.5 1.21 1.36 
1972 1205.667 0.0223 3900 0.121 493.5 0.83 0.92 
1973 1938.841 0.0282 3500 0.121 566.6 1.09 0.47 
1974 1164.151 0.0271 3370 0.121 610.5 1.22 1.76 
1975 3035.675 0.0115 4710 0.118 553.5 1.68 1.31 
1976 3137.325 0.0088 6090 0.117 542 1.47 1.59 
1977 1627.472 0.0419 6500 0.121 366.1 1.32 1.15 
1978 1949.756 0.0262 5500 0.113 404.5 2.23 1.12 
1979 1945.122 0.0199 5200 0.108 312.1 3.09 1.38 
1980 1183.447 0.0225 4500 0.120 483.5 1.30 1.61 
1981 3011.618 0.0114 3900 0.114 412.7 2.25 1.39 
1982 2226.911 0.0094 5900 0.123 538 1.53 1.64 
1983 3310.407 0.0063 7300 0.117 583.7 2.27 1.58 

(To be continued on the next page) 



854  Journal of Geographical Sciences 

 

(Continued) 

Flood season’s average value (*) 
Year Discharge 

Qf (m3/s) 
IS coefficient 

f (kg·s/m6) 

Bankfull  
discharge Q 

(m3/s) 

Slope S 
(‰) 

Width 
B (m) 

Depth 
D (m) 

Velocity U 
(m/s) 

1984 3127.667 0.0070 7400 0.118 551.5 1.66 1.68 
1985 2298.691 0.0110 7600 0.113 527.5 2.92 1.54 
1986 1207.065 0.0138 7400 0.115 529.5 1.90 0.57 
1987 694.1382 0.0216 6800 0.114 233.1 1.78 0.89 
1988 1915.215 0.0244 6400 0.110 353.5 2.58 1.53 
1989 1796.545 0.0156 4600 0.111 376.5 2.15 1.49 
1990 1233.398 0.0217 4500 0.111 363.2 2.31 1.39 
1991 429.735 0.0523 4400 0.121 453.5 1.24 0.90 
1992 1168.78 0.0383 3200 0.121 465 1.03 1.07 
1993 1285.764 0.0207 3600 0.115 460 1.18 1.25 
1994 1221.439 0.0394 3700 0.119 469 1.20 1.22 
1995 1013.087 0.0465 3000 0.122 486 0.96 1.09 
1996 1357.556 0.0232 2800 0.119 537.5 1.27 1.48 
1997 299.5125 0.1589 2750 0.126 410.5 1.10 0.94 
1998 899 0.0366 2700 0.122 398 0.95 1.10 
1999 779.2927 0.0468 2800 0.121 474 1.07 1.13 
2000 443.1463 0.0161 2600 0.121 500.5 1.06 0.91 
2001 321.3228 0.0232 2400 0.121 486 1.01 1.26 
2002 714.4472 0.0148 2000 0.120 446 1.08 1.20 
2003 1300.414 0.0113 2300 0.118 448.5 1.26 0.84 
2004 818.2926 0.0239 3600 0.115 439 1.34 0.90 
2005 897.536 0.0104 4000 0.115 528 1.38 1.17 
2006 806.008 0.0079 4500 0.115 431.5 1.33 1.24 
2007 1140.674 0.0059 4700 0.112 491 1.62 1.24 
2008 625.040 0.0095 4800 0.113 347.5 1.55 1.40 
2009 646.455 0.0041 5000 0.116 515 1.21 1.03 
2010 1166.422 0.0045 5300 0.118 518.5 1.05 0.99 
2011 934.065 0.0051 5400 0.119 668 1.23 1.04 
2012 1438.495 0.0057 5400 0.120 648.5 1.24 1.04 
2013 1219.894 0.0076 5800 0.118 533.5 1.27 1.10 

* The flood season is from July to October. 
 

Table 2  The estimated results of the unknown parameters set for the SDEs-Eq.(8a)  

Estimate K  b  c    1    

Mean 76.495 –0.477 0.299 0.213 0.136 0.582 

SD 23.833 0.044 0.027 0.018 0.005 0.047 
 

Table 3  The estimated results of the unknown parameters set for the SDEs-Eq.(8b) 

Estimate  Slope (S)  Width (B) Depth (D) Velocity (U) 

Mean 0.184 0.771 0.560 0.424 
m  

SD 0.038 0.218 0.092 0.068 

Mean 0.073 0.143 0.276 0.130 
2  

SD 0.148 0.047 0.069 0.023 
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Table 4  The estimated results of the unknown parameters set for the jump-diffusion Eq. (10a) 

Estimate K b  c    1    [1]
u  [1]

d   11/ u  [1]1/ d  

Mean 23.818 –0.505 0.432 0.312 0.118 0.494 0.030 0.020 0.215 0.573 
SD 4.795 0.025 0.018 0.002 0.003 0.003 0.001 0.004 0.016 0.047 

 

Table 5  The estimated results of the unknown parameters set for the jump-diffusion Eq. (10b) 
Estimate Slope (S) Width (B) Depth (D) Velocity (U) 

Mean –0.086 0.264 0.350 0.310 
m 

SD 0.009 0.043 0.059 0.046 
Mean 0.075 0.301 0.300 0.160 

2  
SD 0.014 0.065 0.065 0.055 

Mean 0.180 0.300 0.311 0.394 [2]
u  SD 0.001 0.014 0.029 0.065 

Mean 0.180 0.300 0.327 0.426 [2]
d  SD 0.004 0.026 0.054 0.025 

Mean 0.059 0.079 0.180 0.080 [2]1/ u  SD 0.001 0.045 0.025 0.004 
Mean 0.030 0.109 0.175 0.177 [2]1/ d  

SD 0.009 0.068 0.027 0.062 
 

Table 6  The estimated results of the unknown parameters set for the fractional jump-diffusion Eq. (13a) 

Estimate K  b  c    1    [1]H [1]
u

[1]
d

 11/ u  [1]1/ d  

Mean 25.14 –0.52 0.42 0.29 0.11 0.23 0.55 0.09 0.06 0.04 0.15 

SD 3.27 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.01 
 
Table 7  The estimated results of the unknown parameters set for the fractional jump-diffusion Eq. (13b) 

Estimate Slope (S) Width (B) Depth (D) Velocity (U) 
Mean –0.141 0.704 0.350 0.880 

m 
SD 0.011 0.043 0.026 0.063 

Mean 0.090 0.500 0.640 0.260 
2  

SD 0.015 0.035 0.055 0.017 
Mean 0.471 0.349 0.471 0.301 [2]H  SD 0.054 0.013 0.026 0.063 
Mean 0.374 0.410 0.361 0.554 [2]

u  SD 0.072 0.075 0.026 0.064 
Mean 0.380 0.410 0.367 0.556 [2]

d  SD 0.095 0.075 0.023 0.052 
Mean 0.088 0.488 0.300 0.230 [2]1/ u  SD 0.041 0.048 0.011 0.033 
Mean 0.087 0.453 0.105 0.170 [2]1/ d  

SD 0.025 0.064 0.023 0.028 

3.3  Result 

With the estimated parameters, the dynamic probabilities of bankfull discharge and hydrau-
lic geometries can be approximated by repeated computations (over 10,000 runs) on the 
SDEs. For the jump-diffusion cases, based on maximizing the relevance of stochastic aver-
age (the mean value of the computation results for every year) and measurements from a 
given stimulus intensity, the optimal jump moments can be estimated (Figures 2–4). The 
following reveals the calculated probability evolution results. 
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3.3.1  Model-1 

It can be seen from Figure 2 that, by adding white noise, SDEs broaden and improve the 
descriptive power of deterministic equations in the probability distribution ways. Obviously, 
the stochastic average of bankfull discharge is much more approximate to the discrete data, 
and all the moves between the probabilistic distributions of hydraulic geometry with meas-
urements have the general tendency in common, which testify a degree of the validity of 
white-noise SDEs for describing the dynamic evolution tendency. However, the fact is, the 
real fluctuation characteristics of hydraulic geometry are not well in control, the simulated 
average trend beginning around 1997 deviates much from the measurements; seemingly, as 
expected, stochastic processes driven by Gaussian white noises have excessive continuities, 
not enough breaking information, so that some local changes are over-predicted or un-
der-predicted severely, which undoubtedly reduces their effectiveness for predicting the pos-
sibility of bifurcation’s occurrence. That reminds us the complexity of the dynamic river 
system and the limitation of making Gaussian white noise as the only random disturbances. 
Just like absence of enough centrifugal force would lead car to skid off the track, obviously 
SDEs-(8) requires additional reinforcement. 

 

 
 

Figure 2  Comparison of the calculated and measured values of bankfull channel geometries in the Gao-
cun-Sunkou reach of the Lower Yellow River under the Model-1 condition 

3.3.2  Model-2 

Jump-diffusion model was first introduced by Merton (1976) who solved the option prices 
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combining with Gaussian white noise and lognormally distributed Poisson jumps. Consid-
ering the sudden heavy changes in meteorological conditions or artificial disturbances could 
bring random impulse excitation to bankfull channel geometries, and that all the occurrence, 
duration and magnitude of such processes are random, thus we built a jump-diffusion model 
SDEs-Eqs. (10). In this section, the continuous change of bankfull geometries are regarded 
as the combination of geometric Brownian motion and Poisson jump-diffusion motion, 
which describe the continuous processes and the unexpected destruction of continuities, re-
spectively. See Figure 3a, the variation of discharge by taking the Model-2 approach suc-
cessfully limits the excessive expressiveness of white noises and improves the simulation 
effectiveness on the whole. Compared with Figures 2b–2e, Figures 3b–3e show a positive 
development that the plane probability stability zones are turned from smooth and thick into 
more uneven and exquisite form, meanwhile the increased volatility molds the average 
trends into more real representation of the hydraulic geometry variations. The phenomenon 
prove that the simulated jump terms have succeeded in detecting sudden events, Poisson 
SDEs is definitely an important extension to the theory of stochastic processes and could 
highly enhance the capability of simulation in some cases. The only downside here is that 
local excessive transiliences are completely beyond the effective interval solutions. In some 
moments, hydraulic geometry with UP or DOWN lead to overlarger UP or DOWN, or over-
sharp reversal reaction. Obviously, sometimes nonlinearity dominates in the dynamics. 

 

 
 

Figure 3  Comparison of the calculated and measured values of bankfull channel geometries in the Gao-
cun-Sunkou reach of the Lower Yellow River under the Model-2 condition 
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3.3.3  Model-3 

The research of fBm can be traced back to the early 1940s. Mandelbrot and Aizenman (1979) 
named it and promoted the fractal family. In recent years, fBm has been found in applica-
tions to natural and engineering sciences, for example, turbulence in hydraulics. Thus, we 
established a jump-diffusion SDEs-Eqs.(13) driven by fBm to further explore the nonlinear 
characteristics of bankfull channel geometry. Overall, we can see similar performances with 
Figure 3 in the bankfull discharge case, and meanwhile Figures 4b–4e perform better than 
Figures 3b–3e, in particular, the width and velocity process with the Hurst parameters in the 
range of 0 to 0.5 are severely negatively correlated, the time series for each are long-term 
switched between high and low values in adjacent pairs, which is well consistent with actual 
situation. While for the slope and depth case, the fractional model is similar to the jump 
model in the ways that some local jump events are correctly captured while others are not. 
Also, a noteworthy point is that some outlier points are still not incorporated in the core of 
probabilistic regions, there could be a chance of gradual improvement by advancing Poisson 
noises on the basis of fractional white noise. Considering Poisson Jump may be much more 
complicated than it appears, we believe adding zoom factor in jump intensity or jump fre-
quency, or substituting for the mutually independent noises with correlated noises could 
really be alternative options to consider in the future work. In summary, the description of 
the SDEs behaviors is investigated with satisfactory outcomes. 

 

 
 

Figure 4  Comparison of the calculated and measured values of bankfull channel geometries in the Gao-
cun-Sunkou reach of the Lower Yellow River under the Model-3 condition 



SONG Xiaolong et al.: Stochastic evolution of hydraulic geometry relationships with changing bankfull discharges 859 

 

 

4  Discussion 

4.1  Model comparison 

Through the consistent procedure running based on SDEs, the variation of bankfull chan-
nel geometries are demonstrated to be characterized by nonlinearity, non-stationary, and 
abruptness. Here deterministic equilibrium curves are converted into probabilistic distribu-
tion zone, in which the significant interval and the average trend could greatly determine the 
research value for river management. The implementation of SDEs provides such kind of 
important supplement that we move on to conduct a comparable study of the different mod-
els in a quantitative way. Obviously, in case that exterior integral styles permitted, it will be 
satisfying to choose a model with the larger of effective probability (the average occurring 
probability of discrete measurements in the distributions) and the smaller of effective prob-
ability stability thickness (the interior limit range), and also the smaller of the relative error 
between stochastic average and measurements. Considering the great significance of the 
above factors for the investigation and comparison, we describe below their time-varying 
processes (Figures 5–6), and in consistent with Figures 2–4, we give targeted suggestions for 
each hydraulic geometry relation in the following parts. 

 

 
 

Figure 5  The time-varying process of effective probabilistic stability thickness of hydraulic geometry in the 
Gaocun-Sunkou reach of the Lower Yellow River under the three model conditions 

 

(1) Slope. Figures (2–4)b show that jump-diffusion models could strongly help to im-
prove the capacity for controlling systemic slope changes, and simple Gaussian white 
noise model should undoubtedly be abandoned. Meanwhile judging by Figures (5–6)a, 
victory belongs to fractional model due to its overall advantage in effective stability 
thickness and effective probability, though the Model-2 enjoys a bit advantage over rela-
tive error of dataset. 

(2) Width. Similar to the slope case, according to Figures (2–4)c, intuitively, we can find 
the significant improvement of jump-diffusion models over simple white noise model. The 
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fractional approach has the advantage of having little relative error, and better performance 
in simulating the fluctuation of stochastic average. 

 

 
 

Figure 6  Comparison of stochastic average with measurements in the Gaocun-Sunkou reach of the Lower Yel-
low River under the three model conditions 
 

(3) Depth. Different to the above cases, Figures (2–4)d show the slight rising effect of 
fractional term in describing the dynamic changes on the basis of Poisson jump. According 
to the performances in the effective probabilistic zone and relative data error in Figures 
(5–6)c, it seems Poisson jump could take effect well only under the linear Gaussian circum-
stances. In other words, dynamic depth can thus be proven to be highly continuous, stable, 
and be affected linearly by unexpected stochastic events. 

(4) Velocity. In this case, Figures (2–4)e and Figures (5–6)d show that fractional SDEs is 
superior to Poisson jump model, especially in the fluctuation of the simulation results, effec-
tive probability properties and relative error (δ). Obviously, the performance of fractional 
model is charmed and convinced. 

In short, fractional jump-diffusion model has best applicability in simulating the slope, 
width, and velocity changes, the simple jump-diffusion model is good enough for exploring 
depth.  

4.2  Systematic application 

In a certain sense river is alive, like a man, bankfull channel geometries constitute the pri-
mary organ of river body. Fundamentally, discharge plays the role of drivers and sustainers 
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of diversified river landscape. And in many cases, there are a number of reasons to explain 
the nonlinearity of hydraulic geometry relations, such as the presence of gravel bars, the 
variability of hydraulic geometry of riffles, or an abrupt change in the resistance to flow 
(Navratil and Albert, 2010), while the assessment of system stability is always a very neces-
sary task in understanding river. According to the literature, some excellent tools could be 
used to describe it, for example, the riverbed stability indices (Zw) by Zhang (1995) (Eq. 24a) 
has the ability to help to distinguish different river patterns including braiding (Zw<5), ana-
branching (or transitioning) (5<Zw<15) and meandering type (Zw>15). And similarly, hy-
draulic width/depth ratio (ζ) (Eq. 24b) and stream power (Ω) (Eq. 24c) can be regarded as 
the characteristic quantities that represent erosion rate and flow intensity in a river. Thus, 
from the foregoing research results, we perform statistical computations on the dynamic 
probability processes of Zw, ζ and Ω observed from the Gaocun station downward with all 
individual hydraulic geometry variables in their fractional stochastic definitions being al-
ready calculated in former sections, as is shown in Figure 7. 
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It can be seen from Figure 7a that riverbed stability indices began to fall starting from 

1990, whose stochastic average almost passed the Zw=5 braiding threshold during the fol-
lowing period, then until the year 2000 it was gradually strengthened and returned to the 
transitional zone (5<Zw<15). Meanwhile, Gaocun station was powered by slowly increased 
flow intensity (Figure 7c), and dominated more by incision than by widening erosion (Figure 
7b) after 2000. The reason, according to the literature, is the running and application of the 
upstream Xiaolangdi Reservoir spared long-suffering low flow and sediment load burden in 
Lower Yellow river, which is consistent with the hump phenomenon that was proven to be 
negatively correlated with the flow discharge level by Guo et al. (2012). The above figures 
demonstrate that the trough of river stability around 1999 has been saved; the sensitive fluc-
tuation of probability thickness with average trendline reminds us of needs that raise the 
level of river evolution alert in Lower Yellow River in the future. Moreover, this also sees 
the ascendancy of SDEs, considering the discrete data calculated on the basis of measure-
ment do not completely reflect the changing reality, such as in ζ around 2000. That means 
the measurements of the individual hydraulic geometry variables cannot help us to exactly 
grasp the dynamic characteristics of river system, yet hydraulic width/depth ratio (ζ) as an 
example expressed by the proposed stochastic method could work in the conditions of only 
small amount data of flood season’s discharge and suspended sediment concentration. Cal-
culations of correlation coefficients of stochastic average Zw , ζ and Ω with bankfull dis-
charge (Q) (Table 8) lead us to believe that discharge-dominated Lower Yellow River can be 
described better with a stochastic state space represented by Ω. Fresh information collected 
in Lower Yellow River show that the region is suffering from a combination of water and 
soil conservation, upstream reservoir regulation, increasing water usage and climatic  
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Figure 7  The time-varying probability distribution of riverbed stability indices, hydraulic width/depth ratio 
and stream power in the Gaocun-Sunkou reach of the Lower Yellow River based on Fractional Jump-Diffusion 
model (13) 
 

change after 2013, the water-sediment amount coming into the mainstream continue de-
creasing sharply. The demand for sustainable and stable development of the Yellow River 
Plain requires us to handle seriously the new situation of enhanced channel capacity of water 
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flow and more appearance of me-
dium-small discharge. Long-term rele-
vant influences need to be measured, 
identified, and assessed by systematical 
and quantitative methods. This study is 
of great theoretical and practical significance. 

5  Conclusion 
This paper considered the bankfull channel geometry problem for a stochastic time-varying 
state space of multi-input multi-output river system by involving random noise factors in the 
stochastic differential equations. Three different models that combined the Gaussian white 
noise, Fractional white noise, Poisson noise were evaluated respectively in the Gao-
cun-Sunkou reach of the Lower Yellow River to investigate the evolution of probability dis-
tribution of bankfull channel geometries here over time. Results show that this procedure 
effectively extends the traditional deterministic equations into the controllable probabilistic 
stability forms, successfully improves the understanding of systemic river evolution under 
limited data conditions, and, contributes much to river management and the utilization of the 
earth’s surface resources. Future research will continue to receive new authentication and 
become more perfect by avoiding the use of over-simplified noise terms. 
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