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Abstract: Climate change resulting from CO2 emissions has become an important global en-
vironmental issue in recent years. Improving carbon emission performance is one way to 
reduce carbon emissions. Although carbon emission performance has been discussed at the 
national and industrial levels, city-level studies are lacking due to the limited availability of 
statistics on energy consumption. In this study, based on city-level remote sensing data on 
carbon emissions in China from 1992–2013, we used the slacks-based measure of su-
per-efficiency to evaluate urban carbon emission performance. The traditional Markov prob-
ability transfer matrix and spatial Markov probability transfer matrix were constructed to ex-
plore the spatiotemporal evolution of urban carbon emission performance in China for the first 
time and predict long-term trends in carbon emission performance. The results show that 
urban carbon emission performance in China steadily increased during the study period with 
some fluctuations. However, the overall level of carbon emission performance remains low, 
indicating great potential for improvements in energy conservation and emission reduction. 
The spatial pattern of urban carbon emission performance in China can be described as “high 
in the south and low in the north,” and significant differences in carbon emission performance 
were found between cities. The spatial Markov probabilistic transfer matrix results indicate 
that the transfer of carbon emission performance in Chinese cities is stable, resulting in a 
“club convergence” phenomenon. Furthermore, neighborhood backgrounds play an important 
role in the transfer between carbon emission performance types. Based on the prediction of 
long-term trends in carbon emission performance, carbon emission performance is expected 
to improve gradually over time. Therefore, China should continue to strengthen research and 
development aimed at improving urban carbon emission performance and achieving the na-
tional energy conservation and emission reduction goals. Meanwhile, neighboring cities with 
different neighborhood backgrounds should pursue cooperative economic strategies that 
balance economic growth, energy conservation, and emission reductions to realize 
low-carbon construction and sustainable development. 
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1  Introduction 
Climate change and its impacts have become one of the most serious environmental prob-
lems facing the world today (Su et al., 2013). According to the Fourth Global Climate As-
sessment of the United Nations Intergovernmental Panel on Climate Change, global warm-
ing is an undisputed fact, with human activities and the large amounts of greenhouse gas 
emissions being the main causes of global climate change. As one of the most important 
greenhouse gases, CO2 is closely related to global warming (Liu et al., 2019; Wang et al., 
2019b). With the continuous advancement of urbanization and industrialization, CO2 emis-
sions continue to increase. Accordingly, environmental issues caused by CO2 have attracted 
widespread attention from governments and scholars around the world. To achieve sustain-
able development, countries have proposed low-carbon action plans, such as the low-carbon 
action plan in the United Kingdom and the low-carbon society action plan in Japan. Since 
China is the world’s largest CO2 emitter, energy conservation and emission reduction are 
focal points of the national development strategy in China (Deng et al., 2014; Wang et al., 
2019c). China signed the Kyoto Protocol in 2005, and China’s nation plan includes clear 
energy saving and emission reduction targets. For example, China’s 12th Five-Year Plan 
(2011–2015) proposed to reduce carbon emissions by 17% by 2015 compared to 2010. The 
13th Five-Year Plan (2016–2020) strengthened the goal of low-carbon development, with an 
18% reduction in carbon emissions by 2020 compared with 2015. In addition, as indicated in 
the China–United States Joint Statement, China plans to reach a peak in total CO2 emissions 
by 2030 (Song et al., 2018). A series of planning outlines clearly lay out China’s low-carbon 
development goals. Research shows that cities are the largest source of energy consumption 
and greenhouse gas emissions (Ishii et al., 2010). Thus, establishing low-carbon cities is 
critical for China to deal with climate change and develop a low-carbon economy. 

Based on the above considerations, low-carbon development and emission reduction have 
become hot research topics. The estimation methods (Liu et al., 2011; Zhao et al., 2012), 
influential factors (Xu et al., 2006; Xu et al., 2012; Ping et al., 2013), intensity (Zhao et al., 
2010; Li and Zhou, 2012), and performance (Wang et al., 2010) of CO2 emissions have been 
extensively studied. Carbon emission performance is an important component in assessing 
environmental performance. Indicators used to assess carbon emission performance can be 
divided into single-factor and total-factor indicators according to the measurement method-
ology. Mielnik and Goldemberg (1999) first evaluated carbon emission performance in de-
veloping countries based on the carbon index, a single-factor indicator that reflects the car-
bon emissions per unit of energy consumption. Yamaji et al. (1993) defined the ratio of total 
CO2 emissions to GDP as CO2 productivity to study the carbon emission level in Japan. 
Other single-factor indexes have been used by scholars to evaluate carbon emission per-
formance, including CO2 emission intensity (Sun, 2005), per-capita emissions (Stretesky and 
Lynch, 2009), cumulative emissions per capita from industrialization (Zhang et al., 2008), 
and energy intensity (Ang, 1999). 

The above single-factor indicators of carbon emission performance are mostly based on 
the ratio of CO2 emissions to economic or energy-related indexes. While these indicators are 
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easy to calculate and understand, they have certain limitations. Because anthropogenic CO2 
emissions are mainly derived from economic activities, the essential of carbon emission 
performance is the input-output efficiency of economic activities, which is not only affected 
by energy, but also is the result of the joint action of capital, labor and other economic inputs. 
Therefore, when measuring carbon emission performance, it is necessary to consider the 
effects of other factors in the process of economic production using total-factor indicators 
(Zha and Tang, 2012). In total-factor methods, economic production, energy consumption, 
capital investment, and labor force are considered as the inputs that generate economic 
products [e.g., gross domestic product (GDP)] as the “expected output” and CO2 as the 
“non-expected output,” making the determination of CO2 emission performance more accu-
rate (Wang et al., 2015). For example, Ramanathan (2002) used the data envelopment analy-
sis (DEA) model to build an input–output indicator system that includes variables related to 
CO2 emissions, energy consumption, and economic activity and compare carbon emission 
performance among countries. Subsequently, numerous scholars used this model to calculate 
the carbon emission performance of different industries in various countries. Zhou et al. 
(2010) used the DEA model and the Malmquist index to measure the carbon emission per-
formance of 18 countries with high carbon emissions and examine the influential factors. 
Wang et al. (2013) further analyzed the carbon emission performance of various industrial 
sectors in China using the DEA method and found that the carbon emission performance of 
light industry was generally higher than that of heavy industry. Meng et al. (2017) used the 
range-adjusted measure DEA model to estimate the low-carbon economic efficiency in 
China’s industrial sector from 2001 to 2013; they found that low-carbon economic effi-
ciency remained low in most industries but had greatly improved during the study period. 
The DEA model focuses only on the expected output of economic activities and ignores the 
non-expected output, which may lead to errors in the results. Therefore, some scholars have 
developed improved models to measure carbon emission performance, including the direc-
tional distance function model (Du et al., 2014), the slacks-based measure (SBM) model 
(Wang et al., 2011; Choi et al., 2012; Li, 2013; Wang and Du, 2019a), and the su-
per-efficiency SBM model (Shen et al., 2018). In general, existing studies have analyzed 
carbon emission performance at the national, regional, and industrial scales. In contrast, few 
studies have considered carbon emission performance at the city scale. 

Based on the above analysis, current research on carbon emission performance is limited 
by two main deficiencies. First, there is a lack of city-level, energy-related statistical data; 
most studies have focused on national- or regional-level CO2 emission performance rather 
than city-scale CO2 emission performance. However, since urban areas are the largest source 
of energy consumption and greenhouse gas emissions (IEA, 2012), city-level carbon emis-
sion performance has important theoretical and practical significance for low-carbon city 
construction and sustainable economic development. Second, existing studies have mainly 
focused on the measurement, spatial characteristics, and influencing factors of emission 
performance, whereas few studies have predicted trends in CO2 emission performance. Pre-
dictions of future trends in CO2 emission performance can help realize a balance between 
economic growth and carbon emission reduction. Therefore, in this study, China’s 283 cities 
were taken as the basic research units, and the super-efficiency SBM model was used to 
calculate the CO2 emission performance of cities from 1992–2013. The spatial and temporal 
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evolution characteristics of urban carbon emission performance were also analyzed. Subse-
quently, the traditional and spatial Markov transfer probability matrix were constructed to 
empirically analyze the spatial spillover effect of urban carbon emission performance in 
China, so as to determine whether the urban carbon emission performance will have an im-
pact on the surrounding areas. Then predict the long-term trends in urban carbon emission 
performance. The results provide a basis for the science-based formulation of low-carbon 
sustainable development policies.  

2  Data and methods 

2.1  Data 

The objective of this study was to measure the carbon emission performance of Chinese cit-
ies from an input–output perspective. Considering the lack of data for some cities, the final 
research objects were 283 cities in China, and the study period was 1992 to 2013. The most 
important input factors in carbon emission performance are capital, labor, and energy (Zha 
and Tang, 2012; Wang et al., 2019a). The mechanisms by which these factors affect carbon 
emissions during economic activities are shown in Figure 1. Based on past research results, 
fixed-asset investment, the number of employees at year end, and urban electricity con-
sumption were selected as the capital, labor, and energy inputs to the model, respectively. 
Meanwhile, GDP and urban CO2 emissions were selected as the expected and non-expected 
outputs during economic activities, respectively. The resulting system of input–output indi-
cators for carbon emission performance in China is depicted in Table 1. Due to the top-down 
model of energy statistics in China, city-scale energy consumption data are lacking, making 
it difficult to account for urban carbon emissions. The carbon emissions data in this study 
were obtained from Wang and Liu (2017) and are based on the simulated inversion of night 
light data which comes from the Defense Meteorological Satellite Program (DMSP). To en-
sure the accuracy of these carbon emission data, we compared the simulated carbon emis-
sion data derived from Wang and Liu (2017) with the statistically calculated values from 
some cities with available energy consumption data. The relative error between the simu-
lated and statistically calculated data was 7.65% (Wang et al., 2018), indicating the good 
accuracy of the simulated data. Thus, the simulated data were determined to be appropriate  
 

 
 

Figure 1  Effects of different factors on urban carbon emission performance from an input–output perspective 



WANG Shaojian et al.: Spatiotemporal evolution of urban carbon emission performance in China 761 

 

 

Table 1  System of input–output indicators for carbon emission performance 

Indicator Variable Unit Mean Min Max S.D. 
Fixed-asset investment 108 yuan 42.65 12.95 836.24 66.34 
Number of employees 104 person 220.36 0.32 1729.55 169.70 Input 
Electricity consumption 104 kwh 680.87 0.25 8514.69 907.31 

Expected output GDP 108 yuan 103.97 2.96 1483.55 125.46 
Non-expected output CO2 emissions 104 t 1665.89 0.62 20832.94 2219.91 

 

to evaluate urban carbon emission performance in this study. The remaining data were ob-
tained from the China City Statistical Yearbook and related city statistics. Missing data in 
some years were obtained by linear interpolation. To eliminate the effects of inflation, GDP 
and fixed-asset investment were converted to 2000 prices. 

2.2  Methods 

2.2.1  Super-efficiency SBM model based on non-expected output 

In the process of economic production, the input of labor, capital, and energy produces in-
dustrial products along with the byproduct CO2, which is regarded as non-expected output. 
The SBM model originally proposed by Tone (2001) is widely used to study carbon emis-
sion performance (Wang and Du, 2019b), ecological efficiency (Zhou et al., 2018), and en-
ergy efficiency (Wang et al., 2019) because it accounts for non-expected outputs in the pro-
duction process, allowing it to accurately reflect actual conditions. Compared to the tradi-
tional DEA model, the SBM model considering non-expected outputs has two advantages. 
First, it can solve the problem of slackness in the calculation of input and output. Second, it 
can solve the problem of efficiency analysis in the presence of non-expected output (Liu and 
Li, 2015). Therefore, in this study, the SBM model based on non-expected output was used 
to determine CO2 emission performance in Chinese cities. 

Suppose a production system with n decision units. Each decision unit is composed of 
three input–output vectors: input, expected output, and non-expected output. Every m unit of 
input produces the expected output S1 and non-expected output S2 (Zhang et al., 2017). The 
three input–output vectors can be expressed as 1 2, ,and S Sm g bx R y R y R   . The matrices 

X, Yg, and Yb are respectively defined as 1 2 1 2[ , , , ] , [ , , , ]m n g g g g
n nX x x x R Y y y y      

1 2
1 2,and [ , , , ]S n S nb b b b

nR Y y y y R     . 
Assuming X > 0, Yg > 0, and Yb > 0, the production possibility set can be defined as 

(Zhang et al., 2017) 
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The actual expected output level is lower than the ideal expected output level, and the ac-
tual non-expected output level is higher than the ideal non-desired output level (Hong et al., 
2013). In Tone’s SBM model, non-expected outputs are incorporated into the evaluation de-
cision unit ( 0 00, ,g bx y y ) as follows (Tone, 2001): 
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where ( , , )g bS S S S  is the amount of slack in the input, expected output, and 
non-expected output; and   is the efficiency of the decision unit, which ranges from 0 to 1. 

For a given decision unit ( 0 0 0, ,g bx y y ), the decision unit is valid if and only if ρ = 1; that 

is, 0g bS S S    . Through the Charnes–Cooper transformation, the above nonlinear 
equation is transformed into a linear model, which is more conducive to calculation. The 
equivalent form of the model is (Tone, 2001)  
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In most evaluations of efficiency, multiple decision-making units have 100% efficiency 
values. Therefore, when ranking these efficiencies, it is important to distinguish between 
these efficiency decision-making units. Considering the findings of Tone (2002), we chose 
the super-efficiency SBM model, which is expressed as follows: 
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where ρ* is the efficiency value of the decision unit, and its value can exceed 1. The above 
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models assume that the scale is constant. 
2.2.2  Spatial Markov chain 
Revealing the spatiotemporal dynamics of an area is an important part of geographic re-
search. Coefficients such as the Theil index, Syr coefficient, and coefficient of variation can 
be combined with exploratory spatial statistical methods to reflect the temporal evolution 
and spatial distribution characteristics of geographic phenomena. However, the above 
methods rely on static processes to reflect regional phenomena and ignore the dynamic 
characteristics of the region. Meanwhile, the above methods are best suited to provide in-
formation for the entire region; they cannot reflect internal dynamic information. To address 
the shortcomings of the above methods, the Markov chain method treats the evolution of 
regional phenomena as a Markov process to reflect the static and dynamic characteristics in 
each region (Le, 2004; Wei and Liao, 2012).  

The Markov chain is based on continuous values quantified by regional phenomena and 
discretizes regional phenomena into k state types. By calculating the various types of 
changes and their probabilities, the evolution of regional phenomena can be approximated as 
a Markov process. First, a 1×k matrix 1, 2, ,[ , , , ]t t t k tF F F F   is used to store the state 
probability of carbon emission performance in each region in period t. The transfer of re-
gional carbon emission performance in different periods is shown in Table 2, which is a k×k 
Markov transfer probability matrix M. Herein, a city’s carbon emission performance value is 
divided into four types according to the quartile (0.25, 0.5, 0.75), and the types are k = 1, 2, 
3, 4. The element Pij in the matrix in Table 2 represents the probability that the city’s carbon 
emission performance value is type i at time t and type j at time t + 1. Pij is calculated as  

 

ij
ij

i

z
P

z
 ,                           (8) 

where zij represents the sum of the 
number of study areas that transfer from 
type i at time t to type j at time t + 1 
during the entire study period, and zi is 
the sum of the number of regions be-
longing to type i during the entire study 
period. 

When studying different periods, 
scholars have found that spatial spillover due to geographical proximity plays an important 
role in regional development and evolution (Rey, 2010). Considering the spatial characteris-
tics of regional phenomena, we introduced the concept of spatial lag to decompose the tradi-
tional Markov chain k×k transfer probability matrix into k k×k transfer condition probability 
matrices. As shown in Table 3, the element P(l, i, j) in the matrix represents the probability 
that a city’s carbon emission performance value transfers from the initial state type i to type j 
at the next time point when the spatial lag type is l. The spatial lag type considers the units 
that are geographically adjacent to the area. The specific formula is as follows: 

 1

Lag
n

a b ab
b

Y W


               (9) 

Table 2  Markov transfer probability matrix (k = 4) 

t/t+1 1 2 3 4 

1 P11 P12 P13 P14 

2 P21 P22 P23 P24 

3 P31 P32 P33 P34 

4 P41 P42 P 43 P44 
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where Yb is the observed value of area b, Laga is the spatial lag of area a, n is the total num-
ber of cities, and the spatial weight matrix Wab reflects the spatial relationship between areas 
a and b. In this study, the adjacency principle was adopted to define the spatial relationship; 
that is, the value is 1 for the adjacent region and 0 otherwise. Due to the island problem 
caused by the lack of statistical data, we define the city closest to the island as the adjacent 
city. 
 

Table 3  Spatial Markov transfer probability matrix (k = 4) 

Lag t/t+1 1 2 3 4 

1 P11|1 P12|1 P13|1 P14|1 

2 P21|1 P22|1 P23|1 P24|1 

3 P31|1 P32|1 P33|1 P34|1 
1 

4 P41|1 P42|1 P43|1 P44|1 

1 P11|2 P12|2 P13|2 P14|2 

2 P21|2 P22|2 P23|2 P24|2 

3 P31|2 P32|2 P33|2 P34|2 
2 

4 P41|2 P42|2 P43|2 P44|2 

1 P11|3 P12|3 P13|3 P14|3 

2 P21|3 P22|3 P23|3 P24|3 

3 P31|3 P32|3 P33|3 P34|3 
3 

4 P41|3 P42|3 P43|3 P44|3 

1 P11|4 P12|4 P13|4 P14|4 

2 P21|4 P22|4 P23|4 P24|4 

3 P31|4 P32|4 P33|4 P34|4 
4 

4 P41|4 P42|4 P43|4 P44|4 
 

After a long period of transfer, the system will reach a stable state that is not affected by 
time. The corresponding probability at this moment is called the ultimate state probability or 
the equilibrium state probability. By referring to the definition of limit, the Markov transfer 
probability matrix can be used to calculate the ultimate state. To some extent, this ultimate 
state probability provides important information for predicting the future trend in the Mar-
kov process. The calculation formula is as follows: 

 
   lim lim 1

k k
k k  

 
                         (10) 

where π is the ultimate state matrix of the evolution of the Markov process. If π satisfies 

1

1
n

i
i




  and 0 1i≤ ≤ , π is the ultimate state of the traditional Markov process. Substi-

tuting Eq. (10) into the recursive formula of the Markov prediction model gives 

 
   lim 1 lim

k k
k k M 

 
                       (11) 

Similarly, the method for calculating the final state of a traditional Markov process can be 
extended to a spatial Markov chain to calculate the final state of the Markov process under 
different spatial lag states. This provides important information about the evolution of the 
spatial Markov process. 
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3  Spatiotemporal evolution of carbon emission performance in Chinese 
cities 

3.1  Measurement and spatiotemporal distribution of carbon emission performance 

The super-efficiency SBM model was 
used to determine the carbon emission 
performance of 283 cities in China from 
1992 to 2013 and analyze the spatio-
temporal evolution in carbon emission 
performance. Figure 2 shows the average 
change in carbon emission performance 
across China, while Figure 3 shows a 
box plot of carbon emission performance 
in Chinese cities. As shown in Figure 2, 
the overall level of carbon emission 
performance in Chinese cities remains 
low (< 0.6). This indicates the existence 
of significant room for improvement in China’s economic development in terms of techno-
logical progress and emission reduction. Because the Chinese government prioritizes 
low-carbon city construction, energy conservation, and emission reduction, China adopted a 
series of measures to improve carbon emission efficiency between 1995 and 2002. However, 
given the bottlenecks in energy conservation and emission reduction, carbon emission per-
formance in China has stagnated. Thus, a new round of industrial transformation and energy 
structure adjustment is needed to improve carbon emission performance in China. Figure 3 
shows the changes in the distribution of carbon emission performance in Chinese cities from 
1992 to 2013. During the study period, the overall carbon emission performance greatly im-
proved. The change in the mean value of carbon emission performance in each city has been 
concentrated from low value to median value. Many cities with low carbon emissions have 
significantly improved their carbon emission performance by investing in technology and 
modernizing their industries. However, the carbon emission performance remains low in 
some cities. In general, the carbon emission performance of Chinese cities differs signify- 

 

 
 

Figure 3  Box plot of urban carbon emission performance in Chinese cities from 1992 to 2013 

 
 

Figure 2  Evolution in urban carbon emission perform-
ance from 1992–2013 
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cantly. 
ArcGIS 10.3 software was used to visualize the carbon emission performance of Chinese 

cities. Figure 4 shows the spatial distribution of carbon emission performance in Chinese 
cities. Figure 4 indicates that the carbon emission performance in most cities improved sig-
nificantly during the study period, especially from 1995 to 2000. Since 2000, cities in Hunan, 
Hubei, Jiangxi, Zhejiang, Jiangsu, Anhui, Shandong, and Liaoning provinces have greatly 
improved their carbon emission performance, while smaller improvements in carbon emis-
sion performance were observed in cities in Shaanxi, Shanxi, Hebei, Guangxi, and Guang-
dong provinces. Notably, the carbon emission performance of cities in Heilongjiang and Jilin 
provinces was relatively high from 2000–2005 and then declined to a certain extent. In addi-
tion, the carbon emission performance in cities in Shaanxi, Hebei, Henan, and Guangdong 
provinces all declined from 2010–2013. In 2013, the spatial pattern of carbon emission per-
formance in Chinese cities could be described as “high in the south and low in the north.” In 
this pattern, carbon emission performance gradually decreased moving outward from Hunan 
and Sichuan.  

 

 
 

Figure 4  Spatial distributions of urban carbon emission performance in Chinese cities from 1992–2013 
 

3.2  Spatiotemporal evolution of carbon emission performance 

The traditional Markov transfer and spatial Markov transfer probability matrices were con-
structed and used to analyze the spatiotemporal evolution of carbon emission performance in 
Chinese cities. In each matrix, carbon emission performance is discretely divided into four 
states: low, medium-low, medium-high, and high (respectively represented by k = 1, 2, 3, 
and 4). The transfer from a low value to a high value is defined as a downward transfer, 
while the transfer from a high value to a low value is defined as an upward transfer. The tra-
ditional Markov transfer probability matrix shown in Table 4 indicates the following. (1) 
The diagonal probabilities are greater than the non-diagonal probabilities, suggesting that 
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urban carbon emission performance in China is stable, with a high probability of maintain-
ing the original state. (2) A “club convergence” phenomenon is observed in the carbon emis-
sion performance of Chinese cities. That is, different regions will form different clubs in the 
transfer of carbon emission performance according to their initial conditions, and regions 
with similar conditions within the club will converge in the transfer. (3) The cities with low 
and high carbon emission performance have the highest probability of maintaining the orig-
inal state at the next time period (74.37% and 80.13%, respectively). The probability of 
transfer between urban carbon emission performance types in adjacent years is low (< 6%). 
 
Table 4  Markov matrix of city-level carbon emission performance types from 1992–2013 

t/t+1 n 1 2 3 4 

1 1514 0.7437  0.1777  0.0575  0.0211  

2 1457 0.1030  0.6603  0.1929  0.0439  

3 1472 0.0177  0.1793  0.6372  0.1658  

4 1500 0.0133  0.0253  0.1600  0.8013  

 
To construct the spatial Markov transfer probability matrix, a spatial lag condition was 

added to the traditional Markov chain transfer probability matrix. By comparing the prob-
abilities of transfers in urban carbon emission performance type under different neighbor-
hood backgrounds, the effect of different carbon emission performance levels in surrounding 
cities on urban carbon emission performance transfer was explored. Based on the spatial 
Markov transfer probability matrix in Table 5, the following conclusions can be drawn. (1) 
Neighborhood background plays an important role in the transfer of carbon emission per-
formance in Chinese cities. Compared to the traditional Markov transfer probability matrix, 
the carbon emission performance transfer probability in Chinese cities has changed signifi-
cantly under different neighborhood backgrounds. (2) The transfer of urban carbon per-
formance is synergistic with the type of regional carbon emission performance. For example, 
when the city’s neighborhood background is 1, the number of cities with low carbon emis-
sion performance at time t is significantly more than for other types of cities. When the 
city’s neighborhood background is 4, the number of cities with high carbon emission per-
formance at time t is far more than the number of other types. (3) Generally speaking, when 
a neighboring city has a low carbon emission performance, the probability of an upward 
transfer in the city’s carbon emission performance increases; conversely, when a neighboring 
city has a high carbon emission performance, the city’s carbon emission performance is 
more likely to shift downward. For example, as shown in Table 5, in neighborhood condi-
tions with low carbon emission performance, P21|1 (0.1565) > P21 (0.1029), P32|1 (0.2330) > 
P32 (0.1793). However, in neighborhood conditions where carbon emission performance is 
high, P12|4 (0.3272) > P12 (0.1776), P23|4 (0.2089) > P23 (0.1928). (4) The spatial Markov 
transfer probability matrix provides an explanation for the club convergence phenomenon in 
the spatial dimension. Affected by the spillover effect of neighborhood backgrounds, the 
transfer of carbon emission performance type in Chinese cities forms this club convergence 
phenomenon within a certain geographic space. That is, in regions with low carbon emission 
performance, the probability of a downward transfer in carbon emission performance in-
creases, P21|1 (0.1565) > P21|4 (0.0709), P32|1 (0.2330) > P32|4 (0.01489), while the probability 



768  Journal of Geographical Sciences 

 

of an upward transfer decreases, P12|1 (0.1437) < P12|4 (0.3273), P23|1 (0.1821) < P23|4 (0.2090). 
Therefore, cities with low carbon emission performance will accumulate in this geographic 
area. Similarly, the number of high-performance cities will increase over time in regions 
with high carbon emission performance. 
 
Table 5  Spatial Markov matrix of city-level carbon emission performance in China from 1992–2013 

Lag t/t+1 n 1 2 3 4 

1 807 0.7720 0.1437 0.0595 0.0248 

2 313 0.1565 0.6006 0.1821 0.0607 

3 206 0.0388 0.2330 0.5631 0.1650 
1 

4 176 0.0341 0.0455 0.1364 0.7841 

1 470 0.7319 0.2000 0.0553 0.0128 

2 436 0.1124 0.6651 0.1789 0.0436 

3 321 0.0218 0.2274 0.5919 0.1589 
2 

4 256 0.0430 0.0313 0.1953 0.7305 

1 182 0.6923 0.2253 0.0495 0.0330 

2 440 0.0750 0.6841 0.2045 0.0364 

3 475 0.0147 0.1537 0.6505 0.1811 
3 

4 371 0.0054 0.0296 0.2075 0.7574 

1 55 0.6000 0.3273 0.0727 0.0000 

2 268 0.0709 0.6828 0.2090 0.0373 

3 470 0.0085 0.1489 0.6872 0.1553 
4 

4 697 0.0014 0.0158 0.1277 0.8551 

 
Considering the neighborhood background conditions, the transfer of carbon emission 

performance in Chinese cities has changed significantly over time, indicating that the evolu-
tion of urban carbon emission performance exhibits a spatial spillover effect. To determine 
whether this spatial spillover effect is statistically significant, a hypothesis test was required. 
The transfer of a city’s carbon emission performance was assumed to be independent of each 
other and independent of neighborhood background. The following formula was used:  

 
 

 , ,

, ,1 1 1

2log
l i jn

k k k
ij

b
l i jl i j

P
Q

P  

       
    

                (12) 

where Qb is asymptotically distributed as x2 with k(k–1) degrees of freedom, k is the the 
number of types in the distribution: k = 4, Pij is the traditional Markov transfer probability, 
P(l, i, j) is the spatial Markov transfer probability of neighborhood background l, and n(l, i, j) is 
the number of cities with spatial Markov transfers in the neighborhood background l. At a 
confidence level of α = 0.005, 2 (109.15 40 66.77;)bQ x   therefore, the assumption that 
the transfer of carbon emission performance in Chinese cities is spatially independent is not 
valid.  

The spatial Markov transfer probability matrix indicates that the evolution of carbon 
emission performance in Chinese cities exhibits a significant spatial spillover effect. The 
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main manifestation of this spillover effect is the consistency of the city-level carbon emis-
sion performance with the regional performance. Meanwhile, the transfer of carbon emission 
performance in Chinese cities is affected by the spillover effects of neighborhood back-
ground, resulting in the club convergence phenomenon within certain geographical spaces. 
Neighborhood background plays an important role in the transfer of carbon emission per-
formance in Chinese cities. As shown in Figure 1, the regional carbon emission performance 
results from the combined effect of expected and non-expected outputs and is dominated by 
regional economic activities. Therefore, the spatial spillover effect in regional carbon emis-
sion performance is a concrete manifestation of the spatial spillover effect in regional eco-
nomic activities. The specific mechanism is as follows. 

According to the theory of economic growth, regional economic activities are the result of 
a combination of factors including capital, markets, technology, and policy. Under specific 
capital conditions, technological levels, and institutional environments, various economic 
factors interact to form the model of regional economic development (Zeng et al., 2015). 
First, the emergence of a unified market has strengthened the free flow of economic factors 
between cities. Second, an open economy allows cities to learn from advanced technologies 
in other regions, especially in neighboring areas. In addition, the diminishing marginal util-
ity of policy innovation has promoted intergovernmental institutional learning and imitation. 
For these reasons, regional economic development tends to be synergetic, resulting in a spa-
tial spillover effect in economic activities. In particular, the development of informatization 
and the continuous improvement in regional infrastructure have reduced the flow cost of 
interregional factors, promoted the flow of interregional factors, promoted the free flow of 
interregional factors, and made the spatial spillover in economic activities more significant 
(Zhang, 2012). On one hand, the spatial spillover effect in regional economic activities has 
changed the efficiency of regional economic output; thus, the expected output of regional 
economic activities has a spatial spillover effect in the development process. On the other 
hand, due to the strong energy dependence of economic activities in Chinese cities (World, 
2010), the coordinated transformation of regional economic development models has led to 
a coordinated transformation of energy consumption patterns and energy efficiency within 
regions (Wang and Huang, 2019). Therefore, the non-expected output of economic activities 
also exhibits a spatial spillover effect. The spatial spillover in economic activity between re-
gions is affected by interactions among multiple factors, which affect regional carbon emission 
performance by changing the expected and non-expected outputs of economic activities. In 
general, the spatial spillover effect in carbon emission performance results from the combined 
action of multiple geographic factors (e.g., markets, technologies, and institutions). 

4  Prediction of trends in carbon emission performance in Chinese cities 
The limit distribution of Markov transfer probability is the distribution in equilibrium state 
after long time transfer system. The corresponding probability is called the equilibrium state 
probability, which can effectively predict the long-term evolution in carbon emission per-
formance. When k  , the limit distribution of the state types in China’s urban carbon 
emission performance after k transfers can be obtained. After adding the spatial lag compo-
nent, we can analyze the limit distribution of urban carbon emission performance status 
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types in each neighborhood background. Table 6 shows the predicted trends in carbon emis-
sion performance in Chinese cities. Based on a comparison of the initial state and the limit 
distribution state of the traditional Markov transfer probability matrix, the number of states 1, 
2, and 3 is predicted to decrease, while the number of state 4 is predicted to increase signifi-
cantly. Thus, in the long term, carbon emission performance in Chinese cities will gradually 
shift from low to high; that is, carbon emission performance will gradually improve. In ad-
dition, when accounting for spatial lag, China's urban carbon emission performance still 
shows a significant upward trend. In the long term, the numbers of states 1, 2, 3, and 4 in 
cities adjacent to regions with low carbon emission performance (type 1) are similar. How-
ever, when adjacent regions have high carbon emission performance (types 3 and 4), the 
number of cities with high carbon performance will be much higher than the number of cit-
ies with low carbon performance.  

Generally speaking, the long-term evolution in China’s urban carbon emission perform-
ance is optimistic. The carbon emission performance is expected to improve gradually over 
time, with the numbers of cities with low and high carbon emission performance decreasing 
and increasing, respectively. The effect of neighborhood background on the evolution of 
urban carbon emission performance is heterogeneous. Cities adjacent to low-performance 
areas will have a smaller increase in carbon emission performance with a relatively equal 
distribution among the four state types. In contrast, in cities adjacent to high-performance 
areas, the carbon emission performance types are clustered around types 3 and 4, and an 
overall upward trend is predicted.  
 
Table 6  Predicted evolution in carbon emission performance in Chinese cities 

State type 1 2 3 4 

Initial state 0.1484  0.3534  0.3004  0.1979  
Ignoring spatial lag 

Ultimate state 0.1377  0.2512  0.2948  0.3162  

1 0.2521  0.2524  0.2242  0.2713  

2 0.1908  0.3184  0.2708  0.2201  

3 0.0851  0.2585  0.3471  0.3093  
Considering spatial lag Ultimate state 

4 0.0477  0.2220  0.3249  0.4054  

5  Discussion and conclusions 
Taking prefecture-level cities in China as the research units and 1992–2013 as the study pe-
riod, the super-efficiency SBM model was used to evaluate urban carbon emission perform-
ance. In addition, the traditional and spatial Markov chain-based transfer probability matri-
ces were constructed to conduct an empirical analysis of the spatial spillover effects of car-
bon emission performance in Chinese cities. The spatial and temporal evolution characteris-
tics of urban carbon emission performance were then evaluated, and the future trends in ur-
ban carbon emission performance were predicted. The main conclusions are summarized as 
follows. 

Considering the spatial and temporal distributions, urban carbon emission performance in 
China steadily increased during the study period with some fluctuations. However, the over-
all level of urban carbon emission performance remained low, indicating considerable room 
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for improvement. The change in the mean value of carbon emission performance in each city 
has been concentrated from low value to median value. Prominent differences were observed 
in carbon emission performance between cities. Spatially, the pattern of carbon emission 
performance in China could be described as “high in the south and low in the north”; carbon 
emission performance gradually decreased moving outward from Hunan and Sichuan. 

The traditional Markov probability transfer matrix indicates that carbon emission per-
formance in Chinese cities is relatively stable, and a club convergence phenomenon is ob-
served. The diagonal probabilities are greater than the non-diagonal probabilities, suggesting 
that urban carbon emission performance in China is stable. The spatial Markov transfer 
probability matrix indicates that neighborhood background plays an important role in the 
transfer of carbon emission performance in Chinese cities. For example, when a city is ad-
jacent to a region with low carbon emission performance, the probability of an upward 
transfer in the city’s carbon emission performance increases; conversely, when a city is ad-
jacent to a region with high carbon emission performance, the probability of a downward 
transfer increases. The spatial Markov transfer probability matrix also provides an explana-
tion for the observed club convergence phenomenon in the spatial dimension based on the 
spatial spillover effects of neighborhood background. 

The predicted long-term trends in carbon emission performance in China are optimistic. 
Carbon emission performance is predicted to gradually shift from low to high over time. The 
influence of neighborhood background on the evolution of urban carbon emission perform-
ance is heterogeneous. Cities adjacent to low-performing areas will have a smaller increase 
in carbon emission performance than cities adjacent to high-performing areas.  

The carbon emission performance in economically developed regions is lower than that of 
less developed regions in central and western China. This indicates that the economic de-
velopment in China still conforms to the “high energy consumption, high emissions, and 
high growth” model (Zha and Tang, 2012). Although the Chinese government has succes-
sively introduced a series of policies and measures with promising results, China is still in 
the rising portion of the “inverted U-shape” of Kuznets curve of economic development and 
carbon emissions (Wei and Yu, 2011). The trends in carbon emission performance predicted 
in this study indicate a large gap in performance between cities, and carbon emission per-
formance in some cities can be greatly improved. In the future, China should continue to 
improve urban carbon emission performance and make progress toward national energy 
conservation and emission reduction goals (Wang et al., 2016; 2017). The Markov matrix 
and spatial Markov matrix constructed in this study show that the city-level spatial charac-
teristics of carbon emission performance in China are similar to the regional characteristics. 
Thus, neighboring cities should coordinate their economic development efforts. In particular, 
cities adjacent to high-value carbon emission performance areas should strengthen their in-
dustrial, technological, and institutional exchanges with high-value areas to improve carbon 
emission performance. Meanwhile, the government should strengthen cooperation among 
cities and formulate energy conservation and emission reduction policies from a regional 
perspective. These measures will help achieve China’s goals of establishing low-carbon cit-
ies and developing a low-carbon economy (Song et al., 2018). 

Finally, this study has some shortcomings. First, the use of night light data to simulate 
urban carbon emissions may result in some error. Second, the existing DMSP light image 
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data are only published for years up to 2013; more recent data are needed to improve the 
timeliness of this study. In recent years, China’s economic development has changed greatly, 
profoundly affecting carbon emission performance. In future work, these data issues should 
be resolved to generate more timely results. Finally, this study used alternative data to estab-
lish the input–output indicator system. While these data are available and convenient, their 
accuracy is not sufficient. For example, electricity consumption was used in place of energy 
input, and the differences in energy consumption between cities were not considered. In ad-
dition, the number of employees at year end was used instead of labor input, and the effects 
of differences in the type and quality of labor among industrial structures were ignored. Fu-
ture research should further emphasize data comprehensiveness and accuracy. 
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