
J. Geogr. Sci. 2020, 30(5): 743-756 
DOI: https://doi.org/10.1007/s11442-020-1753-4 

© 2020    Science Press    Springer-Verlag 

                    
Received: 2019-12-22  Accepted: 2020-02-20 
Foundation: National Natural Science Foundation of China, No.41771135 
Author: Tang Zhipeng (1978–), PhD and Associate Professor, specialized in economic geography and regional sustainable 

development. E-mail: tangzp@igsnrr.ac.cn 
*Corresponding author: Xia Yan (1981–), Associate Professor. E-mail: xiayan@casipm.ac.cn 

   www.geogsci.com   www.springerlink.com/content/1009-637x 

Identification of the key factors affecting Chinese 
carbon intensity and their historical trends using 
random forest algorithm 
TANG Zhipeng1,2, MEI Ziao1,2, LIU Weidong1,2, *XIA Yan3 
1. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Nat-

ural Resources Research, CAS, Beijing 100101, China; 
2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; 
3. Institutes of Science and Development, CAS, Beijing 100190, China 
 

Abstract: The Chinese government ratified the Paris Climate Agreement in 2016. Accordingly, 
China aims to reduce carbon dioxide emissions per unit of gross domestic product (carbon 
intensity) to 60%–65% of 2005 levels by 2030. However, since numerous factors influence 
carbon intensity in China, it is critical to assess their relative importance to determine the 
most important factors. As traditional methods are inadequate for identifying key factors from 
a range of factors acting in concert, machine learning was applied in this study. Specifically, 
random forest algorithm, which is based on decision tree theory, was employed because it is 
insensitive to multicollinearity, is robust to missing and unbalanced data, and provides rea-
sonable predictive results. We identified the key factors affecting carbon intensity in China 
using random forest algorithm and analyzed the evolution in the key factors from 1980 to 
2017. The dominant factors affecting carbon intensity in China from 1980 to 1991 included 
the scale and proportion of energy-intensive industry, the proportion of fossil fuel-based en-
ergy, and technological progress. The Chinese economy developed rapidly between 1992 
and 2007; during this time, the effects of the proportion of service industry, price of fossil fuel, 
and traditional residential consumption on carbon intensity increased. Subsequently, the 
Chinese economy entered a period of structural adjustment after the 2008 global financial 
crisis; during this period, reductions in emissions and the availability of new energy types 
began to have effects on carbon intensity, and the importance of residential consumption 
increased. The results suggest that optimizing the energy and industrial structures, promoting 
technological advancement, increasing green consumption, and reducing emissions are keys 
to decreasing carbon intensity within China in the future. These approaches will help achieve 
the goal of reducing carbon intensity to 60%–65% of the 2005 level by 2030. 
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1  Introduction 
With the formal signing of the Paris Climate Agreement by the Chinese government in 2016, 
China has committed to reaching peak carbon emissions around 2030 and reducing carbon 
dioxide emissions per unit of gross domestic product (GDP), or carbon intensity, to 
60%–65% of the 2005 level by 2030. The best way to achieve these goals remains a major 
issue faced by the Chinese government and an area of concern for Chinese society and the 
international community. A study on the effects of economic development on carbon inten-
sity in China suggested that improving the energy structure is beneficial for reducing carbon 
intensity, whereas growing household consumption has the opposite effect (Zhang, 2010). 
Thus, to achieve the carbon intensity target, the Chinese government should adopt policies 
that will promote economic reconstruction to significantly reduce energy use (Stern et al., 
2010; Yuan et al., 2012). 

The total carbon emissions of a country or region depend on its GDP and carbon intensity. 
Since China is still a developing country, long-term economic growth is necessary to ensure 
national prosperity and strength. Therefore, reaching peak carbon emissions by 2030 cannot 
be achieved by reducing economic growth; instead, it must be accomplished by decreasing 
carbon intensity. Previous studies on carbon intensity have mainly focused on the influential 
factors from the perspectives of energy and industrial structure, technological progress, 
consumption, and land use. The results of previous works suggest that optimizing the energy 
structure can directly reduce energy intensity, thereby reducing carbon intensity (Wang et al., 
2013; Peng et al., 2016; Li et al., 2012; Fan et al., 2007). Adjusting the industrial structure 
to increase the proportion of low-carbon industry is also expected to help reduce carbon in-
tensity (Zhang, 2009; Feng, 2017; Xu and Wang, 2016), as is the use of advanced technolo-
gies to improve energy efficiency (Yan et al., 2017; Huang and Ding, 2014). The level of 
household consumption has been shown to be strongly related to carbon emissions (Dong et 
al., 2018; Tong et al., 2017; Fan et al., 2013). There is no general agreement between dif-
ferent land intensive use types and carbon emission efficiency with certain relationships 

(Zhu et al., 2016; You and Wu, 2014; Zhang et al., 2016). Most carbon emissions are gener-
ated by fossil energy combustion via human activities. Thus, carbon emissions are directly 
related to the energy structure and technological progress. GDP refers to the value of all fi-
nal products and services produced by a country or region in a certain period of time. GDP is 
directly related to the industrial structure and human consumption. Carbon intensity, which 
refers to the ratio of carbon emissions to GDP, is affected by numerous factors such as en-
ergy structure, industrial structure, technological progress, and human consumption. These 
factors interact with each other to determine carbon intensity, and they could be expressed 
by specific factor indicators, for example, the factor of energy structure could be expressed 
by specific factor indicators such as the consumption proportion of coal, the consumption 
proportion of gas and so on; thus, a comprehensive index system of the factors affecting 
carbon intensity is constructed. In general, such an index system should be constructed 
based on the principles of integrity, hierarchy, and relevance of these indicators. The princi-
ple of relevance requires that the interrelated factors should be differentiated to avoid over-
lap resulting from the duplication of indicators (Zhu et al., 2015). Undoubtedly, the different 
factors are influenced by societal forces and do not have constant effects on carbon intensity; 
instead, their effects on carbon intensity will vary based on the stage of economic develop-
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ment. Therefore, an in-depth analysis of the historical trends in the key factors affecting 
carbon intensity in China is important to inform future decision-making and meet China’s 
goals for carbon emissions and carbon intensity. 

Currently, the main analytical methods applied to assess the factors affecting carbon in-
tensity are path analysis (Wang and Yu, 2013), the panel data model (Peng and Cui, 2016), 
the spatial econometric model (Feng et al., 2017), the adaptive weighted Divisia index me-
thod (Greening et al., 2001), Laspeyres decomposition model (Ebohon and Ikeme, 2006), 

and Kaya identity decomposition (Gingrich et al., 2011). Path analysis, the panel data model, 
and the spatial econometric model can be considered as methods of parameter statistical 
analysis, whereas the adaptive weighted Divisia index method, Laspeyres decomposition 
model, and Kaya identity decomposition can be categorized as factor decomposition analysis. 
In parameter statistical analysis, certain statistical assumptions generally need to be satisfied. 
For example, non-strong collinearity among factors is required to ensure minimum variance 
in parameter estimation and guarantee that the estimator is effective. In factor decomposition 
analysis, the need to satisfy the identity relationship tends to weaken the meanings of the 
decomposed factors or even result in unilateral explanations. Because these traditional 
methods are limited by classical statistical assumptions, the considered numbers of factors 
affecting carbon intensity are small. In terms of policy guidance, including only a small 
number of factors means that all aspects of the economy and society will not be considered 
in policy development. Global climate change is a complex, cross-cutting natural and socie-
tal problem that requires the consideration of a large number of impact factors. However, 
increasing the number of factors can easily lead to problems of dimensionality during analy-
sis. Machine learning approaches can be used to overcome these dimensionality problems by 
mining large amounts of data. Machine learning refers to approaches that use computer al-
gorithms to simulate human beings. Machine learning methods evaluate the structure of ex-
isting data to then make predictions based on the model of the data (Kohavi and Foster, 
1998). Machine learning includes supervised learning, which requires training datasets, and 
unsupervised learning, which does not. The traditional statistical analysis method relies on 
the sample data, according to the fixed algorithm flow to calculate the parameters. This type 
of method does not involve continuous self-learning to improve the operation results. Ma-
chine learning methods not only participate in the sample data operating and mining infor-
mation, but also adapt to the change in optimal strategies through continuous self-learning, 
and continuously obtain new improved results. Thus, it can be said that machine learning 
itself is a process of constantly improving the operation results. In supervised learning, inte-
grated learning can be achieved by combining multiple weak supervised models into a more 
comprehensive and stronger supervised model; this can effectively improve the reliability of 
the decision-making results. At present, integrated learning remains a popular research area 
in the field of machine learning. Integrated ensemble learning approaches include bagging, 
boosting, and random forest algorithms (Chen and Zhu, 2007). Among them, random forest 
algorithm has the advantages of high classification accuracy, fast operation speed, robust 
operation results, and strong generalization ability. Thus, random forests have been widely 
used as classification algorithms. In this study, we applied random forest algorithm to iden-
tify the key factors affecting carbon intensity in China and analyzed the historical trends in 
these key factors to provide a basis for decision-making to reduce carbon intensity in China. 



746  Journal of Geographical Sciences 

 

2  Data sources and research methods 

2.1  Data sources 

This study focused on carbon intensity and its influencing factors from 1961 to 2017 based 
on data from the Maddison project database, IEA database, China Energy Statistics Year-
book, China Industrial Statistics Yearbook, and China Statistics Yearbook. Based on existing 
studies and avoiding overlap between factors as much as possible (Zhu et al., 2015), we se-
lected 56 factors related to energy structure, industrial structure, technological progress, and 
household consumption. The selected factors can be classified into nine categories: propor-
tion of fossil energy, price of fossil energy, proportion of non-fossil energy, proportion of 
new energy, scale or proportion of energy-intensive industry, proportion of service industry, 
technological progress, traditional consumption of residents, and new consumption of resi-
dents (Table 1). Data from China were based on the China Statistical Yearbook, and data 
from other countries were used as reference data. Some missing data were interpolated. 

Table 1  Categorization of factors influencing carbon intensity in China 

Category Factor (unit) Category Factor (unit) 

Proportion of 
fossil energy 

Proportion of coal (%) 
Proportion of oil (%) 
Proportion of natural gas (%) 

Price of fossil 
energy 

Producer price index of coal industry 

Producer price index of oil and gas 
industry 

Proportion of 
renewable energy 
(hydropower and 
biogas) 

Proportion of hydroelectric energy (%)
Proportion of biogas energy (%) 

Scale or  
proportion 
of energy-
intensive 
industry 

Soda ash (10000 tons) 
Caustic soda (10000 tons) 
Ethylene (10000 tons) 
Synthetic ammonia (10000 tons) 
Cement (10000 tons) 
Plain glass 
(10000 weight cases) 
Crude steel (10000 tons) 
Finished steel (10000 tons) 
Proportion of construction industry (%) 
Proportion of transportation, warehousing, 
and postal industry (%) 

Proportion of 
new energy 

Proportion of wind energy (%) 
Proportion of nuclear energy (%) 
Proportion of photovoltaic energy (%)
Proportion of photothermal energy (%) 
Proportion of geothermal energy (%) 
Proportion of liquid biofuel energy (%) 

Proportion of 
service industry 

Proportion of financial industry (%)
Proportion of information transmis-
sion, computer services, and soft-
ware industry (%) 
Proportion of education industry (%) 
Proportion of social welfare in health 
and social security industry (%) 
Proportion of culture, sports, and 
entertainment industry (%) 
Proportion of science and technology 
industry (%) 

Techno-
logical 
progress 

Total labor productivity (10000 yuan per person) 
Conversion efficiency of electricity genera-
tion and heating by power stations (%) 
Conversion efficiency of coking (%) 
Conversion efficiency of petroleum refining 
(%) 
Standard coal consumption for power genera-
tion (g/kWh) 
Standard coal consumption for power supply 
(g/kWh) 
Power plant line loss rate (%) 
Comprehensive energy consumption per unit 
of crude steel industry (ton standard coal/ton) 
Comprehensive energy consumption per unit 
of cement industry (kg standard coal/ton) 

(To be continued on the next page) 
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(Continued) 

Category Factor (unit) Category Factor (unit) 

Technological 
progress 

Comprehensive energy consumption per unit 
of ethylene industry (ton standard coal/ton) 
Comprehensive energy consumption per unit 
of synthetic ammonia industry (ton standard 
coal/ton) 
Proportion of science and technology appro-
priation to total fiscal expenditure (%) 
Energy consumption per unit area of public 
buildings (kg standard coal/m2) 
Energy consumption per unit area of urban 
residential buildings (kg standard coal/m2) 
Energy consumption per unit area of rural 
residential buildings (kg standard coal/m2) 

Traditional 
consumption  
of residents 

Private cars per 100 urban house-
holds 
Motorcycles per 100 urban house-
holds 
Motorcycles per 100 rural house-
holds 
Refrigerators per 100 urban house-
holds 
Refrigerators per 100 rural house-
holds 
TV sets per 100 urban households 
TV sets per 100 rural households 
Washing machines per 100 urban 
households 
Washing machine per 100 rural 
households 

New consump-
tion of  
residents 

Internet broadband users (10000 households) 
Mileage of high-speed rail (km) 
Electronic commerce transaction volume 
(trillions of transactions) 

2.2  Random forest algorithm 

Random forest is an integrated learning method proposed by Breiman in 2001 based on de-
cision trees. The “randomness” of the random forest is reflected in the training of each tree. 
A range of  the same number of elements of datasets are randomly selected from all train-
ing samples to train the algorithm. This data acquisition method is considered as bootstrap 
sampling. In each branch node variable of building the tree, several subsets of all features 
are randomly selected to obtain the best segmentation method of subset feature partition by 
purity calculation (e.g., information gain, information gain rate, and Gini coefficient). The 
“forest” is reflected in the full growth of each tree without pruning, and the number of trees 
affects the final decision value. 

The size of the forest composed of trees is determined as the number of trees for which 
increasing the number of trees increases the computational load but does not significantly 
change the final decision value. Random forests are insensitive to multiple collinearities and 
robust to missing and unbalanced data; thus, they provide reasonable prediction results 
(Iverson et al., 2008) and are one of the best machine learning algorithms for processing 
high-dimensional attribute data. The random forest algorithm mainly consists of bootstrap 
sampling and a classification and regression trees (CART) algorithm. 
2.2.1  Bootstrap sampling 
In the random forest algorithm, bootstrap sampling is used to extract multiple samples from 
the original sample. A decision tree is then constructed from each bootstrap sample, and the 
decision trees are combined to obtain the final result using the voting score rule (Breiman, 
2001). Bootstrap sampling (Breiman, 1996) generates a new training sample set by ran-
domly extracting N samples with playback from the training set of original sample size N. 
Independent bootstrap sample sets are generated by n iterations of independent sampling. As 
a self-help sampling method, bootstrap sampling works well for small samples. Bootstrap 
sampling generates a large number of new samples and enlarges the scale of the data by 
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sampling the initial data with playback and then estimating the overall distribution of the 
data. Strictly speaking, bootstrap sampling is not a training algorithm; rather, it is a 
non-parametric method that uses small sample datasets to estimate the entire dataset. 

In the bootstrap sampling process, the probability Pi of each sample not being extracted is 
given by 

 (1 1 / ) 1, 2, , .N
iP N i N     (1) 

When the value of N is sufficiently large, the probability of each sample not being ex-
tracted is given by 

 
1 ( 1)

( )
(1 1 / ) [(1 1 / ) ] 0.37N U

N U N
lim N lim U e



 


 
     (2) 

Equation (2) indicates that approximately 37% of the original sample set T does not ap-
pear in the bootstrap samples; these data are referred to as out-of-bag (OOB) data. The ran-
dom forest algorithm generates multiple training sample sets using bootstrap sampling and 
then constructs multiple classifiers to form a “forest” classifier. Bootstrap sampling adopts 
random and independent sampling with playback, which can avoid information loss caused 
by random sampling to a large extent. Bootstrap sampling also overcomes the negative ef-
fects of sample class imbalance and improves the reliability of the algorithm. 
2.2.2  Decision tree CART algorithm 
A decision tree includes a root node, intermediate node, and leaf node, with each node rep-
resenting the attributes of the object. The path from the root node through the intermediate 
node to the leaf node represents a decision rule. The generation of a decision tree is usually 
done recursively starting from the root node. A root node is divided into two subtrees. Then, 
starting from the subtree, it continues to produce the new root node and again the new root 
node produce the left and right subtrees. Each of root nodes continues to generate new sub-
trees recursively until leaf nodes are generated. 

Many algorithms exist for generating decision trees, including CLS, ID3, C4.5, and 
CART node-splitting algorithms (Cao, 2014). In the CLS algorithm, the process of node 
splitting is random, and the number of attribute fields corresponds to the number of branches. 
The algorithm does not terminate until the leaf node is generated. This CLS algorithm leads 
to different results because of selecting different test attributes. The CLS algorithm does not 
specify which test attributes to use, leading to uncertainty in the algorithm. Thus, the ID3 
algorithm obeys the following rule: the maximum information gain of attributes is selected 
as the test attribute by introducing information entropy to calculate and compare the purity 
of attributes. To solve the problem of information gain deviation in the ID3 algorithm, the 
C4.5 algorithm introduces the split information ratio index and calculates the information 
gain ratio to make the selected attributes more uniform and avoid bias. 

The CART algorithm, which was proposed in 1984 (Breiman et al., 1984), is also based 
on information entropy theory and recursively constructs decision trees to generate decision 
rules, as in the CLS algorithm. The CART algorithm differs from the ID3 and C4.5 algo-
rithms in that the partition is based on the Gini coefficient. As the Gini coefficient decreases, 
the purity of the attribute partition increases; thus, the partition with the smallest Gini coef-
ficient is selected to construct the decision tree. 

The CART algorithm is commonly used to construct decision trees in the random forest 
algorithm. The steps in the CART algorithm are detailed below (Cao, 2014):  

1) Continuous characteristic variables are discretized. There are N continuous features A 
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for N samples. Arrangement of continuous characteristic variables from small to large is a1, 
a2,…, aN, take median of two adjacent samples and totally take N – 1. The partition point of i 
(Si) is expressed as 
 1( ) 2.i i iS a a    (3) 

2) Each partition’s Gini coefficient Gini(P) is calculated. If there are K categories, the 
probability of occurrence of category i is Pi, and the Gini coefficient is expressed as 

 

2

( 1) ( 1)
( ) (1 1 . )

K K

i i i
i i

Gini P P P P
 

      (4) 

For a given sample T, suppose there are K categories. The number of categories i is Ti, 
and the Gini coefficient of sample T is expressed as 

 

2

( 1)
( ) / .1 ( )i

i
Gini P T T


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(5) 

According to value a of characteristic A, T is divided into T1 and T2. Under the condition 
of characteristic A, the Gini coefficient of T is expressed as 

 1 2
1 2( , ) ( ) ( ).

T T
Gini T A Gini T Gini T

T T
   (6) 

3) For the dataset of current nodes, the nodes are split according to the principle of mini-
mum Gini coefficient, and the decision tree is constructed recursively. 
2.2.3  Random forest algorithm 
The random forest algorithm is based on bootstrap sampling and the CART algorithm. The 
process of the random forest algorithm is divided into the following steps (Cao, 2014):  

1) Generate training sets. Each tree corresponds to a training set. To construct N decision 
trees, N training sets need to be generated. Each training set is sampled by bootstrap sam-
pling to generate a subset of training sets. The results are predicted by integrating all subsets 
of training sets (i.e., bootstrap aggregation, also known as bagging technology). The large 
differences between the sub-training sets results in high diversity and guarantees robust results. 

2) Construct each decision tree. Node splitting is mainly carried out from the root node 
through the intermediate node and to the leaf node based on the node splitting rule, which 
maximizes information gain and information gain rate while minimizing the Gini coefficient. 
Generally, the minimum Gini coefficient in the CART algorithm is used for node splitting. 
The node splitting process is repeated. This specific process allows to randomly select sev-
eral attributes from all attributes according to a certain probability distribution to participate 
in the process of node splitting. As F characteristic variables are randomly extracted, instead 
of putting all M characteristic variables into the node splitting [F(F≤M)], usually is given 
by log2M+1. 

3) Form the forest. The above two steps are repeated to build a large number of decision 
trees, and the random forest is generated. Each tree in the forest is used to classify the sam-
ples in the OOB data. One occurrence of the category is denoted as one vote accordingly, the 
votes for each category are counted, and the category with the largest number of votes is 
considered the sample category. The proportion of samples not correctly classified in the 
OOB data is the error rate for the OOB data. 

As N increases in the series of decision trees k(x1), k(x2),…, k(xN) in a random forest, for 
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almost all random variable sequences θ1, θ2,…, θk, the generalization error GE*
 converges as 

follows (Gingrich et al., 2011):  
   *lim GE ( , ) max ( ( , ) ) 0 .N xy j YP P k x Y P k x j         (7) 

This shows that the generalization error GE* is close to a probability upper limit. Overfitting 
does not occur as the number of decision trees increases, indicating good robustness. 

3  Empirical analysis 

3.1  Identification of key factors affecting carbon intensity in China 

Obtaining reliable results using machine learning often requires a sufficient number of sam-
ples. Thus, in this study, the sample size every 20 years as a dataset from 1961 to 2017, the 
first dataset of the year 1980 includes the sample from 1961 to 1980, the second dataset of 
the year 1981 includes the sample from 1962 to 1981 and slide backwards year by year to 
obtain the annual dataset of 1980–2017. Each dataset has thousands of indicators to ensure a 
sufficient number of samples. Based on bootstrap sampling, a training set was created for 
each dataset. Then, based on the CART algorithm, the attribute partition of each training set 
was created by splitting different nodes. The node splitting continued until the Gini coeffi-
cient was minimized [Eq. (6)], ensuring that all partitions were of the highest purity; each 
partition with the highest purity was a decision tree. By repeating the previous sampling, 
training, and node partitioning, multiple decision trees were established, and the random 
forest was generated. The above process was primarily implemented by programming in R 
software. 

In the completed dataset of partitioning attributes of node splitting, the Gini coefficient 
reflects the purity of the attribute partition in the decision tree, with a smaller Gini coeffi-
cient indicating greater purity. When the reduction in Gini coefficient was large, the average 
purity of all decision trees in the forest increased substantially, indicating that the node 
variable had a large effect on the forest. Therefore, we calculated the reduction in Gini coef-
ficient for different indicators in each dataset; based on the results, the importance of each 
factor affecting carbon intensity in China from 1980 to 2017 was evaluated. Because Gini 
coefficients in random forests are calculated based on information entropy according to the 
additivity of the entropy value, the sum of the reductions in Gini coefficient for all factors 
represents the importance of all factors in the index system. Therefore, to uniformly set the 
quantitative threshold for key factors affecting carbon intensity, we sorted the reductions in 
Gini coefficient from large to small for each factor from 1980 to 2017 and then calculated 
the average for each factor from 1980 to 2017 to obtain the corresponding relationships be-
tween carbon intensity index number and average reduction in Gini coefficient (Table 2). 

If the number of key factors is too large, the significance of identifying key factors will be 
lost. However, if the number of key factors is too small, it will be difficult to grasp the im-
portance of the entire carbon intensity factor index system. We want proper index numbers 
to reflect the importance of the entire carbon intensity factor index system. Therefore, ac-
cording to the 2/3 principle, that is, the set threshold of the number of indicators can cover 
more than 2/3 of the importance of the entire carbon intensity factor index system, which 
can be regarded as a key factor. As shown in Figure 1, the cumulative importance of factor 
increased from 5.7% to 100.0% as the index number increased from 1 to 56. 
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Table 2  Carbon intensity indicator numbers and corresponding average reductions in Gini coefficient 
Carbon intensity 
index number 1 2 3 4 5 6 7 8 

Gini coefficient reduction 0.701 0.613 0.577 0.576 0.572 0.571 0.562 0.560 
Carbon intensity 
index number 9 10 11 12 13 14 15 16 

Gini coefficient reductions 0.504 0.462 0.449 0.380 0.376 0.372 0.371 0.365 
Carbon intensity 
index number 17 18 19 20 21 22 23 24 

Gini coefficient reductions 0.362 0.341 0.327 0.283 0.241 0.185 0.177 0.176 

Carbon intensity 
index number 25 26 27 28 29 30 31 32 

Gini coefficient reductions 0.170 0.165 0.156 0.152 0.151 0.151 0.140 0.103 
Carbon intensity 
index number 33 34 35 36 37 38 39 40 

Gini coefficient reductions 0.075 0.069 0.069 0.067 0.067 0.066 0.064 0.050 
Carbon intensity 
index number 41 42 43 44 45 46 47 48 

Gini coefficient reductions 0.050 0.049 0.035 0.034 0.034 0.034 0.034 0.033 
Carbon intensity 
index number 49 50 51 52 53 54 55 56 

Gini coefficient reductions 0.031 0.029 0.028 0.027 0.026 0.025 0.020 0.011 
 

 

 
Figure 1  Average reductions in Gini coefficient and the corresponding cumulative percentage importance as a 
function of carbon intensity index number 

Figure 1 shows that the first 22 factors cumulatively accounted for approximately 80% of 
the importance of the entire carbon intensity factor index system. Less than half of the indi-
cators accounted for more than 2/3 of the importance of the entire index system. Therefore, 
the number of key factors identified in this study was 22, and the 22 factors with the largest 
annual reductions in Gini coefficient were identified as the key influencing factors from 
1980–2017. 

In 1980, the five factors affecting Chinese carbon intensity with the largest reductions in 
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Gini coefficient were the proportion of natural gas, standard coal consumption for power 
generation, synthetic ammonia, caustic soda, and comprehensive energy consumption per 
unit of ethylene industry. In 1981, the top five factors were proportion of natural gas, stan-
dard coal consumption for power supply, total labor productivity, comprehensive energy 
consumption per unit of cement industry, and comprehensive energy consumption per unit of 
ethylene industry. In 1991, the top five factors were proportion of oil, proportion of coal, 
motorcycles per 100 urban households, proportion of natural gas, and synthetic ammonia. In 
2000, the top five factors were proportion of construction industry, private cars per 100 ur-
ban households, comprehensive energy consumption per unit of rough steel industry, power 
plant line loss rate, and comprehensive energy consumption per unit of ethylene industry. In 
2010, the top five factors were proportion of coal, proportion of information transmission, 
computer services, and software industry, proportion of science and technology appropria-
tion to total fiscal expenditure, proportion of geothermal, and TV sets per 100 rural house-
holds. In 2017, the top five factors were proportion of coal, proportion of hydroelectric, 
conversion efficiency of coking, washing machines per 100 urban households, and energy 
consumption per unit area of public buildings. The top 22 factors affecting carbon intensity 
in China were identified for each year from 1980 to 2017 and classified as indicated in Table 
1; the number of factors in each category in different years are shown in Table 3. 

Table 3  Numbers of key factors affecting Chinese carbon intensity per category by year between 1980 and 20171 

Category/Year 1980 ... 2000 ... 2010 ... 2016 2017 

Proportion of fossil energy 3 ... 0 ... 1 ... 1 2 

Price of fossil energy 0 ... 0 ... 0 ... 0 0 

Proportion of renewable energy (hydro-
power and biogas) 

0 ... 0 ... 0 ... 0 1 

Proportion of new energy 0 ... 0 ... 1 ... 3 2 

Scale or proportion of 
energy-intensive industry 

8 ... 7 ... 6 ... 7 4 

Proportion of service industry 0 ... 1 ... 2 ... 2 2 

Technological progress 8 ... 6 ... 4 ... 6 5 

Traditional consumption of residents 3 ... 8 ... 6 ... 2 4 

New consumption of residents 0 ... 0 ... 2 ... 1 2 

Total 22 ... 22 ... 22 ... 22 22 

3.2  Historical evolution analysis of the key factors affecting carbon intensity in China  

Based on the numbers of key factors in different categories from 1980 to 2017 (Table 3), the 
percentages of key factors contained within each category were calculated for each year 
(Figure 2). A high percentage for a category indicates that the category had a large effect on 
carbon intensity in the given year. 

According to Figure 2, the key factors affecting carbon intensity in China from 
1980–2017 generally presented two characteristics. First, some factors had relatively stable 
effects on carbon intensity with no obvious changes over time. For example, factors in the 
                             

1 Note: Based on length limitations, Table 3 only lists the statistics for 1980, 2000, 2010, 2016, and 2017; please 
contact the author for additional data. 
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Figure 2  Percentages of factors affecting Chinese carbon intensity in different categories between 1980 and 2017 

categories of proportion of fossil energy, the scale or proportion of energy-intensive industry, 
technological progress, and traditional consumption of residents have always had important 
effects on carbon intensity. When considering the effects of resident consumption on carbon 
intensity, no significant difference was observed between rural and urban residents in terms 
of the consumption of household appliances and household transportation-related consump-
tion. This indicates that green consumption can be practiced by all residents and applies to 
household energy consumption. And green consumption needs to maintain consistency and 
perseverance. Second, other factors affecting carbon intensity in China showed obvious 
temporal characteristics. For example, the proportion of renewable energy (particularly the 
proportion of hydroelectric energy) had a greater effect on carbon intensity early in the study 
period. Since 2009, the effects of the proportion of new energy, specifically the proportions 
of geothermal and photothermal energies, on carbon intensity have increased. In terms of 
industrial structure, factors in the proportion of service industry category had no obvious 
effects on carbon intensity during the early years in the study period. Since 1993, the effect 
of the proportion of financial industry on carbon intensity has increased. Since 2006, the 
effect of the proportion of information transmission, computer services, and software indus-
try on carbon intensity has remained significant, and the effect of the proportion of scientific 
research, education, culture, and entertainment industry has increased. In the new consump-
tion of residents category, the effect of Internet broadband users on carbon intensity has in-
creased since 2009, while the effect of electronic commerce transaction volume has in-
creased significantly since 2010. Thus, the variations in the effects of these factors with time 
should be considered when developing emission reduction measures. 

Overall, the historical evolution of key factors affecting carbon intensity can be roughly 
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divided into three stages: 
1) From the early 1980s to 1991, the key factors influencing carbon intensity were in the 

categories of scale or proportion of energy-intensive industry, proportion of fossil energy, 
technological progress, and traditional consumption of residents. During this period, the 
level of economic development in China was low, and extensive development was occurring. 
The economic structure was dominated by energy-intensive industries, and energy consump-
tion was dominated by coal. Production factors such as standard coal consumption in power 
generation had a strong effect on carbon intensity during the early stage of Chinese eco-
nomic development. 

2) From 1992 to 2007, China underwent a period of opening up, and the rate of economic 
growth was high. This was accompanied by an increase in the incomes of Chinese residents along 
with accelerated consumption of household appliances and transportation resources. China’s 
entry into the World Trade Organization in 2001 further expanded its opening up to the outside 
world, and the proportion of service industry within the Chinese economy increased steadily 
with the development of electronic information technology. In 1993, China changed from an oil 
exporter to a net oil importer for the first time, and demand for energy increased. From 1992 
to 2007, the effects of scale or proportion of energy-intensive industry, proportion of fossil 
energy, technological progress, and traditional consumption of residents on carbon intensity 
increased significantly, and the proportion of service industry and price of fossil energy began 
to have important effects. Overall, from 1992 to 2007, the key factors affecting carbon intensity 
changed from production factors to production and consumption factors; thus, both produc-
tion and consumption factors should be considered in efforts to reduce carbon intensity. 

3) After the global financial crisis in 2008, China began to adjust its economic structure 
and implement measures to save energy and reduce emissions. The Chinese government 
supported new energy types and invested in the research and development of various en-
ergy-saving and emission-reducing technologies. Meanwhile, the Internet became univer-
sally integrated into the lives of Chinese residents, high-speed rail travel greatly shortened 
commute times, and the prevalence of e-commerce rapidly increased. From 2008 to 2017, 
the effects of emerging industries and consumption on carbon intensity increased signifi-
cantly, and the effects of the scale or proportion of energy-intensive industry, proportion of 
fossil energy, technological progress, traditional consumption of residents, proportion of 
service industry, price of fossil energy, proportion of new energy, new consumption of resi-
dents, and proportion of science and technology appropriation to total fiscal expenditure 
emerged. This indicates that in addition to the traditional consumption of residents, the ef-
fects of new consumption of residents on carbon intensity are also important and should be 
considered in the development of energy-saving and emission-reduction policies in the future. 

4  Conclusions and implications 
Global climate change is a complex issue at the intersection of nature and society. Develop-
ing a low-carbon economy is the only way to deal with global climate change. As a respon-
sible country, China has promised to reduce carbon intensity to 60%–65% of the 2005 level 
by 2030. To achieve this goal, it is first necessary to identify the key factors affecting carbon 
intensity. These key influential factors can then be used to reduce carbon intensity by im-
plementing effective policy measures.  

In view of the shortcomings of traditional quantitative methods, this study used a machine 
learning algorithm to identify the key factors affecting carbon intensity in China and then 
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analyzed their historical trends. The main conclusions are summarized as follows: 
(1) The key factors affecting carbon intensity in China from 1980 to 2017 were identified 

using random forest algorithm. Evolutionary analysis showed that the key factors and their 
effects changed over time. Therefore, policies designed to save energy and reduce emissions 
in China should also be adjusted over time. 

The key factors affecting carbon intensity from 1980 to 1991 were mainly the scale or 
proportion of energy-intensive industry, proportion of fossil energy, and technological pro-
gress. After Deng Xiaoping’s Speech on the Southern Tour, the Chinese economy entered a 
period of rapid growth from 1992 to 2007, the proportion of service industry and price of 
fossil energy began to affect carbon intensity, and the effects of traditional consumption of 
residents increased. After the Global Financial Crisis in 2008, China entered a period of 
economic restructuring, and policies to save energy and reduce emissions were enacted. The 
proportion of new energy and new consumption of residents also began to affect carbon in-
tensity during this time. 

Overall, reducing the proportion of fossil energy, reducing the scale and proportion of en-
ergy-intensive industry, and promoting technological progress are the main measures that 
should be taken to reduce emissions. At the same time, China should vigorously develop the 
service industry, optimize the industrial structure, reduce the use of fossil energy by in-
creasing the price of fossil energies via taxation, and promote the development of new en-
ergy resources. Green consumption, which includes the consumption of traditional house-
hold appliances, household transportation, and Internet e-commerce, is also important for 
reducing carbon intensity. 

(2) With the widespread attention to the issue of global climate change, economic growth 
must be balanced with environmentally sustainable development. Carbon intensity is closely 
related to many aspects of social production and the lives of residents. The key factors af-
fecting carbon intensity are different at different stages of economic development, as dem-
onstrated in the paper.  

Traditional statistical analysis cannot be used to assess the many factors affecting carbon 
intensity because of the need to overcome multicollinearity. Meanwhile, factor decomposi-
tion analysis tends to weaken the meaning of the decomposed factors or even explain them 
unilaterally. In contrast, machine learning has innate advantages when dealing with large 
datasets. Among machine learning approaches, random forest algorithm has good robustness 
and generalizability. However, the change of the international geopolitics circumstances 
along with the emergence of new technologies and industries create uncertainties for future 
socioeconomic development, and the applicability of stochastic forest algorithm for identi-
fying the key factors affecting carbon intensity in uncertain scenarios requires further analysis.  

Nevertheless, considering the rapid socioeconomic development in China, the factors af-
fecting Chinese carbon intensity in the future will likely be closely related to the historical 
trends. To achieve China’s carbon intensity target by 2030, strategic planning and the adop-
tion of strong policy measures are necessary. Therefore, understanding the historical evolu-
tion of the key factors affecting carbon intensity in China is important for formulating policy 
for the future.  
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