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Abstract: Based on the Beijing Climate Center’s land surface model BCC_AVIM (Beijing 
Climate Center Atmosphere-Vegetation Interaction Model), the ensemble Kalman filter (EnKF) 
algorithm has been used to perform an assimilation experiment on the Moderate Resolution 
Imaging Spectroradiometer (MODIS) land surface temperature (LST) product to study the 
influence of satellite LST data frequencies on surface temperature data assimilations. The 
assimilation results have been independently tested and evaluated by Global Land Data As-
similation System (GLDAS) LST products. The results show that the assimilation scheme can 
effectively reduce the BCC_AVIM model simulation bias and the assimilation results reflect 
more reasonable spatial and temporal distributions. Diurnal variation information in the ob-
servation data has a significant effect on the assimilation results. Assimilating LST data that 
contain diurnal variation information can further improve the accuracy of the assimilation 
analysis. Overall, when assimilation is performed using observation data at 6-hour intervals, a 
relatively good assimilation result can be obtained, indicated by smaller bias (<2.2K) and 
root-mean-square-error (RMSE) (<3.7K) and correlation coefficients larger than 0.60. Con-
versely, the assimilation using 24-hour data generally showed larger bias (>2.2K) and RMSE 
(>4K). Further analysis showed that the sensitivity of assimilation effect to diurnal variations in 
LST varies with time and space. The assimilation using observations with a time interval of 3 
hours has the smallest bias in Oceania and Africa (both<1K); the use of 24-hour interval ob-
servation data for assimilation produces the smallest bias (<2.2K) in March, April and July. 
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1  Introduction 

Land surface temperature (LST) affects numerous climatological, meteorological, ecological, 
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and geophysical phenomena, which in turn affect the LST. As one of the key parameters for 
land surface process studies at global and regional scales, LST plays a vital role in processes 
such as surface water and energy exchange (Sellers, 1988). Therefore, accurate determina-
tion of LST is valuable for global climate change research, disaster monitoring, and resource 
management (Ma and Ma, 2006; Wu et al., 2005). 

Currently, the study of LST is limited by observation conditions: ground-based observa-
tion sites have sparse spatial distributions and low temporal frequencies; stationary mete-
orological satellites’ products have low spatial resolutions (generally 3 to 5 km); polar-orbit 
satellites’ products possess high spatial resolutions (generally 1 km), however, it is difficult 
to obtain temporal and spatial continually land surface process information by only using 
polar-orbit satellites’ observations. This limitation is mainly because the observation times at 
the same site are irregular. What’s more, the limitations in inversion algorithm cause an 
overall bias in the LST. Although the land surface model relies on its intrinsic physical 
processes and dynamic mechanisms, land surface variables of continuous evolution in time 
and space can be obtained; however, due to the uncertainties of physical and dynamic 
mechanisms and parametric schemes, the accuracies of existing global and regional climate 
models and land surface models have yet to be improved. 

In view of coping with the shortcomings of LST observations and land surface model 
simulations, a land surface data assimilation technique that combines temporally discon-
tinuous observation data with a land surface model that is continuous in space and time has 
become an effective method for obtaining high-quality LST data. Current domestic and for-
eign major land surface assimilation systems mostly include the assimilation of variables 
such as atmospheric driving data and soil moisture (Rodell et al., 2004; Mitchell et al., 2004; 
Xia et al., 2012; Zou et al., 2006; Balsamo et al., 2007; Lim et al., 2006; Shi et al., 2011; 
Han et al., 2017; Shi et al., 2014), and there is little research on the assimilation of LSTs. 
Existing LST assimilation studies mainly focus on improvements to the assimilation scheme. 
Variational Assimilation Algorithms have been used to assimilate LSTs via the common land 
model (CoLM) (Meng, 2012), where the assimilation constraint conditions used were sur-
face and vegetation energy balance equations in the CoLM model, and the adjustment fac-
tors were the bare soil and vegetation evaporation ratios. The results showed that the as-
similated LST and evapotranspiration results were closer to the measured values at Bonville 
Station via the AmeriFlux network. A local ensemble transform-based Kalman filter 
(LET-KF) analysis for LST sequences based on the complementary prediction of transient 
models was proposed to solve the problem of the low prediction accuracy of traditional LST 
sequence analysis methods (Wang, 2016); the verification results showed that the algorithm 
effectively improved the accuracy of the LST predictions. To improve the temporal resolution 
and accuracy of LST observations, the assimilation method has been used to downscale Me-
teosat LSTs under non-uniform surface conditions (Mechri et al., 2016); the results, compared 
with those of the original model, show that the deviation and root mean square error (RMSE) 
are reduced. Some studies have applied new observational data to the assimilation system, 
which improves the simulation effect of LST. Based on the ensemble Kalman filter (EnKF), 
LST data derived from the new generation of Chinese meteorology satellites (FY3A-VIRR) 
are assimilated into the CoLM for the first time (Xu et al., 2015). The results show that the 
dual-pass data assimilation scheme can reduce the model uncertainty and improve the predic-
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tion of surface energy fluxes. A one-dimensional land data assimilation scheme based on the 
EnKF and CoLM version 3.0 has been developed (Huang and Liu, 2015) to assimilate the 
Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) and LST; the 
results show that LST assimilation improves the simulation of soil temperature profiles. 

LST is directly affected by shortwave solar radiation and has strong temporal and spatial 
variations (specifically distinct diurnal variations). During the assimilation of LST data, the 
diurnal variations in LST observations undoubtedly affect the accuracy of the assimilation 
results. Properly using temporal information from satellite observations during the assimila-
tion process and enabling the results of the LST assimilation to be more accurate are prob-
lems that must be solved during the process of data assimilation when using satellite obser-
vation data. Therefore, not considering diurnal variations in LST during assimilation may 
have a significant effect on the assimilation results of LST. However, few studies have fo-
cused on the effects of diurnal variations in LST during the assimilation process. 

Based on the Beijing Climate Center Atmosphere-Vegetation Interaction Model 
(BCC_AVIM), this article uses the EnKF algorithm to assimilate the global MODIS LST 
product and focus on how diurnal variations in LST observations impact assimilation. The 
assimilation data of each experiment are observation data containing different diurnal varia-
tions for LST. The LST product of Global Land Data Assimilation System (GLDAS) was 
used to verify the simulation results of each experiment and analyse the impact of diurnal 
variations in LST on the assimilation results. 

2  Model, algorithms, data and experimental design 

2.1  Land surface model 

The land surface model is a numerical model describing matter and energy exchange in land 
surface and soil and is a significant component of the climate system model. The BCC_ 
AVIM land surface model (Wu et al., 2014) used in this paper was developed based on 
Community Land Model (CLM) Version 3.0 (Oleson, 2018) and Atmosphere-Vegetation 
Interaction Model Version 2.0 (Ji et al., 2008). BCC_AVIM, as the land surface component 
of the Beijing Climate Center Climate System Model (BCC_CSM), has been used in the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) experiment and has a certain abil-
ity to simulate the land surface carbon cycle and terrestrial ecosystem in the 20th century 
(Wu et al., 2013). 

In the BCC_AVIM, the formula that calculates the LST at the n+1 time step using surface 
temperature at the n time step is shown in formula (1): 
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, Hg, Eg, and G respectively represent the surface temperature, net short-

wave radiation, net longwave radiation, sensible heat flux, water vapour flux (kgm2s1) and 
surface heat flux. The variable λ represents the thermal conductivity (Wm1K1), εg=0.97 
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represents the lake reflectivity, σ is the Stefan-Boltzmann constant (Wm–2K–4), ρatm repre-
sents the moist air density (kgm3), Cp represents the air specific heat capacity (Jkg1K1), 
rah represents the sensible aerodynamic drag (sm1), raw represents the water vapour trans-

port aerodynamic resistance (sm1), gT
satq  represents the saturated humidity (kgkg1), λ1 

represents the first layer soil thermal conductivity (Wm1K1), and Δz1 represents the soil 
thickness of the first layer (m). 

The above formula indicates that LST is calculated from the radiation flux, surface gas 
flux, and surface status variables in the BCC_AVIM land surface model, and LST is directly 
involved in the calculation of related parameters for soil temperature and soil moisture 
(Oleson, 2018), Therefore, accurately simulating the LST is helpful for increasing the model 
accuracy when simulating other variables, such as soil temperature and soil moisture. 

2.2  Assimilation algorithm 

Evensen (1994) proposed the EnKF algorithm (Evensen, 1994). The EnKF has been used in 
the Lorenz system, which proved that the EnKF algorithm can obtain phase-space conver-
sion information (Evensen, 1997). The EnKF method uses a dynamic sample ensemble that 
changes with time to represent the background error covariance matrix (Burgers et al., 1998). 
The size of the sample ensemble is generally 10–100. The number of samples (N) in this 
experiment is set to 100. 

Suppose that xb represents the m-dimensional background field, xo represents the 
p-dimensional observation field, and H represents the observation operator, which is used to 
interpolate the model space in observation space. Pb Represents the m×m observation error 
covariance. In the matrix, R represents the observation error covariance matrix p×p. The 
minimum error covariance of the analytical field xa is estimated by the following formula: 
  a b o bx x K x Hx                        (2) 

 1( )b T b TK P H HP H R                      (3) 
where K represents the Kalman gain or Kalman weight, which represents the weights of the 
background and observation fields during the analysis field calculations. Interpolating the 
weights (K) for all grid points via the (xo–Hxb) term updates the model results. The output of 
the model depends on the calculation of the background error covariance Pb: 
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where N represents the number of samples in the ensemble and A′ represents the m×N set 
perturbation matrix, which is defined as: 
  b bA A A                              (5) 

 1 2, ,b b b b
NA x x x     

                         (6) 

where b
ix  represents the i-th ensemble member in the background field ensemble sample, 

and bA  represents the average of samples in the ensemble. When performing an assimila-
tion algorithm, each background field ensemble member is compared with the observations, 
and the model results are updated according to formula (2). 

Figure 1 shows the cycle of the assimilation scheme used in this study. The observation 
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data are assimilated into the BCC_AVIM model circularly by each column and time. The 
cycle of the assimilation scheme begins with 100 samples generated by the historical inte-
gration of the land surface model. Combined with the observation data, the assimilation ex-
periment is performed through the EnKF algorithm to obtain the analysis field at time t. 
Then, this analysis field is used as the initial field of the model at time t+1 to participate in 
the assimilation process. The continuous cycle of the assimilation can be carried out. 

 

 
 

Figure 1  Flow chart of the LST assimilation scheme 
 

2.3  Atmospheric forcing data 

Land surface models need atmospheric variables to drive the model when calculating sensi-
ble heat, latent heat, and other ground fluxes, and most of the atmospheric driving data used 
in land surface models are derived from reanalysis data (Deng et al., 2010). The 
BCC_AVIM land surface model uses the National Centers for Environmental Prediction 
(NCEP) atmospheric reanalysis data as the forcing data; the NCEP atmospheric reanalysis 
data uses a T62L28 grid, with a horizontal resolution of 2.5°×2.5°, and the assimilation 
scheme is a three-dimensional variational assimilation (3D-Var). The variables included in 
the atmospheric forcing data are 2-m ground temperature, 10-m wind speed, relative humid-
ity, precipitation rate, downward shortwave radiation, and atmospheric pressure. These re-
quired variables have been interpolated on the T106 grid, with a horizontal resolution of 
1.125°×1.125° and a temporal resolution of 3 hours. 

2.4  Observation data 

MODIS, which is mounted on the Terra/Aqua satellites, is an instrument used to observe 
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global biological and physical processes in the Earth Observing System (EOS) programme 
(Wan and Li, 1997). It has 36 mutually matched spectral bands. The spatial resolution of a 
point under the satellites can be 250 m, 500 m, and 1000 m, with a field-of-view width of 
2330 km. MODIS can obtain images of land and ocean temperatures, primary productivity, 
land surface coverage, clouds, aerosols, vapours and fires. The LST obtained by the MODIS 
observations is mainly dependent on the split window algorithm in the remote sensing in-
version method. It is calculated by using the 31st and 32nd MODIS bright temperature 
channels, atmospheric transmissivity, and surface illumination. MODIS has a total of 7 sur-
face temperature products (Wan, 2009), which are MOD11_L2, MOD11A1, MOD11B1, 
MOD11A2, MOD11C1, MOD11C2, and MOD11C3. Among them, C1, C2, and C3 are all 
global gridded products, with a spatial resolution of 0.05°. The difference between them is 
the difference in the temporal resolution. The C1 product is produced by the splicing and 
re-sampling of the B1 product, with a temporal resolution of 1 day. The C2 product is ob-
tained by simply averaging the data of the C1 product over 8 days. The C3 product is ob-
tained by simply averaging the data of the C1 product over one month. In this paper, the 
global gridded data of the MOD11C1 product with the highest temporal resolution is se-
lected as the LST observation data for assimilation. 

MOD11C1 product data for two years (from January 2014 to December 2015) are used in 
this study, with a spatial resolution of 0.05°×0.05°. These data include variables such as LST 
(day/night per hemisphere) and observation time (day/night per hemisphere), as shown in 
Figure 2. Selecting grid points starting with a “10” in the quality control (QC) flag indicates 
that the average error is less than 3 K; therefore, good quality data can be obtained. Accord-
ing to the temporal information of the grid, the daytime and nighttime LST in each hemi-
sphere are processed at different time intervals, and the daytime and nighttime observations 
at the same time are stitched together and interpolated on a grid of 0.25°×0.25° using the 
average area interpolation method. Taking June 1st, 2014, as an example, Figure 3 shows the 
results of the MODIS surface observation data after preprocessing. (a) Through (d) show the 
0 to 3 UTC, 0 to 6 UTC, 0 to 12 UTC, and 0 to 24 UTC LST observation data distributions, 
respectively. From Figure 3, we can see that the longer the observation interval is, the more 
observation information is contained; when the observation time interval is 24 hours, the 
daily mean surface temperature of the global grid points can be obtained. 

2.5  Verification data 

The GLDAS was developed by the NASA Goddard Space Flight Center (GSFC) and the 
National Oceanic and Atmospheric Administration (NOAA) NCEP (Houser, 2004). The 
GLDAS uses the data provided by a new generation of ground-based and satellite observa-
tion systems to constrain the simulated land surface state. It is composed of a set of global 
high-resolution, off-line (i.e., separate from the atmosphere) land surface model systems 
containing satellite and ground-based observation variables to produce the best surface state 
and flux field in near real time. GLDAS data are often used as test data for new model and 
assimilation system abilities. Advanced Microwave Scanning Radiometer-Earth Observing 
System (AMSR-EOS) data have been used to analyse the reliability of GLDAS-simulated 
LSTs for one year, and the results showed that the GLDAS LST data are more reliable than 
the soil moisture data (Fu and Wang, 2014). Currently, the GLDAS includes three land  
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Figure 2  LST (a, b) and observation time (c, d) during the daytime (a, c) and nighttime (b, d) using the 
MOD11C1 global LST product on 1st June, 2014 

 

 
 

Figure 3  LST observation distributions after processing for 3-hour (a), 6-hour (b), 12-hour (c), and 24-hour (d) 
time intervals according to the observation time 
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surface models: mosaic, Noah and CLM. This article compares and evaluates the output of 
the land surface model by using the CLM for a global 3-hour LST product (with a horizontal 
resolution of 1°×1°). 

2.6  Experimental design 

To study the implication of diurnal variation information in LST observation data to assimi-
lation, satellite observation data were processed at different time intervals, and the processed 
observation data were subjected to the assimilation experiment using the EnKF algorithm. 
The BCC_AVIM model simulation result was used as the control experiment (CTL). The 
experimental design is shown in Table 1. The first three years were used as the model 
spin-up time; after spin-up, four groups of satellite observation data at four different time 
intervals were used for assimilation for two years. The time step of the model was set to 30 
minutes. At each time step, only the grid points that had observation data were assimilated, 
and the grid points without observations remained unchanged. It can be seen from Figure 2 
that a grid point sometimes has two observations in one day, during the daytime and night-
time, respectively. In ASSI4, the data assimilated into the model were the average of the two 
values in one day. In ASSI3 and ASSI2, at each time step, only the grid points that have ob-
servation data at that time were assimilated. In ASSI1, no more than two time periods had 
observation data for a same grid point; therefore, the grid point was only assimilated within 
these two 3-hour periods and was not assimilated for the rest of the period. The experimental 
results were output on a daily basis, indicating the daily average status after assimilating the 
observation data; then, the results were compared with the GLDAS to obtain the relative 
accuracy of different assimilation experiments. 

 

Table 1  LST assimilation experimental design 

No. EXP name EXP time Assimilation Time step Time interval for the 
observation data 

1 CTL 2014.01–2015.12 No 30 minutes – 

2 ASSI1 2014.01–2015.12 Yes 30 minutes 3 hours 

3 ASSI2 2014.01–2015.12 Yes 30 minutes 6 hours 

4 ASSI3 2014.01–2015.12 Yes 30 minutes 12 hours 

5 ASSI4 2014.01–2015.12 Yes 30 minutes 24 hours 
 

Since the GLDAS data are on a global grid, the time series is complete and, to some ex-
tent, the series can reflect the real changes in the LST; therefore, we use the GLDAS to 
quantitatively evaluate the results of each experiment. Using the bilinear interpolation 
method, the GLDAS is interpolated over the T106 grid, and the horizontal resolution is 
1.125°×1.125°, which matches that of the observation data and model output. The bias, 
RMSE and correlation coefficient of the experimental results, combined with the GLDAS 
values of the individual grids, are calculated separately. Grids with missing values have not 
been included in the comparison. Three indicators (bias, RMSE, and correlation coefficient) 
were used to test the results. The calculation formulas of these three indicators are as fol-
lows: 

 1
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where N represents the length of time, and Ai and Bi represent the experimental results and 
the GLDAS LST values at time i, respectively. 

3  Results and analysis 

3.1  Diurnal variations in LST 

The surface temperature is directly affected by shortwave solar radiation and, thus, has ob-
vious diurnal variations. Taking the global mean temperature in January and July 2014 as an 
example, the LST has been processed at different time intervals. The time series of the glob-
ally averaged LST is shown in Figure 4. It can be seen that the longer the time interval of the 
observations is, the weaker the diurnal variation in the LST contained in the sequence. In the 
observation sequence at the 24-hour interval, no diurnal variation information was included 
in the sequence; in the observation sequence at the 12-hour interval, the sequence contained 
significant day-night cyclical changes. In the observation sequence at the 6-hour interval, 
periodic oscillations in the diurnal variations in LST became more intense. In the observa-
tion sequence at the 3-hour interval, the number of grids that had observations at each time 
interval was small, and there were geographical differences; therefore, it showed a larger 
amplitude oscillation. 

3.2  Comparison of the LST simulation results with the GLDAS LST 

Taking the GLDAS LST as a reference, the experimental results were analysed using the 
three indicators of absolute bias, RMSE, and correlation coefficient. Table 2 compares these 
three indicators among the five groups of experiments, and it can be seen that the absolute 
deviation and RMSE are the smallest in the ASSI2 experiment, the largest correlation coef-
ficient occurs in the ASSI1 experiment and the correlation coefficients for ASSI2 and ASSI1 
are similar. From the comparison, we can see that the results of the assimilation using ob-
servations at 6-hour intervals are closest to the GLDAS LST. 

Next, using the three indicators of bias, RMSE, and correlation coefficient, the impacts of 
diurnal variations in LST on the assimilation results were analysed in time and space. 

3.2.1  Bias 
This chapter uses the bias index to compare the experimental results with GLDAS LSTs. It 
can be seen in Figure 5 that compared with those of the CTL experiment, the bias values for 
the four groups of assimilation experiments are all reduced; in the CTL experiment, the large 
negative bias values over North Africa and South America and the large positive bias values 
over Oceania and the high-latitude regions of the Northern Hemisphere have all decreased in 
the assimilation experiments. By combining the average absolute bias in Table 2, it can be 
seen that the global average bias decreases most when using 6-hour interval observations to 
perform the assimilation. 
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Figure 4  The global mean LST sequence, with time intervals of 3 hours, 6 hours, 12 hours, and 24 hours respectively 
 

Table 2  The comparison between the LST simulation results and the GLDAS LSTs using global mean absolute 
bias, RMSE and correlation coefficient 

Experiment name CTL ASSI1 ASSI2 ASSI3 ASSI4 

Absolute bias 2.570 K 2.252 K 2.172 K 2.245 K 2.262 K 

RMSE 4.239 K 3.681 K 3.648 K 3.992 K 4.423 K 

Correlation coefficient 0.525 0.619 0.615 0.571 0.525 

 
One of the characteristics of polar-orbit satellite observations is that each grid point cor-

responds to a different observation time. According to the temporal information for each grid 
point, daily observation data are divided into equal time period intervals. For observation 
data with different time intervals, when the observation time interval is shorter, the observa-
tion data entered into each assimilation window are more accurately related to the corre-
sponding time period. The bias of the ASSI2 experiment is less than that of the ASSI1 ex-
periment because the observation time interval of the ASSI2 experiment is longer; under the 
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Figure 5  From 2014 to 2015, the spatial distributions of the bias (K) of the LST simulation results for each 
experiment compared with GLDAS LSTs 

 

premise that diurnal variations are taken into consideration, the more observation informa-
tion that is assimilated for each time step in the model, the better the assimilation results. 
When assimilating the 24-hour interval data, the amount of observation information is 
greater, but the assimilation effects are worse because the daily mean value ignores the di-
urnal variation information; therefore, related to this time period, the deviation in the obser-
vation time is large, and the overall error is large due to the accumulation in the assimilation 
window. Therefore, in the ASSI4 experiment, the observations of the global grid points can 
be assimilated via the model at each time, but the bias values of the results are greater than 
those of any other assimilation experiment. 

Due to the differences among the assimilation effects in different regions, the land grids 
were divided into plates based on the distribution of continents, and the bias for each grid 
point was counted, as shown in Figure 6. As a whole, the bias values of the assimilation ex-
perimental results globally and for each plate are more symmetrical than those of the CTL 
experiment, and the number of grid points with large and minimum bias values decreases. It 
can be seen that the BCC_AVIM LST simulation results are lower than the GLDAS LSTs in 
most areas, and the assimilation experiments have improved the simulation results by adding 
the assimilated MODIS LST observations. The ASSI1 and ASSI2 experiments have the best 
results; most grid point deviations are limited to ± 2 K. In the ASSI3 and ASSI4 experiments, 
the number of negative bias grids has decreased significantly, but the number of positive 
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Figure 6  The number of grid points distributed for each bias interval, where the bias values are calculated via 
the simulation results for each experiment minus the GLDAS results 
 

bias grids has increased. This result is related to the fact that MODIS observations are higher 
than GLDAS LSTs. 

According to Figure 5, in the CTL experiment, the LST of the Eurasian continental plate 
(1°17′N–77°43′N, 9°31′W–180°E) is higher in mid- to high-latitude areas and lower in 
low-latitude areas. In Figure 6, there are more grid points with large positive and negative bi-
ases via the CTL experiment, and they are distributed symmetrically along the zero line. The  
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Table 3  Comparison of monthly average absolute bias values on representative months 

 CTL ASSI1 ASSI2 ASSI3 ASSI4 
January, 2014 2.88 2.44 2.36 2.35 2.41 
April, 2014 2.4 2.12 2.01 1.93 1.93 
July, 2014 2.24 2.08 1.97 2 1.94 
October, 2014 2.46 2.08 2.02 2.28 2.37 
January, 2015 2.85 2.35 2.3 2.37 2.41 
April, 2015 2.49 2.22 2.09 2.04 1.99 
July, 2015 2.2 2.21 2.11 2.18 2.11 
October, 2015 2.58 2.15 2.1 2.26 2.42 

 

positive and negative bias grids over the Eurasian continental plate are reduced in the assimi-
lated experimental results, and all assimilation experiments have similar effects (mean bias of 
four experiment in Eurasia < 1K), indicating that for the Eurasian continental plate, the effects 
of assimilation using observations at different time intervals vary less; therefore, whether or 
not to consider diurnal variation information has little effect on the results of assimilation. 

According to Figure 5, the LST of the African continental plate (34°51′S–37°21′N, 
17°33′W–51°24′E) is mainly low. From the analysis shown in Figure 6, the longer the ob-
servation time interval is, the more observation information is assimilated into the model, 
and more negative bias grids change into positive bias grids. The number of positive biases 
in the ASSI3 (1.28K) and ASSI4 (1.62K)  experiments is greater than the number of nega-
tive bias grids, indicating overcorrection features. For the African continental plate, the best 
results were derived from the ASSI1 (0.14K) and ASSI2 (0.28K) experiments (i.e., the ex-
periments that take into account the LST diurnal variation information). 

The Oceania continental plate (47°S–30°N, 110°E–130°E) results are similar to those of 
the African continental plate. The number of positive biases in the ASSI3 (1.20K) and ASSI4 
(1.44K) experiments is greater than the number of negative bias grids, while the best results 
were derived from the ASSI1 (–0.02K) and ASSI2 (0.12K) experiments. The diurnal varia-
tion information of LSTs when assimilating can improve the results. 

Figure 7 shows the time series of the bias values for all experiments. To better compare 
the results, the bias value for each 
grid point is taken as an absolute 
value, and the absolute bias is cal-
culated. It can be seen that the ab-
solute bias values for all of the as-
similation experiments are reduced 
compared with those from the CTL 
experiment, except for those in in-
dividual months. From Table 2, the 
average absolute bias of the ASSI2 
experiment is the smallest. It can be 
seen from Table 3 that in different 
months, the experiment with the 
smallest absolute bias varies, and 
the minimum absolute bias appears 
mainly in the ASSI2 experiment. In 

 
 

Figure 7  Comparison of monthly average absolute bias values 
in the LST simulation results for each experiment with the 
GLDAS LSTs 
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March, April and July of 2014 and March, April and July of 2015, the minimum absolute 
bias occurred in the ASSI4 experiment. The reason is that in the ASSI4 experiment during 
these months, the absolute bias values over Africa and Oceania are greater than those in the 
ASSI2 experiment, but the absolute bias values over Eurasia, North America, and South 
America are less than those via the ASSI2 experiment. In most cases, to increase the accu-
racy of the observation information relative to the time of the corresponding assimilation 
window during assimilation, observations with shorter intervals are used for assimilation (i.e., 
by considering the diurnal variation information of the observations), and better assimilation 
results can be obtained. However, in some months (e.g., March and April) and in some areas 
where the diurnal variations in LST are small, the observation interval can be appropriately 
bigger; this way, the assimilation effect can improve by increasing the number of observations 
at a single time. 

 

 
 

 

Figure 8  The spatial distributions of the RMSE (K) for the LST simulation results in each experiment compared 
with the GLDAS LST results 

3.2.2  RMSE 
Biases can represent the positive and negative differences between simulated values and true 
values, while the RMSE is more sensitive to the extreme value in a group of numbers and 
can reflect the discrete degree of the simulated effect. This section uses the RMSE to analyse 
the experimental results from 2014 to 2015 from a time and space perspective. 

From Table 2, we know that the average global RMSE of assimilation experiments 
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ASSI1-ASSI3 is lower than that of the CTL experiment, but that of the ASSI4 is higher. 
Similar with the bias analysis results, the RMSE analysis results are better in the ASSI2 ex-
periment than those in the other experiments. Different observation time intervals have dif-
ferent effects on different regions. For the Eurasian continent, the RMSE is smaller when the 
6-hour interval observations are used for assimilation; for the African continent, when the 
3-hour interval observations are assimilated, a smaller RMSE can be obtained. Without con-
sidering diurnal variations in LST observations will increase the dispersion of the simulation 
results, which has a bad influence on the assimilation results. At smaller time intervals, di-
urnal variations in the LST are preserved. To reduce the RMSE of the simulation results and 
the temporal dispersion of areas with large diurnal variations in LST, the same assimilation 
window should be used to enter the observation information more accurately relative to the 
time of observation.  

Figure 9 shows the RMSE of the 
simulated LST and GLDAS LST for 
the CTL and assimilation experiments 
over time. The RMSEs of the CTL and 
assimilation experiments are smaller 
in northern summers and larger in 
northern winters. The RMSEs for each 
month in the ASSI1 and ASSI2 exp-
eriments are smaller than that in the 
CTL experiment. The ASSI3 exp-
eriment RMSE is smaller than that of 
the CTL experiment (except for June 
2015). The ASSI4 experiment RMSE 
is smaller than that of the CTL ex-
periment in northern winters (Decem-
ber, January and February), and the 
remaining RMSEs are larger than in the CTL experiment. The average RMSEs of the CTL and 
four assimilation experiments are shown in Table 2. It can be seen from Table 4 that on repre-
sentative months, the ASSI2 experiment has the smallest RMSE. Through the analysis of time 
and space, it is known that by taking into account observed diurnal variation information, the 
RMSE of the assimilation results can be reduced. 
Table 4  Comparison of monthly average RMSE values on representative months 

 CTL ASSI1 ASSI2 ASSI3 ASSI4 
January, 2014 5.02 4.43 4.41 4.67 5.00 
April, 2014 4.05 3.54 3.49 3.77 4.31 
July, 2014 3.69 3.17 3.13 3.44 3.91 
October, 2014 4.03 3.44 3.44 3.94 4.40 
January, 2015 5.02 4.39 4.38 4.67 4.97 
April, 2015 4.04 3.55 3.47 3.76 4.22 
July, 2015 3.61 3.25 3.21 3.54 3.99 
October, 2015 4.15 3.52 3.52 3.99 4.48 

 

3.2.3  Correlation coefficient 
The correlation coefficient is an indicator that studies the degree of linear correlation be-

 
 

Figure 9  Comparison of monthly average RMSEs in the LST 
simulation results of the experiments with those of the GLDAS 
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tween two variables. By using the correlation coefficient to evaluate the experimental results, 
the degree of similarity between the simulation and true value results at each grid point  
can be obtained. As shown in Figure 10, in the CTL experiment, the correlation coefficients 
 

 
 
 

Figure 10  The spatial distributions of the correlation coefficients between the LST simulation results via the 
experiments and the GLDAS LSTs 
 

over central Africa and northern South 
America are relatively small. The 
correlation coefficients for the above 
areas during the four assimilation ex-
periments all increased. The correla-
tion coefficients at mid- to high lati-
tudes in the Northern Hemisphere and 
over the continent of Oceania in 
ASSI1 and ASSI2 all improved, while 
those in ASSI3 and ASSI4 did not 
improve much. Overall, the ASSI2 
experimental results are more relevant 
to the GLDAS LST data. 

Figure 11 shows the changes over 
time in the correlation coefficient 

 
Figure 11  Comparison of the correlation coefficients between 
the surface temperature simulation results of the experiments 
and the GLDAS LSTs
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between the simulated LSTs in the CTL and assimilation experiments and the GLDAS LSTs. 
It also can beseen from Table 5 that the correlation coefficient between the ASSI1 experi-
mental results and the GLDAS LST is greater than that with the CTL experiment, and the 
correlation coefficient between the ASSI4 experimental results and the GLDAS LST is rela-
tively small. The average correlation coefficients of the CTL and assimilation experiments 
are shown in Table 2. The ASSI1 experiment has the largest correlation coefficient of the 
assimilation experiments, followed by ASSI2 and ASSI3. These results show that processing 
satellite data into 3-hour time intervals and taking into account diurnal variations in LST 
when assimilating observation data can yield results that are more similar to changes in 
GLDAS LST. 
 

Table 5  Comparison of monthly average correlation coefficients values on representative months 

 CTL ASSI1 ASSI2 ASSI3 ASSI4 
January, 2014 0.55 0.6 0.59 0.55 0.52 
April, 2014 0.56 0.64 0.64 0.59 0.53 
July, 2014 0.42 0.51 0.5 0.46 0.4 
October, 2014 0.57 0.68 0.68 0.62 0.58 
January, 2015 0.55 0.6 0.61 0.57 0.54 
April, 2015 0.59 0.65 0.66 0.62 0.57 
July, 2015 0.47 0.55 0.54 0.49 0.43 
October, 2015 0.55 0.67 0.66 0.62 0.57 

4  Conclusions 

Based on the BCC_AVIM land surface model, this paper uses the EnKF algorithm to as-
similate the MODIS LST product. Different experiments have been designed to assimilate 
observation data with different time intervals, and the GLDAS LST product is used to verify 
the experimental results. The assessment was conducted to analyse the effects of diurnal 
variations in LSTs from satellite observations on LST assimilation results with a land sur-
face model. The main conclusions are as follows. 

(1) The LST is directly affected by shortwave solar radiation and, thus, has distinct diur-
nal variations. For polar-orbit satellite observations, the longer the time interval is, the 
weaker the diurnal variation in the LST contained in the sequence. When the observation 
time interval is 24 hours, no diurnal variation information is included in the sequence; when 
the observation time interval is 12 hours, the sequence contains significant cyclical changes 
in the LST. When the observation time interval is 6 hours, the diurnal variations in the LST 
oscillations are more intense; when the observation time interval is 3 hours, the number of 
observations contained in each time period is small, and there are regional differences. 
Therefore, it is easy to show large oscillations. 

(2) The BCC_AVIM global LST simulation results are lower than those of the GLDAS 
LST, with large negative biases over North Africa, South America, and Oceania and large 
positive deviations at high latitudes in the Northern Hemisphere. After assimilating the 
MODIS LST observations, the extremely positive and negative bias values were reduced, 
and the model's ability to simulate LST improved both globally and regionally. 

(3) Polar-orbit satellite observations are divided into evenly spaced time periods ac-
cording to the temporal information of the grid points. When the time interval is shorter, 
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the observation information entering the same assimilation window is more accurate, and 
the longer time interval induces the opposite effect. The ASSI2 experiment shows less bias 
(2.17K) and RMSE (3.65K) than the bias (2.25K) and RMSE (3.68K) of ASSI1 experi-
ment, since the observation time interval of the ASSI2 experiment is longer. Under the 
premise that diurnal variations are also considered, the more observations have for each 
time interval, the better the assimilation results. The largest amount of observations that 
can be assimilated at each assimilation time by ASSI4 experiment, but it has the largest 
bias (2.26K) and RMSE (4.42K) because the daily mean value ignores diurnal variation 
information, resulting in an error in each assimilate step; the overall error caused by ac-
cumulation in the assimilation window is large. 

(4) The sensitivity to diurnal variations in LST is different in different regions; the ob-
servation time interval that can produce the best assimilation results is also different in 
different regions. For Eurasia, the bias for assimilation using observations with a time in-
terval of 6 hours is small (0.20K), and the correlation coefficient is large. The experiment 
using observations with a time interval of 3 hours leads to smaller bias in Oceania (–0.02K) 
and Africa (0.14K). 

(5) Different seasons have different sensitivities to diurnal variations in LST, and the ob-
servation time intervals that can produce the best assimilation results are different. In some 
months (e.g., March, April and July 2014 and March, April and July 2015), a larger observa-
tion interval can increase the number of observations entered into a single assimilation win-
dow to increase the assimilation effect. 

(6) Diurnal change information for LSTs that is retained and observation data that are 
processed at smaller time intervals have a good effect on reducing the bias and RMSE of the 
simulation results and improving the correlation coefficient. Overall, when assimilation is 
performed using 6-hour interval observation data, a relatively good assimilation result can 
be obtained, because when the observations are processed at a 6-hour interval, they are un-
der the premise that diurnal variations are taken into consideration, and there are a sufficient 
number of observations for each assimilation time. 

Acknowledgements 

The authors are thankful to the Multi-source Land Surface Data Assimilation Model Devel-
opment Project of Huayun Sounding (Beijing) Meteorological Technology Corporation for 
providing funding to accomplish this study and to all organizations which provided neces-
sary data and logistics to achieve specific objectives of this study. Special thanks to Profes-
sor Wang Hanjie of Department of Earth System Science, Tsinghua University, China, who 
gave us great help on this research and constructive advice to the paper. 

References 

Balsamo G, Mahfouf J F, Bélair S et al., 2007. A land data assimilation system for soil moisture and temperature: 
An information content study. Journal of Hydrometeorology, 8(6): 1225–1242. 

Burgers G, Leeuwen P J V, Evensen G, 1998. Analysis scheme in the Ensemble Kalman Filter. Monthly Weather 
Review, 126(6): 1719–1724. 

Deng Xiaohua, Sui Panmao, Yuan Chunhong, 2010. Comparison and analysis of several sets of reanalysis data 
abroad. Meteorological Science and Technology, 38(1): 1–8. (in Chinese) 

Evensen G, 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo 
methods to forecast error statistics. Journal of Geophysical Research Oceans, 99(C5): 10143–10162. 



36  Journal of Geographical Sciences 

 

Evensen G, 1997. Advanced data assimilation for strongly nonlinear dynamics. Monthly Weather Review, 125(6): 
1342–1354.  

Fu X L, Wang B, 2014. Reliability evaluation of soil moisture and land surface temperature simulated by Global 
Land Data Assimilation System (GLDAS) using AMSR-E data. Oceans (Vol.9265). International Society for 
Optics and Photonics. 

Han Shuai, Shi Chunxiang, Jiang Lipeng et al., 2017. CLSAS soil moisture simulation results and evaluation. 
Chinese Journal of Applied Meteorology, 28(3): 369–379. (in Chinese) 

Houser P R, 2004. Land data assimilation systems. Bulletin of the American Meteorological Society, 85(3): 28–30 
vol.1.  

Hu T, Liu Q, Du Y et al., 2015. Analysis of land surface temperature spatial heterogeneity using variogram model. 
In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE International Sympo-
sium on Geoscience and Remote Sensing IGARSS. IEEE, 132–135.  

Huang C, Xin L, Ling L, 2008. Retrieving soil temperature profile by assimilating MODIS LST products with 
ensemble Kalman filter. Remote Sensing of Environment, 112(4): 1320–1336.  

Ji J J, Mei H, Li K R, 2008. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere 
in 21st century. Science in China, 51(6): 885–898. 

Lawrence P J, Chase T N, 2015. Representing a new MODIS consistent land surface in the community land model 
(CLM 3.0). Journal of Geophysical Research, 112(G1): 252–257. 

Ma Weiqiang, Ma Yaoming, 2006. Preliminary analysis of surface energy in arid area of Northwest China. Jour-
nal of Arid Land Research, 23(1): 76–82. (in Chinese) 

Mechri R, Ottlé C, Pannekoucke O et al., 2016. Downscaling meteosat land surface temperature over a heteroge-
neous landscape using a data assimilation approach. Remote Sensing, 8(7): 586–594. 

Meng Chunlei, 2012. Study on surface temperature variational assimilation in CoLM model. Atmospheric Sci-
ences, 36(5): 985–994. (in Chinese) 

Mitchell K E, Lohmann D, Houser P R et al., 2004. The multi-institution North American Land American Land 
Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distrib-
uted hydrological modeling system. Journal of Geophysical Research Atmospheres, 109(D7): 585–587.  

Oleson K W, Dai Y, Bonan G et al., 2010. Technical Description of Version 4.0 of the Community Land Model 
(CLM), 195–198. 

Oleson K W, Niu G Y, Yang Z L et al., 2008. Improvements to the community land model and their impact on the 
hydrological cycle. Journal of Geophysical Research Biogeosciences, 113(G1): G01021. 

Rodell M, Houser PR, Jambor U et al., 2004. The global land data assimilation system. Bulletin of the American 
Meteorological Society, 85(3): 381–394. 

Sellers P J, 1988. The first ISLSCP Field Experiment (FIFE). Bulletin of the American Meteorological Society, 
69(1): 22–27. 

Shi Chunxiang, Xie Zhenghui, Qian Hui et al., 2011. China land soil moisture EnKF data assimilation based on 
satellite remote sensing data. Science China Earth Sciences, 54(9): 1430–1440.  

Shi C, Jiang L, Zhang T et al., 2014. Status and Plans of CMA Land Data Assimilation System (CLDAS) Project. 
EGU General Assembly Conference (Vol.16). EGU General Assembly Conference Abstracts.  

Xia Y, Ek M, Wei H et al., 2012. Comparative analysis of relationships between Nldas-2 forcings and model out-
puts. Hydrological Process, 26(3): 467–474. 

Xu Tongren, Liu Shaomin, Xu Ziwei et al., 2015. A dual-pass data assimilation scheme for estimating surface 
fluxes with FY3A-VIRR land surface temperature. Science China Earth Sciences, 58(2): 211–230. 

Wang Yuquan, 2016. Analysis of surface temperature series of LET-KF data assimilation in transient model. Sci-
ence Bulletin, 32(8): 197–202. (in Chinese) 

Wan Z, 1999. MODIS Land Surface Temperature Algorithm Theoretical Basis Documentation.  
Wan Z, 2014. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity 

product. Remote Sensing of Environment, 140(1): 36–45. 
Wan Z M, Li Z L, 1997. A physics-based algorithm for retrieving land-surface emissivity and temperature from 

EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35(4): 980–996.  
Wu Jinkui, Ding Yongjian, Wei Zhi et al., 2005. Reference crop evapotranspiration in natural low-humid grass-

land in arid area: A case study in the middle reaches of Heihe River Basin. Journal of Arid Land Research, 
22(4): 514–519. (in Chinese) 

Wu T, Li W, Ji J et al., 2013. Global carbon budgets simulated by the Beijing Climate Center Climate System 
Model for the last century. Journal of Geophysical Research: Atmospheres, 118(10): 4326–4347.  

Wu Tongwen, Song Lianchun, Li Weiping et al., 2014. An overview of BCC Climate System Model development 
and application for climate change studies. Journal of Meteorology Research, 28(1): 34–56. 

Zou Lanjun, Gao Wei, Wu Tongwen et al., 2006. A 3DVAR land data assimilation scheme Part 2: Test with 
ECMWF ERA-40, Conference on Remote Sensing and Modeling of Ecosystems for Sustainability III. In: 
Proceedings of the Society of Photo-optional Instrumentation Engineers (SPIE). SPIE, M2981-M2981. 


