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Abstract: Since 2005, dozens of geographical observational stations have been established 
in the Heihe River Basin (HRB), and by now a large amount of meteorological, hydrological, 
and ecological observations as well as data pertaining to water resources, soil and vegetation 
have been collected. To adequately analyze these available data and data to be further 
collected in future, we present a perspective from complexity theory. The concrete materials 
covered include a presentation of adaptive multiscale filter, which can readily determine arbi- 
trary trends, maximally reduce noise, and reliably perform fractal and multifractal analysis, 
and a presentation of scale-dependent Lyapunov exponent (SDLE), which can reliably dis- 
tinguish deterministic chaos from random processes, determine the error doubling time for 
prediction, and obtain the defining parameters of the process examined. The adaptive filter is 
illustrated by applying it to obtain the global warming trend and the Atlantic multidecadal os- 
cillation from sea surface temperature data, and by applying it to some variables collected at 
the HRB to determine diurnal cycle and fractal properties. The SDLE is illustrated to deter- 
mine intermittent chaos from river flow data. 

Keywords: Heihe River basin; geographical observation; complexity theory; adaptive multiscale filter; fractal  
analysis; scale-dependent Lyapunov exponent 

1  Introduction 
The Heihe River Basin (HRB) is located in the central part of the Hexi Corridor in the arid 
region of northwestern China. It is the second largest inland river basin in China. With re- 
gard to the competition for water between economy and ecosystem, it is considered a repre- 
sentative of all of the inland river basins all over the world, including the Aral Sea Basin 
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(Micklin, 1988) and the Tarim River Basin (Feng et al., 2011). Between the 1950s and 2000, 
there had been a serious deterioration in the water and eco-environment of the HRB (Cheng 
et al., 2014). It was largely caused by local human activity including deforestation, over-
grazing and grassland reclamation in the upstream area, and development of large number of 
artificial oases in the midstream area. As a result, many natural oases in the midstream re-
gion have disappeared and the amount of water entering the downstream area decreased sig-
nificantly. Global warming also has exacerbated this deterioration. The glacier area in the 
HRB has been characterized by a trend of negative mass balance and an increase in runoff 
(Xiao et al., 2007) since the 1990s. In fact, it has decreased by 29.6% over the past 50 years 
(Wang et al., 2011). The runoff from the Heihe River has increased due to increasing sum-
mer precipitation and a warming climate in winter (Li et al., 2003). In fact, increase in an-
nual precipitation due to increase in temperature has surpassed the increased water con-
sumption.  

Fortunately, an ecological water diversion project in the HRB has been implemented 
since 1995 and has largely rescued this invaluable ecological system (Cheng et al., 2014). 
Since 2005, with supports from Natural Science Foundation of China, dozens of geographi-
cal observational stations have been established in the upper, middle, and downstream areas 
of the HRB (Song et al., 2017; Liu et al., 2018). By now, large amount of meteorological, 
hydrological, and ecological observations as well as data pertaining to water resources, soil 
and vegetation have been collected (Liu et al., 2011; Li et al., 2013). While many interesting 
researches have been done to analyze these data (please see the publications accompanying 
the data hosted at http://westdc.westgis.ac.cn/), in-depth and systematic analyses of these 
data have yet to be conducted to comprehensively understand these data. To facilitate this, in 
this paper, we discuss two multiscale analysis methods from dynamical systems theory and 
complexity theory that will be very useful for understanding these data. Multiscale analysis 
is an extension and generalization of chaos and fractal theories. The latter two are key ele-
ments of complexity theory. They have been applied to many different fields, including 
geophysics (Turcotte, 1993; Svakumar, 2004; Li et al., 2010; Song et al., 2018). 

The remainder of the paper is organized as follows. In Sections 2–4, we present general 
material that will be useful for any kind of geophysical data analysis. Specifically, in Section 
2, we will explain the basics of complexity theory. In Section 3, we present adaptive 
multi-scale decomposition and fractal analysis and some of their applications. In Section 4, 
we present a multiscale analysis method based on scale-dependent Lyapunov exponent 
(SDLE). And finally, in Section 5, while we make some concluding discussions, we will 
also give pointers to some complexity measures that are practically very useful but are not 
covered in the previous sections of this manuscript, due to our self-imposed length limita-
tion. 

2  Basics of complexity theory 
Among the most powerful theories for studying complex data are chaos theory and fractal 
theory. In order to fruitfully use them to study problems of real world significance, one not 
only has to deeply understand the theories, but also know how to extend them when neces-
sary, since theories in textbooks rarely can be used to solve one's problem straightforwardly, 
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if the problem is not simple. In this section, we explain the essence of chaos and random 
fractal theories and the contentions between them. 

2.1  Chaos theory 

Imagine that we are observing an aperiodic, highly irregular time series. Can such a signal 
arise from a deterministic system characterized by only a few state variables instead of a 
random system with infinite numbers of degrees of freedom? A chaotic system is capable of 
just that. This discovery has such far-reaching implications in science and engineering that 
sometimes chaos theory is considered one of the three most revolutionary scientific theories 
of the 20th century, along with relativity and quantum mechanics. 

At the center of chaos theory is the concept of sensitive dependence on initial conditions: 
a very minor disturbance in initial conditions leads to entirely different outcomes. An often 
used metaphor illustrating this point is that sunny weather in New York could be replaced by 
a stormy weather sometime in the near future after a butterfly flaps its wings in Brazil. The 
butterfly effect is one of the most important properties that has to be addressed in weather 
forecasting (Evensen et al., 1994; Evensen et al., 2007; Miller et al., 2007; Liu et al., 2017). 
Such a feature contrasts sharply with the traditional view, largely based on our understand-
ing of linear systems, that small disturbances (or causes) can only generate proportional ef-
fects, and that in order for the degree of randomness to increase, the number of degrees of 
freedom has to be infinite.  

Mathematically, the property of sensitive dependence on initial conditions can be charac-
terized by an exponential divergence between nearby trajectories in the phase space. Let d(0) 
be the small separation between two arbitrary trajectories at time 0, and let d(t) be the sepa-
ration between them at time t. Then, for true low-dimensional deterministic chaos, we have 

   1~ (0)e td t d                    (1) 
where λ1 is called the largest positive Lyapunov exponent. 

Another fundamental property of a chaotic attractor is that it is an attractor – the trajecto-
ries in the phase space are bounded. The incessant stretching due to exponential divergence 
between nearby trajectories, and folding due to boundedness of the attractor, cause the cha-
otic attractor to be a fractal, characterized by  

   ~ , 0DN                                (2) 

where N() represents the (minimal) number of boxes, of linear length not greater than , 
needed to cover the attractor in the phase space. Typically, D is a nonintegral number called 
the box-counting dimension of the attractor.  

To understand the importance of chaos, it is instructive to note the different types of mo-
tions, in increasing complexity: Fixed points, limit cycles, torus, chaos, turbulence, and 
random motions (Gao et al., 2007). The first three correspond to motions without any 
change, periodic motions, and quasi-periodic motions, respectively. In the Fourier domain, 
periodic motions are akin to crystals, while quasi-periodic motions may be associated with 
quasi-crystals. The latter won Dr. Daniel Shechtman a Nobel Prize in Chemistry in 2011.  

Since chaotic as well as simple, regular motions have been observed almost everywhere, 
we have to ask a fundamental question: Can a chaotic motion arise from a regular one and 
vice versa? The answer is yes, and lies in the study of bifurcations and routes to chaos. Here, 
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the key concept is that the dynamics of a system are controlled by one or a few parameters. 
When the parameters are changed, the behavior of the system may undergo qualitative 
changes. The parameter values where such qualitative changes occur are called bifurcation 
points. 

There are many routes to chaos. The most studied is the period-doubling bifurcation to 
chaos (Feigenbaum et al., 1983). It has been observed in many different fields. Other 
well-known routes to chaos include the quasi-periodicity route (Ruelle et al., 1971) and the 
intermittency route (Pomeau et al., 1980). The quasi-periodicity route to chaos occurs when 
a critical parameter is varied, the motion becomes periodic with one basic periodicity, 
quasi-periodic with two or more basic periods, and suddenly the motion becomes chaotic. 
Recently, it has been found that this route underlies the complicated Internet transport dy-
namics (Gao et al., 2005b). The third route to chaos, intermittency, refers to the state of a 
system operating between smooth and erratic modes, depending on the variation of a key 
parameter. This route to chaos may also be very relevant to many nonstationary phenomena 
in life, including river flow dynamics. 

2.2  Fractal theory 

Euclidean geometry is about lines, planes, triangles, squares, cones, spheres, etc. The com-
mon feature of these different objects is regularity: none of them is irregular. Now let us ask 
a question: Are clouds spheres, mountains cones, and islands circles? The answer is obvi-
ously no. In pursuing answers to such questions, Mandelbrot has created a new branch of 
science – fractal geometry (Mandelbrot, 1982).  

For now, we shall be satisfied with an intuitive definition of a fractal: a set that shows ir-
regular but self-similar features on many or all scales. Self-similarity means that part of an 
object is similar to other parts or to the whole. That is, if we view an irregular object with a 
microscope, whether we enlarge the object by 10 times or by 100 times or even by 1000 
times, we always find similar objects. To understand this better, let us imagine that we were 
observing a patch of white cloud drifting away in the sky. Our eyes were rather motionless: 
we were staring more or less in the same direction. After a while, the part of the cloud we 
saw drifted away, and we were viewing a different part of the cloud. Nevertheless, our feel-
ing remained more or less the same (Goodchild and Mark, 1987; Cheng et al., 2018). 

Mathematically, self-similarity or fractal is characterized by a power-law relation, which 
translates into a linear relation in the log-log scale. To understand the significance of a 
power-law relation, let us imagine that we are walking down a wild, jagged mountain trail or 
coastline. We would like to know the distance covered by our route. Suppose our ruler has a 
length of  , which could be our step size, and different hikers may have different step sizes 
– a person riding a horse has a huge step size, while a group of people with a little child 
must have a tiny step size. The length of our route is 

  ·L N      (3) 

where N() is the number of intervals needed to cover our route. It is most remarkable that 
typically N() scales with   in a power-law manner, as prescribed by Eq. (2), with $D$ 
being a noninteger, 1<D<2. Such a nonintegral D is often called the fractal dimension to 
emphasize the fragmented and irregular characteristics of the object under study.  
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Let us now try to understand the meaning of the nonintegral D. For this purpose, let us 
consider how length, area, and volume are measured. A common method of measuring a 
length, a surface area, or a volume is to cover it with intervals, squares, or cubes whose 
length, area, or volume is taken as the unit of measurement. These unit intervals, squares, 
and volumes are called unit boxes. Suppose, for instance, that we have a line whose length is 
1. We want to cover it by intervals (boxes) whose length is ε. It is clear that we need 

1( ) ~N     boxes to completely cover the line. Similarly, if we want to cover an area or 

volume by boxes with linear length ε, we would need 2( ) ~N   
 to cover the area, or 

3( ) ~N     boxes for the volume. The D in ( ) ~ DN     here is called the topological 
dimension and takes on a value of 1 for a line, 2 for an area, and 3 for a volume. For isolated 
points, D is zero. That is why a point, a line, an area, and a volume are called 0–D, 1–D, 
2–D, and 3–D objects, respectively. 

Now let us examine the consequence of 1<D<2 for a jagged mountain trail. It is clear that 
the length of our route increases as   becomes smaller, i.e., when 0  , L  . To be 
more concrete, let us visualize a race between the hare and the tortoise on a fractal trail with 
D=1.25. Assume that the length of the average step taken by the hare is 16 times that taken 

by the tortoise. Then we have 1   .
2hare tortoiseL L  That is, the tortoise has to run twice the 

distance of the hare! Putting it differently, if you were walking along a wild mountain trail 
or coastline and tired, slowing down your pace and shrinking your steps, then you were in 
trouble, since you would be walking out a longer path with ever decreasing step sizes. It 
certainly would be worse if you also got lost. 

Fractal theory applies to both geometrical objects and dynamical variations. The latter in-
clude both deterministic and random signals. Chaotic signals are examples of deterministic 
signals. While they are abundant, random fractal signals are even more prevalent. Albeit 
chaos is often used to refer to both chaos and fractal theories in some popular writings, here 
we emphasize that chaos theory and random fractal theory have entirely different founda-
tions – chaos theory is mainly concerned about apparently irregular behaviors in determinis-
tic systems, where noise or intrinsic randomness does not play an important role, while ran-
dom fractal theory assumes that the dynamics of the system are inherently random. In fact, 
the scope of random fractal theory is very broad. The major models of random fractals in-
clude multiplicative cascade multifractals, which is one of the best models for Internet traf-
fic (Gao et al., 2001) and the intermittency phenomenon in turbulence (Frisch et al., 1995), 
the Levy processes (Gao et al., 2007), and the 1 / f   processes.  

Of the types of activity that characterize complex systems, the most ubiquitous and puz-
zling is perhaps the appearance of 1 / f   noise, a form of temporal or spatial fluctuation 
characterized by a power-law decaying power spectral density. A sub-class of such proc-
esses, denoted as 2 11 / Hf  , is called processes with long-range correlations characterized 
by a Hurst parameter H. Depending on whether 0 < H < 1/2, H = 1/2, or 1/2 < H <1 (Man-
delbrot, 1982), they are said to have antipersistent correlations, memoryless or only 
short-range correlations, or persistent long-range correlations (long memory). Prominent 
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examples of such processes include vision (Gao et al., 2006a), finance (Gao et al., 2011), 
DNA sequences (Li et al., 1992; Voss et al., 1992; Peng, 1992; Gao et al., 2005a; Hu et al., 
2007), human cognition (Gilden et al., 1995), global terrorism (Gao et al., 2017) and coor-
dination (Chen et al., 1997), posture (Collins et al., 1994), cardiac dynamics (Ivanov et al., 
1996; Amaral et al., 1998; Ivanov et al., 1999; Bernaola-Galvan et al., 2001), as well as the 
distribution of prime numbers (Wolf et al., 1997), to name but a few. 

The precise definition of processes with long memory goes as follows. A covariance sta-
tionary stochastic process   , 0,1, 2, 3,X X t t   , with mean μ, variance 2 , and 

autocorrelation function   , 0r w w≥ , is said to have long range correlation if  r w  is of 

the form (Cox, 1984)   
   2 2~ , asHr w w w    (4) 

where  0 1H   is the Hurst parameter. When 1/2 < H <1,  
k

r k   , leading to the 

term long-range correlation. The process X has a power-spectral density (PSD) of 2 11 / Hf  . 

Its integration, called a random walk process, has a PSD of 2 11 / Hf  . Being 1/f processes, 
they cannot be aptly modeled by Markov processes or ARIMA models (Box et al., 1976), 
since the PSD for those processes are distinctly different from 1/f. To adequately model 1/f 
processes, fractional order processes has to be used. The most popular is the fractional 
Brownian motion model (Mandelbrot, 1982).  

To better understand the meaning of the Hurst parameter H, it is instructive to consider 
the effect of smoothing irregular data { 0,1, 2,...}:tX X t   by constructing a new time 
series 

 
    : 1,2,3,n n

tX X t   , n = 1, 2, 3, …, 

obtained by simple nonoverlapping averaging, 

 
   1    / , 1n
t tn n tnX X X n t    ≥   (5)  

For ideal fractal processes, there is an interesting scaling law for the variance of  n
tX  on 

the aggregation level n (Gao et al., 2006b; Gao et al., 2007). 

 
  2 2 2var( )n HX n                            (6) 

where σ2 is the variance of the original data. When H=0.5,  var( )nX drops to 
2
0 / 100  when 

n=100. When H=0.75, for the variance to drop as much, we need n=10,000, However, when 
H=0.25, for the variance to drop this much, we only need  22n . 

The expression 1 ...tn n tnX X     in Eq. (5) embodies an important concept, the random 

walk representation. Concretely, given a time series , 1, 2, ...{ },iX i N  with mean  x  we 

form the partial summation of , 1, 2, ..{ . }iX i   to get the random walk process { ,ky k   
1, 2, ...} , where 
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  
1

 
k

k i
k

y x x


   (7) 

Now it is clear that for fractal processes, the variance of the process ky  scales as 2Hk . In 
fact, the formulation can be readily extended to multifractal analysis based on structure 
function technique. However, to keep the discussions simple enough, we will not go into the 
details here. When needed, readers can readily find the relevant materials in Gao et al. 
(2006b; 2007). Here, we just wish to emphasize that in statistics and finance, testing for in-
dependence of the sequence , 1, 2, ..{ . }iX i   is actually very engaging. For example, in the 
popular Variance Ratio Analysis, one needs to assume normality for the distribution of the 
sequence. However, such an analysis can only tell whether the sequence is independent or 
not, which amounts to H=1/2, but nothing else. The scaling law such as Eq. (5) clearly con-
tains much more information. 

2.3  Distinguishing chaos from noise 

In the study of complex time series, an outstanding problem that has existed almost 3 dec-
ades is to distinguish chaos from noise. This is a significant issue that is relevant to as di-
verse fields as life sciences, finance, ecology, physics, fluid mechanics, and geophysics, 
among others. A clean answer to this question can guide one to choose a suitable determi-
nistic or random model for the system under consideration. For a long time, a nonintegral 
fractal dimension, a positive largest Lyapunov exponent, or a finite Kolmogorov entropy 
(which is the summation of all positive Lyapunov exponents), are often thought to indicate 
deterministic chaos. This practice is still being followed in many applications. This aspect of 
chaos research may be summarized by the following analogy: many researchers were chas-
ing the beast of chaos on a wild beach. One was yelling, “Here is a footprint”. Another was 
echoing, “Here is another”… After a long while, some careful minds pointed out that those 
may just be their own footprints. Among the most convincing counter-examples are the 
1 / f  random processes. Having non-integral fractal dimensions and finite Kolmogorov 
entropies, they may be mis-interpreted as deterministic chaos (Osborne et al., 1989; 
Provenzale et al., 1991). In fact, with the classic methods based on Eq. (1) for detecting 
chaos, even independent identically distributed (IID) random variables may be interpreted as 
chaos, since whatever δ0 is chosen, δt is always close to the most likely spacing between the 
two random variables. Typically, δ0 would be chosen to be smaller than this spacing, then λ1 
clearly would be positive. The root of this difficulty is that classic methods for detecting 
chaos assumes but does not contain a mechanism to verify the existence of the defining 
property of chaos – the exponential divergence between nearby trajectories. Because of the 
existence of many misclassifications, most publications claiming chaos in observational data, 
including analysis of many types of geophysical and geographical data, would warrant a 
re-examination – only when exponential divergence can be detected, can one say that the 
motion is truly chaotic. Fortunately, this issue can be readily tackled by a generalization of 
the Lyapunov exponent, the scale-dependent Lyapunov exponent (SDLE), which will be 
discussed in Section 4 below. 
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3  Detrending, denoising, multiscale decomposition, and fractal analysis of 
geophysical data through adaptive filtering 
Although there are many excellent methods to estimate the Hurst parameter H (Gao et al., 
2006b; Gao et al., 2007), they may not be readily applicable to real world data analysis, such 
as geophysical data measured over a long period of time, since real data can be very noisy, 
contain some trend signal (such as seasonal cycle) that is even stronger than the desired sig-
nal component, and are nonstationary. Fortunately, there is an excellent method to deal with 
all these issues. In the literature, it is called adaptive fractal analysis (AFA) (Gao et al., 
2011b), but it has more functions, including reducing noise, determining an arbitrary trend, 
and performing multiscale decomposition. Not only so, the method performs the best among 
all known methods when these function are concerned (Hu et al., 2009b; Gao et al., 2010; 
Tung et al., 2011; Gao et al., 2012a). Among the many applications, AFA method has also 
been used to analyze complex time series data in geophysics, including tree-ring Chronolo-
gies (Bowers et al., 2013), soil moisture (Shen et al., 2018; Zhang et al., 2018), and air tem-
perature (Yang et al., 2019). 

The method works as follows. It first partitions a time series into segments (or windows) 
of length  2w n  1 points, where neighboring segments overlap by n+1 points. While this 

has ensured symmetry, it also introduces a time scale of  1 1
2

w n 
   where   is the 

sampling time. For each segment, we fit a best polynomial of order M. Note that M=0 and 1 
correspond to piece-wise constant and linear fitting, respectively. Denote the fitted polyno-
mial for the i th  and  1i th   segments by  1

iy l  and  1
2

iy l , respectively, where 

1 2, 1, ..., 2 1l l n  . Note the length of the last segment may be smaller than 2 1n  . We de-
fine the fitting for the overlapped region as 

          1
1 2 , 1, 2, ..., 1,c iiy l w y l n w y l l n      (8) 

where 1
11 lw

n
   

 
 and 2

1lw
n


  can be written as (1 )/jd n  for j=1, 2, and where 

dj denotes the distances between the point and the centers of y(i) and y(i+1), respectively. This 
means the weights decrease linearly with the distance between the point and the center of the 
segment. Such a weighting ensures symmetry and effectively eliminates any jumps or dis-
continuities around the boundaries of neighboring segments. In fact, the scheme ensures that 
the fitting is continuous everywhere, is smooth at the non-boundary points, and has the 
right- and left-derivatives at the boundary. The method can effectively determine any kind of 
trend signal. Two examples shown in Figure 1 (red line and black line) and Figure 2 (red 
line and green line) both indicate that the adaptive algorithm captures the better trend of 
signals. The original global annual sea surface temperature (SST) data (grey curve) shown in 
Figure 1 were obtained from The Climate Data Guide: SST data: NOAA Extended Recon-
struction SSTs, Version 4 (https://climatedataguide.ucar.edu/climate-data/sst-data-noaa- ex-
tended-reconstruction-ssts-version-4); and the original Atlantic Multidecadal Oscillation 
(AMO) data (grey curve) and the multideccadal signal (blue curve) exhibited in Figure 2 
were obtained from NOAA ESRL Physical Sciences Division website (http://www.cdc. 
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noaa.gov/data/climateindices/List). 
 

 
 
Figure 1  Adaptive algorithm used to capture the trend signals for the global annual sea surface temperature 
(SST): (a) original data and trends determined by global linear trend and AFA with two window sizes; (b) the 
residuals related to the three trends. The residuals designated as the blue and the red curves had been shifted up-
ward and downward by 0.5, respectively. 
 

 
 

Figure 2  Adaptive algorithm used to capture the trend signals for Atlantic Multidecadal Oscillation (AMO): the 
detrended North Atlantic sea surface temperature anomalies data (grey) and the blue multideccadal signal are 
obtained from the NOAAs website, http://www.cdc.noaa.gov/data/climateindices/List, the red and green signals 
are obtained by the adaptive algorithm. Clearly, the red curve is better than the blue one in tracing out the varia-
tions in the original signal, while the green curve is the best in only capturing the multidecadal oscillation. 

 

For convenience of further analysis, we denote the original time series by x(t), and the 
trend signal by trend(t). Then the detrended signal is 

   ( ) ( )detrendedx x t trend t   (9) 

To better see how this decomposition is carried out, we have shown in Figure 3 as blue 
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and red curves the original moisture time series and the trend signals in the 4 seasons at 
A’rou station, where the data were measured at 4 cm below surface. As there were a lot of 
missing data in the measured data set, we have chosen a continuous period of the data from 
March 1, 2014 to February 28, 2015. This whole year long data have been partitioned into 4 
lunar seasons, starting from the spring. The corresponding xdetrended signals (blue curve－red 
curve) are further shown in Figure 4. The small amplitude oscillations correspond to the di-
urnal cycle. This cycle was broken when there was rain, which was indicated by the large 
amplitude variations in Figures 4a–4c. 

 

 
 
Figure 3  Adaptive algorithm used to capture the trend signals of the soil moisture at 4 cm of A’rou station in the 
Heihe River Basin in different seasons 

 
To quantitatively assess the strength of the diurnal cycle, we can compute the 

power-spectral density (PSD) for the data. However, the diurnal cycle is either very weak or 
is totally absent if we directly use the raw data, since the trend signal there is very strong. 
Using the detrended signals in Figure 4, this difficulty is readily overcome. The PSD results 
are shown in Figures 5 for the detrended data. We observe strong spectral peaks corre-
sponding to the diurnal cycle 1 day at two seasons, spring and winter. The first harmonic at 
1/2 day can also be clearly identified. During summer, the diurnal peak at 1 day is only 
identifiable without the strongest signal. However, during summer, the spectral peak at 1 
day is still not identifiable even when this adaptive filter is applied. The reason is that the 
diurnal pattern was broken or absent due to frequent rain in summer.  
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Figure 4  Adaptive algorithm used to capture the detrended data of the raw soil moisture at 4 cm of A’rou station 
in the Heihe River Basin in different seasons 

 

 
 

Figure 5  Power spectral density (PSD) curves for the detrended soil moisture at 4 cm of A’rou station in the 
Heihe River Basin in different seasons (corresponding to Figure 4) 
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Now that we have explained the adaptive algorithm, we can readily explain AFA. It 
works with a random walk process. Given a time series (1), (2),.{ ,}..x x  with mean ,x a 
random walk process y(n) is defined as  

    
1

 ( ), 1, 2, ...,
n

n i
i

y x x n


    (10) 

Next, for a window size w, we determine for the random walk process ( ) ,  1,2,...iy i  , a 

global trend ( ) ,  1,2,...iv i  , N. Here N is the length of the random walk process. The resid-

ual, ( ) ( )iy v i , characterizes fluctuations around the global trend, and its variance yields the 
Hurst parameter H (Gao et al., 2011b),  

      
1/2

2

1

1 ( ) ~
N

H
W

i

F u i v i w
N 

 
  
  
  (11) 

To illustrate the use of AFA, we employ it to analyze how the fractal behavior of the ve-
locity fields change with the geography of the Basin. Specifically, we consider velocity ob-
servations at the three super stations, A’rou, Daman, and Sidiaoqiao, which are at the upper, 
middle, and downstream area of the Basin, respectively (see Figure 6). A few examples of 
AFA are shown in Figure 7. We observe very good scaling behavior. However, here there 
are two scaling regimes, with the breaking time scale at 27 10 minutes, which is about 1 
day. Below this time scale, we have the shorter time scale Hurst parameter H1, which is al-
ways larger than 1, indicating nonstationarity. This means that within a day, the velocity 
changes a lot when the temperature changes during the diurnal cycle. On longer time scales, 
the Hurst parameter H2 is always larger than 1/2, but smaller than 1, indicating persistent 

long-range correlations. The vari-
tions of these two Hurst parameters 
with the height of the measuring 
point are shown in Figures 8a and 8b. 
We observe that the variations of the 
Hurst parameters with height at the 
three stations are different: 1) the 
values of H1 and H2 increase from 
the A’rou station, which is at the 
upper stream of the Heihe River Ba-
sin, to the Daman station, which is at 
the middle stream of the Heihe River 
Basin, to the Sidaoqiao station, 
which is at the down stream of the 
Heihe River Basin. Overall, going 
from the upper to the middle and to 
the lower stream of the basin, the 
nonstationarity in the velocity field 
increases. This aligns well with the 
fact that temperature difference 

 
 
Figure 6  A schematic of the three super stations at the Heihe 
River Basin: A’rou station, Daman station, and Sidaoqiao station 
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within a day is the largerst in the lower stream. 2) The variations of H2 with height and with 
stations suggest that the persistence in the correlation increases from the upper, to the middle, 
and finally, to the lower stream of the HRB on time scales larger than 1 day, since H2 stead-
ily increases from the upper to the middle, and finally, to the lower stream. On the other 
hand, on time scales shorter than a day, whose correlation is characterized by H1, we surmise 
that at the upper and down stream of the Heihe River Basin, boundary layers are thin, since 
H1 changes with height, while at the middle stream, boundary layer is thicker and more uni-
form, since H1 changes little with height.  
 

 
 

Figure 7  AFA of wind speed data at the A’rou station (a1–c1), the Daman station (a2–c2), and the Sidaoqiao 
station (a3–c3) at 5 m, 10 m and 15 m from January 2015 to July 2015, respectively. The slopes denoted by H1 
and H2 are the Hurst parameters. 

4  Multiscale analysis of geophysical data by the scale-dependent Lyapunov 
exponent (SDLE) 
In Section 2.3, we mentioned an important issue, distinguishing chaos from noise. While 
many researchers are still developing new methods to tackle this problem, it is important to 
realize that a more fruitful direction of research is to find the defining parameters of the 
complex time series under study. For example, if the time series is chaotic, how do the small 
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Figure 8  Variation of the Hurst parameter for wind speed with heights for the three stations: (a) short time scale 
H1 and (b) long time scale H2. 
 

disturbances actually grow with time? If the time series is random, what kind of randomness 
is it? Cleanly answering these questions is clearly more than distinguishing chaos from noise. 
More importantly, under this rationale, chaos and random fractal theory are allowed to play 
fundamental roles simultaneously: chaos and random fractals may be relevant to the problem 
under study on different length scales. Underlying this rationale is the recognition of a fun-
damental concept, multiscale – depending upon the scale at which the signals are examined, 
they may exhibit different behaviors (e.g., nonlinearity, sensitive dependence on small dis-
turbances, long memory, extreme variations, and nonstationarity), just as a great painting 
may exhibit various details and arouse a multitude of aesthetic feelings when appreciated at 
different distances, from different angles, under different illuminations, and under different 
moods. 

Hoping to characterize a complex time series on a broad range of scales simultaneously, 
recently, a new multiscale complexity measure, the scale-dependent Lyapunov exponent 
(SDLE), has been developed. SDLE was first introduced in (Gao et al., 2006c; Gao et al., 
2007), and has been further developed in (Gao et al., 2009; Gao et al., 2012b) and applied to 
characterize EEG (Gao et al., 2011c), HRV (Hu et al., 2009a; Hu et al., 2010), financial 
time series (Gao et al., 2011a), and Earth's geodynamo (Ryan et al., 2008). 

SDLE is a concept derived from a high-dimensional phase space. Assume that all that is 
known is a scalar time series  [ ] (1), (2),..., ( )x n x x x n . How can we obtain a phase space? 
This can be achieved by the time delay embedding technique (Packard et al., 1980; Takens 
et al., 1981; Saue et al., 1991). This technique is perhaps the most significant contribution of 
chaos theory to practical data analysis, since non-trivial dynamical systems usually involve 
many state variables, and therefore, have to be described by a high-dimensional state (or 
phase) space. The embedding technique consists of creating vectors of the form: 

 
        , , ..., 1 , 1, ..., 1i pV x i x i L x i m L i N n m L                (12) 

where the embedding dimension m and the delay time L are chosen according to certain op-
timization criteria (Gao et al., 2007). Specifically, L alone may be determined by computing 
the first zero of the autocorrelation or the first minimal point of mutual information (Fraser 
et al., 1986), while joint determination of m and L may be achieved using false nearest 



GAO Jianbo et al.: Analyses of geographical observations in the Heihe River Basin 1455 

 

 

neighbor method (Liebert et al., 1991; Kennel et al., 1992) which is a static geometrical 
method, or time-dependent exponent method (Gao et al., 1993; Gao et al., 1994), which is a 
dynamical method. Note that when the time series is random, the embedding procedure 
transforms the self-affine (i.e. x and t have to be stretched differently in order to make the 
curve look “similar”, since the units for x and t are different) stochastic process into a 
self-similar (i.e. part of the curve in the high-dimensional space looks similar to another part 
or the whole when it is magnified or shrunk, since all the axes have the same unit) process in 
phase space. In this case, the specific value of m is not important, so long as m > 1. 

After a proper phase space is re-constructed, we consider an ensemble of trajectories. We 
denote the initial separation between two nearby trajectories by ε0, and their average sepa-
ration at time t and t t  by εt and ,t t   respectively. The trajectory separation is 
schematically shown in Figure 9. We can then examine the relation between εt and  ,t t   
where   t  is small. When  0,t   we have, 

   
   e ,t t

t t t
  

     (13)  
where )( t   is the SDLE given by  

 
   ln ln 

 
t t t

t t
 

   


  
(14)

 
Equivalently, we can express this as, 

 
 ( ) .t

t t t
d

td
 



 
 (15)  

Note that the classic algorithm of computing the Lyapunov exponent λ1 (Wolf et al., 1985) 
amounts to assuming 1

0~ e t
t

   and estimating λ1 by 0(ln ln ) /t t  . Depending on ε0, 

this may not be the case even for truly chaotic systems, since t t  could in fact be smaller 

than εt. A greater difficulty with the classical assumption is that for any type of noise, 1  
can always be greater than 0, leading to misclassifying noise as chaos. This is because εt will 
be closer to the most probable separation so long as ε0 is small (for a more quantitative dis-
cussion of this issue, see (Gao et al., 1994)). On the other hand, Eq. (13) does not involve 
any assumptions, except that t  is small. As we will see, chaos amounts to λ(ε) being al-
most constant over a range of ε. 

To compute SDLE, we first determine pairs of vector  (V ,V )i j  defined by Eq. (12) which 

satisfy the following Inequality,  

  V V ,  1,2,3, ,k i j k k k      ≤ ≤  (16) 

where  k and  k are arbitrarily chosen small distances. Geometrically, Inequality (16) de-
fines a high-dimensional shell (which reduces to a ball with radius k  when ;k  in a 

2-D plane, a ball is a circle described by 2 2 2 (( ) )x a y b r     where (a, b) is the center 
of the circle, and r is the radius). We then monitor the evolution of all such vector pairs (Vi, 
Vj) within a shell and take the ensemble average over indices i and j. Since we are most in-
terested in exponential or power-law functions, we assume that taking logarithm and aver-
aging can be exchanged, then Eq. (14) can be written as  
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        ln V V ln V V
λ  i t t j t t i t j t

t t
       




  
  (17) 

where t and t  are integers in units of the sampling time, the angle brackets denote the 
average over indices i, j within a shell. 

Readers interested in the actual code for computing SDLE are referred to (Gao et al., 
2012c). Here, we summarize the distinct scaling laws of SDLE for the major models of 
complex data (Gao et al., 2006c): 
 For deterministic chaos, 
 ( ) ~ constant;  (18) 
 For noisy chaos and noise-induced chaos (Gao et al., 1999a; Gao et al., 1999b), on 

small scales, 
 ( ) ln ,    (19) 

where   determines the speed of loss of information; 

 For 2 11 / Hf   processes, 

 1/( ) ~ ,HH   (20) 
 For  -stable Levy processes, 

 1( ) ~ ;


    (21) 

 For stochastic oscillations, both ( ) ~    and 1/( )~ HH    may be observed, de-
pending upon which embedding parameters are used;  

 For complex motions with multiple scaling behaviors, all the above scaling laws may 
be observed on different   ranges; 

The last property has many interesting consequences. For example, it can readily charac-
terize intermittent chaos, which consists of alternating regular and chaotic motions (Gao et 
al., 2012). In fact, this is the only method that is capable of characterizing intermittent chaos. 
It can also readily characterize fractal behavior mixed by periodic motions (Gao et al., 2012). 
Overall, with these scaling laws, clearly, distinguishing chaos from noise is no longer a 
problem. More importantly, these scaling laws uncover the nature of each type of models 
neatly. As an important application, we consider river flow dynamics, which are highly 
complicated, as a result of multiscale interactions between weather and climatic inputs of 
tremendous variability and heterogeneities in landscape properties. While efforts made in 
the last two decades have led to many important understandings of river flow dynamics, 
such as non-Gaussian (Domenico et al., 2011), heavy-tailed distributions of discharges 
(Anderson et al., 2011), and log-normal distributions (Bowers et al., 2012), fractal and mul-
tifractal scaling of streamflow data (Tessieret et al., 1996), increase of dimensionality (or 
complexity) of the flow dynamics with the scale of aggregation (Islam et al., 2002), and 
chaos-like behaviors (Sivakumar et al., 2004; Wang et al., 2006). A definitive answer to the 
nature of river flow dynamics is still lacking. Here, we ask whether the debate on whether 
river flow dynamics are chaotic or not can be unambiguously resolved. In researching into 
these issues, we have found that intermittent chaos (Pomeau et al., 1980) provides an effec-
tive framework to resolve this issue. 

To understand the meaning of intermittency, let us consider the dynamics of a river flow 
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in a certain time period (e.g., 1 year), where the time period can be partitioned into two pe-
riods, wet (e.g., rainy and snow melting) and dry. Clearly, the dynamics of the river in the 
wet regime will be highly complicated and different from that of the dry regime. This con-
sideration implies that the chaotic nature of river flow dynamics cannot be detected by stan-
dard methods in chaos theory, since all classic methods for detecting chaos require the same 
dynamics in both wet and dry regimes.  

The multiscale complexity measure SDLE is very capable of detecting intermittent chaos. 
One example is shown in Figure 9, for the Colorado River. Clearly, we observe exponential 
divergence (i.e., linear ln ( )t  vs. t for t from about 20 days to about 100–150 days). This 
exponential divergence gives rise to the well-defined plateaus of SDLE shown in Figure 9b 
(blue curves). We also note that on small scales, SDLE increases with decreasing   ac-
cording to Eq. (19). They correspond to the initial faster-than-exponential growth portion of 
the blue curves shown in Figure 9a, lasting for a time scale of less than 20 days. Such dy-
namics are due to stochasticity driven by snow melting, rain, etc., as well as ubiquitous 
measurement noise. Note that both the chaotic and the noisy dynamics shown in Figure 9 as 
blue curves can be improved, if we apply the adaptive algorithm discussed earlier. The re-
sults after denoising are shown as red curves in Figure 9. 

 

 

 
 

Figure 9  Detecting chaos in the Colorado River flow data: (a): error growth curves; (b): SDLE curves. The blue 
(solid) and red (dashed) curves are for the original and denoised data, respectively. Here, embedding parameters 
are m=6, L=3, and different curves are based on a few different shells described by Eq. (16). Except at the initial 
stage in the error growth curves, they collapse on each other. 
 

 

Finally, we examine the physical meaning of λ( )  in the context of ensemble forecasting 
(Evensen, 1994; Evensen et al., 2007; Miller et al., 2007; Liu et al., 2017). First, we note 
that 1 / λ( )  is closely related to the error doubling time Tdb (Lorenz, 1995). More precisely, 
using Eq. (15), we have 

  0
0

ln ln   λ d
t

t t t     (22) 

The above equation readily gives the error growth curve ,t  whose main part is given by 

 
0

λ d

e

t

t t
. Letting 0T 2t db  , we find the error doubling time Tdb given by 
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As the first approximation, we may consider 1/ λ( )  to be proportional to the doubling time. 
Mintz (1965) for the first time estimated the doubling time to be 5 days in the Mintz-   
Arakawa two-layer model. With the reduction in the initial uncertainties, it was hoped that 
the doubling time would increase when model complexity increases and more detailed 
physical processes are accounted for. However, the opposite has been observed. For exam-
ple, a recent estimate of the doubling time with the ECMWF model is less than 2 days, a 
recent estimate of the doubling time with the ECMWF model is less than 2 days (Simmons 
et al., 2002). Lorenz (1995) suggests that the major factor for the decrease in the doubling 
time has been the increase in resolution, introducing into the system finer-scale errors that 
amplify more rapidly than those at the coarser scales. Although spatial resolution is not 
equivalent to the scale ε discussed here, they are nevertheless closely related. Therefore, the 
estimates of the doubling times reported so far strongly suggest that scalings described by 
Eqs. (19) and (20) are more relevant to reality. 

SDLE analysis has been applied to analyze wind speed, air temperature, soil moisture and 
soil temperature measured at the HRB. Unfortunately, no chaos has been found in these 
variables. In future, it would be interesting to systematically explore which variables meas-
ured in the Heihe River Basin can be truly chaotic.  

5  Conclusions 
With the rapid accumulation of geophysical and ecological data, it has become increasingly 
important to find effective methods to comprehensively characterize all the available data. 
With this general goal and a particular goal of maximally understand the geophysical and 
ecological data collected in the HRB, we have advocated a complexity theory based per-
spective. Specifically, we have presented an adaptive multiscale filter, which can readily 
determine arbitrary trends, maximally reduce noise, and reliably perform fractal and multi-
fractal analysis, and presented SDLE, which can not only reliably distinguish deterministic 
chaos from random processes, but also obtain the defining parameters of the process exam-
ined. We have illustrated the adaptive filter by applying it to obtain the global warming 
trend and the Atlantic multidecadal oscillation from sea surface temperature data, and by 
applying it to some variables collected at the HRB to determine diurnal cycle and fractal 
properties. We have also applied the SDLE to determine intermittent chaos from river flow 
data. Finally, SDLE has been applied to analyze wind speed, air temperature, soil moisture 
and soil temperature measured in the HRB. Unfortunately, no chaos has been found in these 
variables. In future, it would be interesting to systematically explore which variables meas-
ured in the Heihe River Basin can be truly chaotic. 
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