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Abstract: A model integrating geo-information and self-organizing map (SOM) for exploring 
the database of soil environmental surveys was established. The dataset of 5 heavy metals 
(As, Cd, Cr, Hg, and Pb) was built by the regular grid sampling in Hechi, Guangxi Zhuang 
Autonomous Region in southern China. Auxiliary datasets were collected throughout the 
study area to help interpret the potential causes of pollution. The main findings are as follows: 
(1) Soil samples of 5 elements exhibited strong variation and high skewness. High pollution 
risk existed in the case study area, especially Hg and Cd. (2) As and Pb had a similar topo-
logical distribution pattern, meaning they behaved similarly in the soil environment. Cr had 
behaviours in soil different from those of the other 4 elements. (3) From the U-matrix of SOM 
networks, 3 levels of SEQ were identified, and 11 high risk areas of soil heavy 
metal-contaminated were found throughout the study area, which were basically near rivers, 
factories, and ore zones. (4) The variations of contamination index (CI) followed the trend of 
construction land (1.353) > forestland (1.267) > cropland (1.175) > grassland (1.056), which 
suggest that decision makers should focus more on the problem of soil pollution surrounding 
industrial and mining enterprises and farmland. 
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1  Introduction 
The heavy metal contamination of soil is one of the most pressing problems in China (Kong, 
2014) and other countries (Tóth et al., 2016) because of its huge recovery cost. Detailed in-
formation about the spatial distribution of the regional soil environmental quality (SEQ) and 
pollution risks of heavy metals can provide fundamental information for regional environ-
mental planning and environmental management. However, it is difficult to comprehensively 
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assess SEQ for two reasons (Guan et al., 2016). One is for strong spatial variations of heavy 
metal content and other physical and chemical properties (Cai et al., 2010). This spatial 
variation is difficult to accurately simulate using a specific mathematical model (Bação et al., 
2004). The other is for complex causes of soil pollution. The soil heavy metal content is af-
fected not only by natural factors (such as parent material, climate, and topography) but also 
anthropogenic factors (such as soil waste accumulation, pesticide and fertilizer use), and 
these factors contribute to the contamination level in different ways. When the existing SEQ 
assessment methods were reviewed, certain classical methods, like the Nemerow pollution 
index (Jaffar et al., 2017) and the geo-accumulation index (Dotaniya et al., 2017), were 
found to be commonly used. The geostatistical approach (Pan et al., 2016) and sandwich 
model (Wang et al., 2013; Li et al., 2016) were also adopted in recent research on assessing 
SEQ in response to heavy metals. In most of these methods, evaluators had to specify regu-
lated values (such as Cd of 0.2 mg·kg1 for the Chinese standard) and threshold values (for 
the Nemerow pollution index, P<1 indicates the soil is pollution free, 1<P<2 indicates 
lightly polluted soil, 2<P<3 indicates the pollution is intermediate, and P>3 indicates the 
pollution is severe) for the evaluation indexes. Therefore, the SEQ results were significantly 
influenced by subjective factors. 

Artificial neural networks (ANNs) are considered dependable and efficient method for 
solving the problems of strong spatial variations, complex causes of soil pollution, and sub-
jectivity. ANNs can successfully address the non-linearity of systems and exhibit the fea-
tures of self-learning and self-adaptiveness. ANNs began to be applied to SEQ assessment in 
the early 21st century to classify soil textures and soil physical properties (Cockx et al., 
2009; Chang et al., 2000), predict non-point source pollution (Muleta et al., 2005) and soil 
salinization (Patel et al., 2007), and assess soil organic carbon (Somaratne et al., 2005). 
Back-propagation (BP) neural networks, radial basis function (RBF) neural networks and 
self-organizing map (SOM) neural networks are the most common ANN algorithms used in 
soil quality assessment. BP neural networks have been adopted to simulate the spatial dis-
tribution of soil pollutants (Li et al., 2011; Zhou et al., 2015) and to estimate heavy metal 
sorption and transportation (Bogusław et al., 2006; Anagu et al., 2009). RBF neural net-
works have also been used to assess spatial variation and contamination levels of soil heavy 
metals (Sakizadeh et al., 2016). SOM, also known as Kohonen networks, were proposed by 
Teuvo Kohonen (Kohonen, 1982). SOM outperforms other neural network methods in 
self-learning, visual interpretation, dimensionality reduction, and non-linear analysis. SOM 
is an unsupervised neural network algorithm (Kohonen et al., 2002) where the clustering 
results are objectively produced by the adaptive learning network without intervention. SOM 
neural networks enable the visualization of information and clusters of the soil heavy metal 
contents by mapping multi-dimensional data onto a 2-dimensional output space. Therefore, 
SOM has the function of compressing multi-dimensional information and preserves the most 
important topological and metric relationships of these data elements. The topological and 
metric relationships are very important to the interpretation of clustering results. 

To date, a few studies on environmental quality assessment in sediment, water, or soil 
caused by heavy metals have combined SOM neural networks with other methods. When 
principal components analysis (PCA), cluster analysis (CA) and SOM were applied to a 
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large environmental data set of chemical indicators of river water quality, Astel et al. (2007) 
found that SOM clustering allowed the simultaneous observation of both spatial and tempo-
ral changes in water quality. Alvarez-guerra et al. (2008) assessed the feasibility of applying 
SOM for the classification of sediment quality and compared it with PCA and hierarchical 
cluster analysis (HCA). The results demonstrated that the powerful visualization tool of the 
SOM offered more information that was more easily accessible than that provided by HCA 
or PCA. Olawoyin et al. (2013) explored the capability of applying SOM neural networks to 
environmental quality assessment in an oil-contaminated area, focusing on the classification, 
interpretation and visualization of water, soil and sediment data. Rivera et al. (2015) applied 
the SOM method as an exploratory technique to interpret an unlabelled soil quality database; 
the findings indicated that the ability of the SOM to visualize multi-dimensional datasets 
provided insight into the data in the exploratory phase and provided a perspective for re-
searchers to discover patterns from multi-dimensional data by using low-dimensional data. 

However, these studies did not consider the geo-information of soil samples when using 
SOM. Geo-information could provide intuitive assessment results for decision makers. Re-
searches (Yang et al., 2014; Huang et al., 2017) have indicated that deep data mining is pos-
sible when SOM and geo-information are combined. Wang et al. (2015) assessed the spatial 
characteristics of heavy metal-contaminated sediment to determine the contaminated hot-
spots by using SOM and factor analysis (FA). In the present study, a model for SEQ assess-
ment is established in which the geo-information and SOM are integrated to cluster, interpret 
and visualize a large, high-dimensional environmental dataset of soil heavy metals. This 
research may provide important guidance for the assessment of SEQ and provide an ap-
proach to explore the potential causes of risk in areas with highly susceptible soils. 

2  Materials and methods 

2.1  Soil sampling 

The study area is located in Hechi, Guangxi Zhuang Autonomous Region, in southern China, 
and the total sampling area is 13,464 km2. This area belongs to the circum-Pacific polymet-
allic metallogenic belt with abundant mineral resources such as tin, lead, zinc, mercury, an-
timony, and arsenic. There are at least 100 enterprises that discharge pollutants in the sam-
pling area, including smelting enterprises, mining and mineral processing enterprises, and 
chemical raw materials processing enterprises. The topography of the study area is higher in 
the northwest and lower in the southeast, and the elevation is between 86 and 1688 m. 
Regular grids were adopted to the sampling scheme with a grid size of 5 km. Considering 
the transportation conditions and the topography, the sampling points within each grid were 
selected on flat terrain and were far from major roads. At least one soil sample was collected 
in each grid only when the place of this grid is inaccessible. A total of 513 samples were 
taken from the topsoil (a depth of 0–20 cm) in the first half of 2013 (Figure 1). 

All soil samples were air dried and crushed and then sub-divided into two portions. Por-
tion one was sieved through a 20-mesh nylon screen for the analysis of soil physicochemical 
properties. Another portion was passed through a 200-mesh nylon sieve prior to the microwave 
digestion procedure to determine the contents of heavy metals. To determine the contents of 
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Figure 1  Soil sampling in Hechi, Guangxi Zhuang Autonomous Region in southern China 
 
5 heavy metal elements (As, Cd, Cr, Hg and Pb) in the soils, 0.200 g of each soil sample was 
transferred to suitably inert polymeric microwave vessels using an acid mixture of 9 ml 
HNO3 and 3 ml HF (USEPA, 3052). The content of each element was determined by atomic 
fluorescence spectrometry (As, Hg), graphite furnace atomic absorption spectrophotometry 
(Cd, Pb) and flame atomic absorption spectrophotometry (Cr). In addition, the dataset of 
land-use was provided by the Data Center for Resources and Environmental Sciences, Chi-
nese Academy of Sciences (RESDC) (http://www.resdc.cn) published in 2015. The area of 
cropland is approximately 1631.88 km2, which constitutes 12.20% of the study area; forest-
land constitutes 71.7%, grassland 16.27%, and construction land 0.47%. 

2.2  Principle of the SOM network 

The SOM network construction comprises an input layer and an output layer. The input layer 
is composed of multi-dimensional data that can be defined as a matrix Qs×p with p columns 
(5 heavy metals) and s rows (513 soil samples). Each neuron from the output layer has a 
1-dimensional, 2-dimensional or multi-dimensional grid form, and the common output is the 
2-dimensional topologic structure of a regular hexagonal grid. The neighbouring neurons in 
the output layer are interconnected and have topologic structures. Two adjacent neurons, Yj 
and Yj+1, are associated with a weight vector (or codebook vector). The neurons Xi in the 
input layer and Yj in the output layer have a weighted interconnection. The relationship of 
this interconnection in the SOM model can be described as follows (Equation (1)): 
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where the weight vector wij represents the strength of these interconnections, f(.) is the acti-
vation function, and θ is constant. 

The second version of the SOM Toolbox for MATLAB® R2012b developed by Juha Ve-
santo et al. from the University of Helsinki (SOM tool, http://www.cis.hut.fi/ projects/ som-
toolbox) was used to implement the SOMs. The SOM tool implemented an ordered dimen-
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sionality-reducing mapping of the training data, i.e., the tool provided a projection of the 
multi-dimensional data into a 2-dimensional map preserving the topology of the input data 
space. The training process of the SOM tool involved a competitive learning algorithm that 
included 6 steps (Kohonen et al., 2002): 1) Variables including the weight vector ˆ

jW  in the 

output layer, the winner constraint Nj*(0), and the learning rate (t) are initialized in the first 
step. 2) Then, input data and weight vector normalization, such as logarithmic transforma-
tion, range normalization, mean standard deviation normalization, and histogram equaliza-
tion normalization, is performed. 3) A search is conducted for the winning neuron. When an 
input vector enters the SOM network, neurons in the output layer (or competition layer) are 
computed to obtain a winner neuron (or best matching unit, BMU) and then to excite it. Si-
multaneously, all other neurons will be unexcited. 4) All the excited neurons are updated, 
and the weight vector is adjusted. 5) The learning rate (t) and winner constraint Nj*(0) are 
adjusted. During the learning process, the winner constraint Nj* (t) will decrease, so does the 
learning rate(t). 6) After further learning, all the elements in the weight vector are sepa-
rated from each other to represent a respective category in input space. This process contin-
ues unless the limited value meets the default value. 

There are two common forms to visualize SOM networks in the SOM tool. One is the 
U-matrix (unified distance matrix, see Figure 4). The U-matrix displays the distance struc-
tures of different map units using a colour ramp in a 2-dimensional array of neurons, which 
maintains the topology and allows the identification of the clusters, boundaries and repre-
sentative neurons. Clusters are map units that have smaller distances (cold colours), and 
borders between clusters have larger distances (warm colours). Another form is C-Planes 
(Component planes, see Figure 4). The C-Planes can represent both the distributions of the 
component values (elements of 5 heavy metals) and direct visual examination of the correla-
tions between several component planes or the contribution to the clustering result. In the 
present study, every element corresponds to a component and is distinguished using different 
colours. If two components have a consensus pattern in space, they may be correlative or 
have closer pollution behaviours. The SOM tool also provides other visualization functions, 
such as hit maps and name labelling. 

2.3  Geo-SOM procedures 

As Figure 2 shows, the procedures for exploring the spatial database of the soil environ-
mental survey consist of preliminary data statistics to describe the data quality and deep data 
mining combining SOM and geo-information to assess SEQ, the pollutant behaviours, and 
potential causes of the SEQ. Before the exploration, a spatial database of soil environmental 
survey was established and it included soil samples of 5 pollutants, land-use data, a distribu-
tion map of tailing ponds, a distribution map of chemical factories, the Chinese SEQ stan-
dard, and a hydrogeology map. The datasets of soil heavy metals were processed and ana-
lysed using PASW Statistics® 18.0 software, including mean, standard deviation, skewness 
and kurtosis. An SOM neural network was built to cluster the soil samples and then convert 
them into different pollutant levels. Additionally, we compared the SOM model and the re-
sults from the Nemerow pollution index based on the same set of soil samples. Within the 
SOM model, a vector including 5 elements constituted the input data space, and the output 
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was a 2-dimensional clustering result. The SEQ results could be visualized by geo-infor-
mation based on the GPS coordinate of every sample; then, inferences could be made by 
combining with other information. 
 

 
 
Figure 2  Flowchart of G-SOM for exploring the spatial database of the soil environmental survey 
 

The pollution factor (Pi) quantifies the pollution of one single heavy metal, Pi = Ci / Bi, 
where Ci is the concentration of the measured pollutant, and Bi is the regulated value, which 
allows the levels of the different heavy metals to be determined. 

The Nemerow pollution index (PI) (Nemerow, 1974) assesses soil quality based on the 
degree of pollution of various heavy metals and considering the pollution factor, as defined 
by the following equation (Equation 2): 
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dex of point i, and ‘n’ is the count of points at each contamination level. 
The contamination index (CI) for the evaluation of land-use types on SEQ was defined as 

the following equation (Equation 3): 

 
3

1
/j i ij j

i
CI Q P S



     (3) 

where Qi is the level of SEQ (i = 1, 2, 3), Pij is the count of soil quality ranking i to land-use 
j (j = 1, 2, 3, 4), and Sj is a sum of samples with land-use j. 

3  Results and discussion 

3.1  Preliminary exploration 

Table 1 lists the descriptive statistics of soil samples including 5 heavy metals. The contents 
of soil heavy metals are characterized by high variation according to their standard devia-
tions (192.39 mg·kg1 for Pb and 94.86 mg·kg1 for As) and high coefficients of variation 
(351% for As, 280% for Cd, and 250% for Pb), which means that the elements exhibited 
strong variation in the sampling area. The skewness ranges from 2.25 to 16.03, and the kur-
tosis ranges from 9.83 to 297.07. The skewness and the kurtosis are both greater than zero, 
which means that the samples are high skewness. According to the Chinese standard in soil, 
the samples that exceeded the standard values for As, Cd, Cr, Hg and Pb among 513 samples 
account for 42.69%, 51.85%, 21.25%, 73.88%, and 62.00% of the total samples, respectively. 
This high Hg content may be related to the regional parent material and pedogenic factors. 
 

Table 1  Sample data statistics in Hechi region 

Elements Mean 
(mg·kg1)

Standard deviation
(mg·kg1) 

Variation 
coefficient (%) Skewness Kurtosis Chinese stan-

dard (mg·kg1) 
Exceeding  
rate (%) 

As 27.05 94.86 351 16.03 297.07 15 42.69 

Cd 1.47 4.11 280 9.15 123.09 0.2 51.85 

Cr 68.27 56.86 83 2.25 9.83 90 21.25 

Hg 0.48 0.72 150 5.20 39.84 0.15 73.88 

Pb 76.06 192.39 250 8.50 84.73 35 62.00 
 

The Nemerow pollution index map (Figure 3a) and single-factor index maps (Figures 
3b-3f) of As, Cd, Cr, Hg, and Pb were calculated based on the regulated values of 15, 0.2, 90, 
0.15, and 35 mg·kg1, respectively. The pollution scale of level 1 (PI<1), level 2 (1<PI<3), 
and level 3 (PI>3) was displayed in geo-information software using threshold values. A deep 
red colour (level 3) on the map indicates serious pollution, and a light green colour (level 1) 
represents a pollution free area. Overall, large areas of the sampling area shown in Figure 3a 
exceed the regulated value. From the perspective of a single-factor index, Hg and Cd are 
more serious than As, Cr and Pb, and are the main contributors to the Nemerow pollution 
index result. The results of the Nemerow pollution index map (Figure 3a) exhibit a similar 
spatial pattern to the Hg single-factor index map (Figure 3e). According to the definition of 
Nemerow, a defect of this method is that it will amplify the effect of heavily polluted ele-
ments, such as the Cd element in our study area, and weaken the lightly polluted elements 
such as Cr. Therefore, detailed pollution information will be lost in the Nemerow pollution 
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index map. In addition, the regulated values of the 5 heavy metals range from 0.15 to 90. 
Higher regulated values significantly reduce the results of the Nemerow pollution index, and 
in contrast, lower regulated values elevate the effects. In conclusion, the Nemerow pollution 
index map incorporates more information for Hg and Cd, which have relatively lower regu-
lated values and severe pollution levels under the current grading systems, and less informa-
tion for other elements. 

 

 
 

Figure 3  Spatial patterns of soil heavy metal pollution of the Nemerow pollution index map (a), and sin-
gle-factor index maps of As (b), Cd (c), Cr (d), Hg (e), and Pb (f), respectively 

3.2  Data mining with combined SOM and geo-information 

3.2.1  Input data normalization 
For the SOM tool, map size determination (the number of neurons, including its rows and 
columns) is an important feature. If the map is too small, it might not sufficiently represent 
detailed differences; if the map is too large (the number of map units is much larger than the 
number of samples), no new differences will be revealed, and the SOM might even be over-
fitted. In this study, the number of output neurons was set using Vesanto’s rule (Vesanto, 



1618  Journal of Geographical Sciences 

 

2002), which defines the optimal number of neurons as 5 s , where s is the number of sam-
ples. In addition, the rows and columns were evaluated using two measures as criteria – the 
quantization error (QE) and the topographic error (TE) – and the optimum map size was 
chosen based on the minimum QE and TE. Given that the training algorithm uses Euclidean 
distances, data must be normalized before training to avoid distortion in the results. The 
SOM tool provided three normalization methods: ‘Var’, which normalizes the variance of 
each variable to unity and its mean to zero; ‘Range’, which scales the variable values be-
tween 0 and 1 with a linear transformation; and ‘Log’, which is a logarithmic transformation. 
The results of QE and TE for the three normalization methods and different map sizes (ref-
erence to Vesanto’s rule) are summarized in Table 2. The lowest values of QE (0.04) and TE 
(0.06) were clearly obtained using ‘Range’ normalization. Therefore, focusing on the results 
of ‘Range’ normalization, a 104-unit map (13×8) was selected as the best compromise be-
tween the lowest QE and TE values and with the number of neurons close to the number 
calculated according to Vesanto’s rule. 
 

Table 2  Summary of SOM quality measures 

Variable Log Range 
Rows Columns Map size 

QE TE QE TE QE TE 

11 8 88 0.47 0.02 0.62 0.03 0.04 0.11 

12 8 96 0.46 0.01 0.60 0.02 0.04 0.11 

11 9 99 0.45 0.02 0.60 0.04 0.04 0.15 

*13 *8 *104 0.45 0.03 0.59 0.03 *0.04 *0.06 

12 9 108 0.44 0.02 0.58 0.04 0.04 0.12 

11 10 110 0.44 0.03 0.58 0.04 0.04 0.18 

13 9 117 0.43 0.02 0.57 0.04 0.04 0.08 

12 10 120 0.43 0.02 0.56 0.04 0.04 0.14 

11 11 121 0.42 0.03 0.56 0.03 0.04 0.17 

13 10 130 0.42 0.02 0.55 0.03 0.03 0.14 

12 11 132 0.42 0.02 0.55 0.03 0.03 0.18 

13 11 143 0.41 0.02 0.54 0.03 0.03 0.15 
 

3.2.2  SOM clustering 
The U-matrix (Figure 4), as presented in the SOM output, provides the visualization of the 
relative distances between the neurons. Colour differential is effectively used to show the 
calculated distance differences between adjacent neurons. A deep blue colour on the 
U-matrix indicates the closeness of the vectors in the input data space, and darker red col-
ours represent greater distances between vector values in the input data space. From the 
U-matrix, 3 clustering areas can be clearly distinguished, including the higher value area in 
the bottom right corner with darker red colours, the intermediate value area in the bottom 
left corner with intermediate colours, and the lower value area in the top area with deep blue 
colours. Nadal et al. (2004) used the C-Planes of the SOM networks to display the metal 
composition of each visual unit and found that certain pollutants may exhibit a similar be-
haviour. The C-Planes of As and Pb (Figure 4) display similar topological distribution pat-
terns above the bottom right corner, which means that these elements behaved similarly in 
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the higher value area. A similar trend is seen in the spatial pattern of As and Pb in Figure 3. 
Compared with the other 4 elements, Cr has distinct differences in topological distribution 
patterns. The higher value area of Cr is distributed in the bottom left corner of the C-Planes, 
which suggests that Cr may have behaviours in soil different from those of the other 4 ele-
ments. In Figure 3, the single-factor index map of Cr shows that large areas of the sampling 
area are pollution free and that the spatial pattern is obviously different from those of the 
other 4 elements. 
 

 
Figure 4  U-matrix of SOM and C-Planes for the five heavy metals (As, Cd, Cr, Hg, and Pb) 
 

Similar patterns are combined with neighbouring regions in the clustering results of the 
SOM output network, whereas dissimilar patterns are located further apart. This process is 
unsupervised based on competitive learning and is thus referred to as self-organizing. In this 
study, the size of the dataset used in training was 513 soil sampling locations multiplied by 5 
elements. After self-organized clustering, the input data were projected onto a 2-dimensional 
network (Figure 5) and symbolized by a colour ramp. Figure 5a shows that the entire output 
space is subdivided into 3 categories, including 413 samples of class 1 in the top part (lower 
value area), 84 samples of class 2 in the bottom left corner (intermediate value area), and 16 
samples of class 3 in the bottom right corner (higher value area). Figure 5b represents the 
count of neuronal BMU for every category; the size of the blue regular hexagon corresponds 
to the number of winner neurons. The contribution of each element to the clustering results 
was computed based on Figure 5b and the SOM C-Planes (Figure 4). The concentrations of 
the 5 elements are both lower within class 1, and the contribution rates are basically not dif-
ferent. As the C-Planes of the SOM networks showed, Cr is characterized by the highest 
contribution of class 2, followed by Cd. This effect could not be observed from the Ne-
merow method because of its lack of a detailed description. The contribution of class 3 is 
mainly from Hg, Pb, and Cd, with small percentages of As and Cr. This conclusion is con-
firmed by the Nemerow pollution index map in Figure 3. 
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Figure 5  Results of SOM clustering of the categories map of the entire output space (a), and the map of neu-
ronal BMU (b) 
 

In order to test the statistical significance of the SOM clustering, spatial stratified hetero-
geneity q statistic, proposed by Wang Jinfeng (Wang et al. 2016), was adopted. The value of 
q ∈[0,1]. If q = 1, it indicates that the result is clustering perfectly, and the small the q 
value is, the poor the clustering becomes. The q value of As, Cd, Cr, Hg, Pb were 0.85, 0.73, 
0.76, 0.89, 0.88 respectively and the p value less than 0.05, which means the results of our 
clustering is statistical significance. 

3.2.3  Assessment of SEQ 
The SOM is capable of unsupervised competitive learning for the assessment of SEQ, and 
the regulated value is thus not necessary. The SOM can be used in exploring the database of 
soil environmental surveys when the evaluation criterion is unknown or not suitable. As Ta-
ble 3 shows, class 1 (413 samples) within the lower value area is determined as level 1 (SEQ 
is good), class 2 (84 samples) within the intermediate value area is determined as level 2 
(SEQ is medium level), and class 3 (16 samples) within the higher value area is determined 
as level 3 (SEQ is poor). The Nemerow pollution index of the 5 soil heavy metals for the 3 
categories was also computed based on the Chinese SEQ standards in contrast with its wide 
application to reflect the total pollution level. Results of the Nemerow pollution index show 
that the mean Nemerow levels PI  of class 1, class 2, and class 3 in 513 samples are 2.85, 
15.18, and 49.76, respectively. This result is consistent with the SOM clustering. The same 
conclusion can also be drawn from the U-matrix map. The mean contents of As, Cd, Pb, and 
Hg correspond to the tendency that level 3 > level 2 > level 1, except that the Cr of level 2 
(169.10 mg·kg1) > level 3 (86.88 mg·kg1) > level 1 (47.10 mg·kg1). This tendency could 
further explain why, compared with the other 4 elements, Cr exhibits different spatial pat-
terns in soil. 
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Table 3  Classification statistics of SOM clusters 

Mean content of elements (mg·kg1) 
SEQ 

As Cd Cr Hg Pb 
Counts PI  

Level 1 16.74 0.46 47.1 0.33 47.24 413 2.85 

Level 2 27.52 3.94 169.1 0.66 69.17 84 15.18 

Level 3 290.04 8.9 86.88 3.29 782.23 16 49.76 
 

3.2.4  Exploring causes of high-risk areas 
All classified samples combined with GPS coordinate information using the spatial join tool 
in geo-information software were reported by a grid unit for 4 regions (Nandan, Huanjiang, 
Jingchengjiang, and Luocheng) (Figure 6). As Figure 6 shows, level 1 (light green) repre-
sents good soil quality or light pollution, level 3 (dark-red) represents poor soil quality or 
severe pollution, and level 2 (orange) is between levels 1 and 3. Overall, the SEQ is good 
(level 1) across most of the sampling area. The area of poor soil quality (level 3) is distrib-
uted in the surrounding rivers and mining areas. 
 

 
 

Figure 6  Spatial distribution of SEQ and 4 categories of high-risk areas of mining areas, flood areas, higher 
natural background value areas and sewage irrigated areas 
 

The pollution factors of the study area can be ascribed to man-made pollution (such as 
wastewater irrigation, wastewater discharge, and tailing pond leakage) and natural causes 
(such as soil parent material, diffusion with floods, and the distribution of the mineralization 
belt). As Figure 6 shows, we identified a few high-risk areas which are classified into 4 
categories based on the pollution factors. The districts A1, A2, A3, A4, A5, A6, and A7 are 
all located in mining areas and these areas have the problem of disordered piles of tailings. 
The study area is characterized by high annual rainfall and concentrated rainfall events, 
which can easily cause flash floods. During flood seasons, the pollutants deposited in river 
sediment discharged from factories or leaked from tailing ponds can be washed into rivers 
and then diffuse into the nearby soil (such as the high-risk areas of B1 and B2). Descriptions 
of tailing pond leakage in areas A1, A2 and A3 were obtained from the literature (Huang et 
al., 2012; Wu, 2015). These 3 regions are characterized by an abrupt change in SEQ from 
level 3 to level 1. Therefore, additional samples are proposed among these areas for further 
investigation (Gao et al., 2017). The high-risk area of C around the borders between 
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Jinchengjiang and Huanjiang is from natural pollution caused by higher natural background 
values affected by the weathering of parent rocks. The high-risk area of D is the low-lying 
farmlands and is mainly caused by sewage irrigation. 

Land-use types comprehensively reflect the effects of human activities and natural envi-
ronmental factors on SEQ. In the present study, the types of land-use data included cropland 
(194 samples), forestland (232 samples), grassland (36 samples), and construction land (51 
samples). Samples of water were not considered, and water bodies were thus eliminated 
from the land-use data. The three levels of SEQ and the corresponding land-use types are 
summarized in Table 4. The variation of contamination index (CI) follows the trend of con-
struction land (1.353) > forestland (1.267) > cropland (1.175) > grassland (1.056), which 
means that construction land has the worst SEQ in the study area. According to the data de-
scription of RESDC, construction land includes urban and rural construction land and indus-
trial and mining land, among others, which suggests that decision makers should focus more 
on the problem of soil pollution surrounding industrial and mining enterprises. The second 
highest CI is for forestland, which may have been caused by the high regional soil environ-
mental background value because our study area is in a mineralization belt. Cropland also 
has a problem of soil pollution that should be considered when formulating policy or envi-
ronmental planning. Soil samples of level 3 account for approximately 5.9% of the total 
samples in construction land types. For grassland, most samples (94.4%) are at level 1, in-
dicating a good SEQ. 

 

Table 4  SEQ for different land-use types published in 2015 

SEQ 
Land-use types 

Level 1 Level 2 Level 3 
Counts CI 

Construction land 36 (70.6%) 12 (23.5%) 3 (5.9%) 51 1.353 

Cropland 167 (86.1%) 20 (10.3%) 7 (3.6%) 194 1.175 

Forestland 176 (75.9%) 50 (21.6%) 6 (2.6%) 232 1.267 

Grassland 34 (94.4%) 2 (5.6%) 0 (0%) 36 1.056 

4  Conclusions 
In this study, a model integrating geo-information and SOM was established and its ability 
of exploring the spatial database of a soil environmental survey was examined by a case 
study in Hechi city, China. The result of preliminary exploration showed that soil samples of 
five elements exhibited strong variation and high skewness. According to the Chinese stan-
dard in soil, the samples that exceeded the standard values for As, Cd, Cr, Hg, and Pb among 
513 samples accounted for 42.69%, 51.85%, 21.25%, 73.88%, and 62.00% of the total sam-
ples, respectively. The Nemerow pollution index map and single-factor index maps indicated 
that high pollution risk existed in the case study area, especially the Hg and Cd, which were 
the main contributors to the Nemerow pollution index result. 

From the U-matrix of SOM networks, 3 clustering areas could be clearly distinguished, 
513 samples were classified into lower value area (413 samples), intermediate value area (84 
samples), and higher value area (16 samples) with the mean Nemerow levels of 2.85, 15.18, 
and 49.76, respectively. The C-Planes of the SOM networks showed that As and Pb had a 
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similar topological distribution pattern, which means that these two elements behave simi-
larly in the soil environment. Cr had distinct differences in topological distribution patterns, 
which suggests that Cr may have behaviours in soil different from those of the other 4 ele-
ments. 

For the deep mining, we identified a few high-risk areas (worse SEQ) and analysed their 
causes combined with other auxiliary information. The severe heavy metal-contaminated 
areas were found near rivers, factories, and ore zones. The pollution factors of the study area 
can be ascribed to man-made pollution (such as wastewater irrigation, wastewater discharge, 
and tailing pond leakage) and natural causes (such as soil parent material, diffusion with 
floods, and the distribution of the mineralization belt). The variation of contamination index 
(CI) follows the trend of construction land (1.353) > forestland (1.267) > cropland (1.175) > 
grassland (1.056), which suggest that decision makers should focus more on the problem of 
soil pollution surrounding industrial and mining enterprises and farmland. 

We compared the SOM model results with results from the Nemerow pollution index. A 
defect of the Nemerow method is that it will amplify the effect of heavily polluted elements, 
especially those elements that have relatively lower regulated values and severe pollution 
levels under the grading systems as well as weak, lightly polluted elements. Therefore, de-
tailed pollution information is lost in a Nemerow pollution index map. However, the SOM 
model can provide a U-matrix and C-Planes to visualize the process of clustering, which 
helps reveal the relations between different elements and their contributions to the final 
clustering. In addition, this model can also reduce the dependency of subjective assessment 
standards and grading thresholds by government or other organizations to objectively and 
accurately reflect the regional SEQ. 
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