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Abstract: Land use patterns arise from interactive processes between the physical environ-
ment and anthropogenic activities. While land use patterns and the associated explanatory 
variables have often been analyzed on the large scale, this study aims to determine the most 
important variables for explaining land use patterns in the 50 km² catchment of the Kielstau, 
Germany, which is dominated by agricultural land use. A set of spatially distributed variables 
including topography, soil properties, socioeconomic variables, and landscape indices are 
exploited to set up logistic regression models for the land use map of 2017 with detailed ag-
ricultural classes. Spatial validation indicates a reasonable performance as the relative oper-
ating characteristic (ROC) ranges between 0.73 and 0.97 for all land use classes except for 
corn (ROC = 0.68). The robustness of the models in time is confirmed by the temporal vali-
dation for which the ROC values are on the same level (maximum deviation 0.1). 
Non-agricultural land use is generally better explained than agricultural land use. The most 
important variables are the share of drained area, distance to protected areas, population 
density, and patch fractal dimension. These variables can either be linked to agriculture or the 
river course of the Kielstau. 
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1  Introduction 
Land use and land cover affect the climate (Foley et al., 2005; Bonan et al., 2012), ecosys-
tem structure (Ramachandran et al., 2018), hydrology and aquatic environment (DeFries and 
Eshleman, 2004), and thus have an impact on the development of the economy and popula-
tion (Lambin and Meyfroidt, 2011). Throughout history, land use and land cover patterns 
have been diversified by urbanization, farmland expansion, and agricultural intensification 
(Lambin et al., 2001; Lawrence et al., 2008; Mustard et al., 2012). European agricultural 
land use has experienced considerable changes in the second half of the last century due to 
transformation in technology, socio-economy, and political management (Rounsevell et al., 
2003). This has brought about considerable discrepancies in land use patterns. Heterogeneity 



Chaogui LEI et al.: Explaining land use patterns in a rural lowland catchment in Germany 1789 

 

 

of land use patterns affects several environmental aspects, such as air quality (Vleeshouwers 
and Verhagen, 2002), the distribution of the main components in the hydrological cycle 
(Neupane and Kumar, 2015), and biological diversity and ecosystem services (Alberti, 2005). 
Moreover, the economic development can be affected (Dissart and Vollet, 2011). Conse-
quently, land use patterns are a multidisciplinary research topic that receives growing atten-
tion (Kok and Veldkamp, 2001; Zhang et al., 2013; Long and Qu, 2018; Ramachandran et 
al., 2018). 

Since land use results from properties of the physical environment and from socio-eco-
nomic development, relationships to biophysical and socio-economic spatially distributed 
variables are used to analyze land use change patterns (Mas et al., 2014; Aquilué et al., 
2017). Relevant variables haven been used in a large number of land use change studies 
(Mitsuda and Ito, 2011). Properties of the environment, accessibility, socio-economic de-
velopment, neighborhood and micro-policy variables are incorporated into statistical analy-
ses like multiple linear regression or logistic regression, to study driving forces of urbaniza-
tion (Deng et al., 2010; Shu et al., 2014). Among these variables, the relative importance of 
accessibility and socio-economic variables for urbanization has been shown (Liu et al., 
2010). In contrast, spatial determinants that influence the location of agricultural land mostly 
relate to soil fertility, climatic patterns, or distance to markets (Mottet et al., 2006; 
Piquer-Rodriguez et al., 2018). These commonly used variables can be categorized as bio-
physical variables (e.g., topography, soil properties, climatic variables) and socio-economic 
variables (e.g., population density, distance to roads or villages, etc.), most of which have 
been used to predict spatial patterns of urban or agricultural land use change 
(Oñate-Valdivieso and Sendra, 2010; Baumann et al., 2011; Yang et al., 2014). Landscape 
metrics (like perimeter-area ratio) that quantify specific spatial characteristics of land 
patches represent land use heterogeneity in space (Inkoom et al., 2018). They manifest land 
use impact gradients (Fernandes et al., 2011), and are applied to land use modeling (Yang et 
al., 2014). Hence, landscape metrics have a potential to explain land use location, consider-
ing bidirectional connections between the land patch configuration and land use dynamics. 
In a particular region, the spatial pattern of one land use type is primarily shaped by a defi-
nite set of variables (van Meijl et al., 2006). The identification of important explanatory 
variables for spatial patterns of all land use classes facilitates a more efficient prediction of 
land use dynamics and allows for a better understanding of the land use system.  

Studies about spatio-temporal characteristics and dynamics of agricultural land mostly 
focus on one lumped agricultural or cropland class (Li and Yeh, 2002; Piquer-Rodriguez et 
al., 2018). This is in part due to the accessibility of coarse agricultural classification data, e.g. 
from agencies (Feranec et al., 2010) or derived from remote sensing data (El-Kawy et al., 
2011), as well as a predominant focus on the large scale (Etter et al., 2006). Several detailed 
classes are only rarely considered, e.g., in the study (Mehdi et al., 2018) which depicts 
separate spatio-temporal patterns of cereals, soybeans, corn, and oilseeds. The conservation 
of different spatial patterns of croplands enhances agricultural productivity (Semwal et al., 
2004; Brandes et al., 2016). Cropland change is driven by a large number of influencing 
factors and differs from region to region (Mehdi et al., 2018). Müller et al. (2009) have ex-
amined the characteristics of cropland variation and cropland abandonment. However, in 
summary, the determinants of cropland patterns have not gained much attention, yet.  
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To address this research gap, we developed logistic regression models for 11 agricultural 
and three non-agricultural land use classes in the rural catchment of the Kielstau, Germany. 
We used biophysical and socioeconomic variables as well as landscape metrics to identify 
the most important determinants of land use patterns. In particular, this study focuses on 
three objectives: 1) to find the best variables to explain the distribution of each land use 
class, 2) to identify the most important explanatory variables for the land use pattern, and 3) 
to analyze competition between land use classes in the catchment. 

2  Materials and methods 

2.1  Study area 

The Kielstau catchment (Figure 1) is a small rural catchment in northern Germany covering 
an area of 50 km2 (Fohrer et al., 2014; Wagner et al., 2018). It is a sub-basin of the Treene 
river. The mean annual precipitation and temperature are 893 mm and 8.3°C (DWD, 2009), 
respectively. The topography is comparatively even, with an elevation ranging from approx. 
27 m to 78 m a.s.l. (Figure 1). Soils of Gleysol, Podzol, and Luvisol (Figure 1) dominating 
this catchment are mainly used as arable land, and grassland or pasture. Kielstau is the main 
river with a total length of approximately 17 km, flowing through Lake Winderatt about 5 
km downstream from the river source. The Lake Winderatt is surrounded by protected areas 
that are mainly used for moderate grazing (Fohrer and Schmalz, 2012). The Kielstau re- 
ceives discharge from two main tributaries: the Moorau and the Hennebach. To secure agri-
cultural productivity, subsurface tile drainages have been installed during land reallocation  

 

 
 

Figure 1  Location of the Kielstau catchment, spatial distribution of topography (LVA, 1992–2004), soil (BGR, 
1999), main stream network (LANU, 2003), biogas plants, and land use in 2013 and 2017 
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(Riedel and Polensky, 1987), which caused wide, drained areas that were estimated to cover 
38% of the entire catchment (Fohrer et al., 2007). 

Croplands constitute 63% of the study area and the majority is found in larger land 
patches as compared to the other land use classes. Among them, winter wheat, winter barley, 
winter rape, or corn take up a larger proportion, while winter rye, beans, oats, or row crops 
(sugar beet, potatoes, etc.) constitute a relatively smaller area. Crop rotations are commonly 
applied, resulting in constant changes within the croplands. Grassland or pasture (20%–21%) 
is mainly found in proximity to rivers and lakes or in protected areas. Urban, forest, water, 
and garden or orchard each occupy a smaller and persistent proportion. 

2.2  Land use data 

Land use maps of the years 2013 and 2017 (Figure 1) are used for spatio-temporal pattern 
analysis. The maps were acquired through field surveys in spring and early summer of 2013 
and 2017. The main base data for this mapping process was extracted from the automated 
landed property map (ALK–Automatisierte Liegenschaftskarte, 2004) released by the state 
survey office of Schleswig-Holstein (LVERMA-SH). This map provides the outlines of all 
land patches. The land use class of every patch was mapped in the field. Furthermore, the 
consistency of the derived land use data was checked with the help of 0.2 m-resolution or-
thophotos (LVA, 2013, 2016) that were taken on 01/03/2013 and 26/08/2016.  

Croplands comprise 62.8% in 2013 and 63.1% in 2017 of the catchment (Table 1). They 
are mainly classified into (1) cereals, including winter wheat, winter barley, winter rye, oats, 
and a smaller fraction of summer wheat and summer barley, (2) energy crops, like winter 
rape and corn silage, (3) row crops including potatoes and sugar beet, as well as (4) field 
bean, strawberries, and vegetables. With regard to semi-natural land use, grassland, meadow, 
mowing meadow, and pasture account for 20.8% in 2013 and 20.3% in 2017 (Table 1), re-
spectively, and are primarily found along the rivers. The forest areas are nearly stable over 
time. Fallow areas are croplands that are not cultivated in the current year. It is mainly lo-
cated in the southwestern region. Water areas cover approximately 1.8% including lakes, 
ponds, rivers and open creeks. Residential sites are located near main road intersections, 
with a slight increase from 10.5% in 2013 to 10.6% in 2017. Garden or orchard plots are 
scattered mostly near villages. To avoid very small land use classes and samples, the land 
use was divided into the following 14 main classes: settlement areas (residential, commer-
cial, and industrial lands), fallow, grassland or pasture (field grass, meadow and pasture), 
corn, other croplands (strawberry, potato, sugar beet, etc.), forest, winter rye, winter rape, 
garden/orchard, winter wheat, other cereals (oats, summer wheat, summer barley), field bea-
ns, winter barley, and water. 

 
Table 1  Areal percentages of land use classes in the Kielstau catchment in 2013 and 2017 

 Settlement 
areas 

Fal-
low

Grassland
/Pasture Corn Other

crops
For-
est

Winter 
rye

Winter 
rape

Orchard
/Garden

Winter 
wheat

Other 
cereals 

Field 
bean 

Winter 
barley Water 

2013 10.5 0.7 20.8 13.0 1.6 3.1 1.4 10.8 0.5 22.0 1.2 1.0 11.8 1.8 

2017 10.6 0.6 20.3 10.7 2.1 3.1 3.5 11.8 0.5 21.4 2.0 2.4 9.2 1.8 

Change 0.1 0.1 0.5 2.3 0.5 0 2.1 1.0 0 0.6 0.8 1.4 2.6 0 
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2.3  Explanatory variables 

Twenty-six spatially distributed variables have been used to explain the location of land use 
classes in space. Variables are depicted in Table 2, including topography variables, soil 
properties, distance and socioeconomic variables, and landscape metrics. All datasets are 
processed to a 10 m grid resolution. Spatial patterns of slope, silt content, drained soil share, 
distance to protected areas, population density, and fractal dimension are given as examples 
in Figure 2. Topography, soil properties, distance and socioeconomic variables are widely 
used to explain spatial patterns of land use and land use change (Verburg et al., 2004; Qasim 
et al., 2011). Landscape metrics have been previously used to quantify landscape structure 
and to assess land use and land cover change.  

A 5 m digital elevation model (DEM) derived from topographic map of Schleswig-Hol-
stein (LVA, 1992–2004) has been used to generate elevation, slope, and aspect data at a 
10-m resolution. The distance to roads or villages has been calculated from polygon roads 
and villages shapefiles that were extracted from land use maps in 2013 and 2017. The dis-
tance to rivers has been calculated from the main rivers shapefile of the Kielstau catchment 
(LANU, 2003). The distance to protected areas was derived based on the distribution of 
protected areas surrounding the Lake Winderatt and the Kielstau river (StiftungNaturschutz, 
2016). By combining the land patch map with tile drained areas estimated (Fohrer et al., 
2007), the percentage of drained area per patch was calculated. With regard to population 
density, (i) every 50 m2 settlement area is reclassified as one residential site based on a vil-
lage map that was extracted from the land use map and from the digital basis landscape 
model (ATKIS-Basis-DLM) (LVA, 2016); (ii) residential sites are interpolated into a resi-
dence density raster using a Kernel algorithm (Silverman, 1981; Yan et al., 2011); (iii) the 
mean value of residents per site in each town is derived by dividing the number of inhabi-
tants per town in June 2013 and December 2015 (Statistik Nord, 2013, 2015) by the amount 
of residential sites; (iv) the spatial population density is the product of the residence density 
raster with the mean value of residents per site. Soil properties are acquired from a combined 
application of soil type distribution derived from a Digital Soil Map (BGR, 1999) and soil 
attributes generated for a modeling study (Fohrer et al., 2014). As German biogas plants take 

 

 
Figure 2  Examples of potentially important explanatory variables to land use distribution 
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Table 2  Spatially distributed explanatory variables used in this study 

Variable Unit Source 
Elevation m DEM for S.-H. (LVA, 1992–2004) 
Aspect Degree Calculated from DEM 
Slope Degree Calculated from DEM 
Clay content % 
Silt content % 
Sand content % 
Rock content % 
Organic carbon content % 
Available water capacity mm/mm 
Soil depth mm 
Moist bulk density mg/m3 
Saturated hydraulic conductivity mm/hr 
Moist soil albedo – 
USLE K factor – 

Digital soil map (BGR, 1999)  

Drained soil share %   
Distance to rivers m Calculated from river network shapefile (LANU, 2003)  

Distance to roads m Calculated from road distribution derived from 2013, 2017 
land use maps 

Distance to villages m Calculated from village distribution derived from 2013, 2017 
land use maps 

Distance to protected areas m Calculated from distribution of protected areas  
 (StiftungNaturschutz, 2016) 

Distance to biogas plants m Calculated from biogas plants location  

Population density Persons/km2 Calculated from community population and village distribu-
tion from 2013, 2017 land use maps 

Patch size m2 
Patch perimeter m 
Shape index – 
Perimeter-area ratio m-1 
Fractal dimension – 

Calculated from 2013 and 2017 land use maps 

 
in cereals, weeds, corn, and sunflowers as feedstocks (Golon, 2009), their distribution po-
tentially affects crop distribution. Distance to biogas plants has therefore been considered 
and calculated according to the locations of two biogas plants within the catchment and an-
other one near the catchment. Explicit outlines of land patches were extracted from land use 
maps in 2013 and 2017. Landscape metrics of all patches have been calculated with the 
Patch Analyst 3.1 extension for ArcGIS 10.3 and all other calculations have been carried out 
in ArcGIS 10.3. 

2.4  Logistic regression approach 

Logistic regression models are used to analyze spatial patterns of all land use classes in the 
catchment with 26 explanatory variables (Table 2). Water areas are excluded from the analy-
sis study as they occupy only a small proportion of the area. For each class C, a binary cod-
ing is employed, where 1 indicates the presence of class C; 0 indicates the presence of an-
other class. The probability Pi for each pixel i (10m×10m) for the appearance of this land 
use class is calculated using a function of explanatory variables Xn,i as follows: 
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           (1) 

where n is the regression coefficient for the variable Xn,i. To seek the most important ex-
planatory variables and avoid over-fitting, the number of explanatory variables n is limited 
to five. Previous studies also showed that five explanatory variables are sufficient to acquire 
reasonable results (Baumann et al., 2011; Wagner and Waske, 2016). 

The relative operating characteristic (ROC) is used to assess model performance. The 
ROC statistic is the area under the curve of the rate of true positives versus the rate of false 
positives for a range of threshold values applied to the probabilities to achieve a binary clas-
sification. It ranges from 0.5 (random separation) to 1 (perfect discrimination) (Pearce and 
Ferrier, 2000). An ROC≥0.7 indicates that the independent variables have a strong capacity 
to model the dependent variable (Pontius and Schneider, 2001). In this study, the ROC value 
is used to select the model that is more suitable to explain land use patterns. To ensure that 
the selected variables are not collinear, Pearson’s correlation (r) is calculated for each vari-
able pair. When r exceeds 0.7, the variable that better explains the land use appearance is 
retained and the other one removed (Baumann et al., 2011; Wagner and Waske, 2016). The 
logistic regression models of all possible combinations of five explanatory variables from 
non-collinear variable datasets are set up, by removing non-significant variables that are 
unable to optimize model performance according to a stepwise approach. Among these 
combinations, the 13 best logistic regression models with the highest ROC, one for each 
land use class, are selected and used for the analysis. To avoid spatial autocorrelation, for 
each specific land use class a stratified random sample is extracted by taking 20% of all pix-
els from its binary land use raster in 2017, and by excluding adjacent pixels in this sample 
(Wagner and Waske, 2016). The derived sample is randomly divided into two equal parts: 
one for calibration and one for validation of the models.  

To assess the relative importance of the explanatory variables, all possible models derived 
from the calibration process by the ROC values are sorted and the first 50 best models for 
each class are selected. Then, how often each variable is included into these 50 models is 
counted. The percentage of the inclusion of a variable into best regression models is re-
garded as variable importance. All calculations, model executions, and analyses are per-
formed in R and with the help of the R packages ROCR (Sing et al., 2005) and raster (Hi-
jmans et al., 2016). 

2.5  Validation and evaluation 

The derived logistic regression models are quantitatively and visually evaluated in space and 
time (Pontius Jr et al., 2004). First, the validation half of the stratified random samples from 
the 2017 binary raster are used for spatial validation using the ROC statistic. Second, the 
model applicability is tested in time. To this end, some of the explanatory variables are up-
dated: landscape metrics in 2013 are updated due to reshaped land parcels. Distance to vil-
lages is updated using slightly changed settlement areas in the 2013 land use map. Popula-
tion density is recalculated by using village residence map and population data for the year 
2013. The probabilities for each specific land use class in the entire catchment in 2013 are 
calculated, by applying the best logistic regression models to the 2013 explanatory variables. 
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The derived probabilities are compared against the observed 2013 land use map with the 
help of the ROC statistic. 

To further assess the plausibility of modeled results, R-G-B composites are used to visual-
ize the competition for land in space between three different land use classes. An R-G-B 
composite is built by overlaying any three probability maps. In R-G-B composite maps, dark 
areas indicate low probabilities for these three classes, whereas light colors (near white) cor-
respond to high probabilities for all of them, i.e. strong competition for land. Water areas are 
masked in white.  

3  Results 

3.1  Model performance 

All explanatory variables that are included in the best logistic regression models are signifi-
cant (p<0.05, Table 3). The best models are well above random discrimination as ROCs are 
greater than 0.5 (Table 3). The ROC for calibration (ROC_cal) ranges from 0.68 for corn to 
0.97 for settlement areas. With regard to the spatial validation ROC values (ROC_val_2017) 
between 0.73 and 0.97 (Table 3) except for a slightly lower ROC of 0.68 for corn, are within 
the range of reliable precision 0.7–0.9 (Wu et al., 2009) or nearly 100% accurate with ROC 
value close to 1 (Pontius Jr and Schneider, 2001), highlighting reasonable performances of 
the derived models. Slightly lower ROC values from temporal validation (ROC_val_2013) 
indicate that the prediction of the 2013 land use pattern is a little worse (Table 3). Neverthe-
less, ROC_val_2013 values are greater than 0.71 with the exception of corn. The ROC for 
calibration differs from that for spatial validation and temporal validation by a maximum of 
0.03 and 0.08, respectively. Hence, the derived regression models are reliable and robust 
both in space and in time. They can be used to accurately predict the spatial distribution of 
land use classes. Only corn is predicted with a slightly lower accuracy. Spatial patterns of 
croplands are often less accurately explained than non-croplands. For instance, ROCs for 
corn, winter wheat, and winter barley are equal to or smaller than 0.75, whereas ROCs for 
settlement areas, orchard/garden, fallow, and forest are equal to or larger than 0.84.  

3.2  Variable impact 

The majority of explanatory variables are included at least once in the best logistic regres-
sion models (Table 3). However, only few soil properties are used due to their higher collin-
earity, e.g. silt content has a positive correlation with soil organic carbon (r= 0.83) and clay 
content is negatively correlated with moist bulk density (r= –0.75). As only the variable that 
better explains land use appearance is included, soil organic carbon, available water capacity, 
and some other properties were not included in the best models (section 2.4).  

The odds ratio, depicted as the value of exponent (n) for the n-th variable, represent the 
impact of this variable on the predictor. The probability for land use presence will increase 
upon an increase in the n-th variable with odds ratio being greater than 1, whereas probabil-
ity decreases with an increase in the variable when odds ratio is below 1. Table 3 shows that 
topography variables tend to affect natural or semi-natural land uses. Specifically, with an 
increase in slope by 1 degree the probability for fallow, forest, or orchard/garden appear to 
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increase by 35.7%, 34.7%, and 50.3% (odds ratios=1.35698, 1.34681, 1.50291). When ter-
rain ascends by 1 m, the probabilities for fallow and field beans decrease by 17.4% and 
15.2% (odds ratios= 0.82567, and 0.84845, respectively).  

Soil content variables (clay, silt, sand, or rock content) are mainly used to explain the oc-
currence of agricultural lands, e.g., with an increase of silt by 1%, winter wheat and winter 
barley become more probable by 8.9%, and 10.6%, respectively, and winter rye becomes 
less probable by 2.6%. Grassland or pasture is more probable on areas with a deeper first 
soil layer (0.2% increase per mm). The drained soil share affects seven land use classes. 
With an increase in the proportion of drained area by 1%, the probabilities for settlement, 
garden or orchard, and forest presence decrease by 3.4%, 2.4%, and 2.6%, respectively, 
while the probability for pasture increases 1.2%. Other crops (3.3%) and winter rye (1.3%) 
are less probable if the drained area share increases, whereas field beans are more probable 
(2.0%). The contrary effect on field beans is in agreement with the higher probability for 
field beans at low elevations, indicating that field beans are primarily found at lowland areas 
with a high drainage percentage in the catchment.  

Distance variables and population density explain all land use classes. Particularly, dis-
tance to protected areas and population density are included in the best models for eight and 
five land use classes, respectively. As further away from protected areas, grassland or pas-
ture becomes less probable (0.03% per meter, Table 3). In contrast, settlement areas and or-
chard or garden seem more probable (0.03%, 0.04% per meter, respectively) with increasing 
distance from protected area. There is no clear impact direction on croplands (Table 3). 
Population density has a clear effect on land use patterns; with an increase of one more per-
son per square kilometer, settlement areas (0.4%) are more likely to be found, whereas fal-
low (0.9%), forest (0.8%), corn (0.3%), and other crops (0.3%) are less probable. 

The influence of patch structure in particular of the fractal dimension is evidently differ-
ent for croplands and non-croplands. An increase of fractal dimension indicating more com-
plex patch shape (nearer 1 – simpler shape; 2 – irregular and complicated shape (Forman, 
2014; Forman and Godron, 1981)) suggests that settlement area and forest (odds ratios > 1, 
Table 3) are more likely to be found on irregular patches, whereas croplands corn, winter rye, 
winter rape, winter wheat, other cereals, field beans, and winter barley all with odds ratios < 
1 (Table 3) are more likely to be on simpler patches (e.g. large rectangles).  

3.3  Variable importance 

In addition to the best logistic regression model, the 50 best logistic regression models are 
derived for each land use class to evaluate the importance of explanatory variables. All 
models achieve a reliable performance with ROCs ranging from 0.72 to 0.97 except for corn 
(Table 4). Moreover, ROCs of the 50 best models only differ by a maximum of 0.03, indi-
cating similar performance. The variables that are also included in the best model mostly 
have the greatest importance (percentages are marked in bold in Table 4). Some are even 
included in all of the 50 best models (100% inclusion). Overall, distance variables and 
population density are particularly important as they account for 31.7% of the variables that 
are used in these models, followed by soil properties (29.0%) and landscape metrics (28.7%), 
whereas topography (10.7%) is less important for rural land use patterns in this lowland re-
gion. 
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Distance to roads, distance to villages, distance to biogas plants, population density, and 
drained soil share are important for all land use classes, as they are at least included in two 
of the 50 best models (i.e. ≥4% inclusion, Table 4). Elevation, distance to protected areas, 
distance to villages, population density, drained soil share, perimeter-area ratio, and fractal 
dimension are of utmost importance as they are included at least one time in each 50 best 
models. Among them, patch fractal dimension (Pfd) is quite important for settlement areas 
(100% inclusion), mixed croplands (100% inclusion), field beans (96% inclusion), winter 
rye (88% inclusion), and forest (72% inclusion); distance to protected areas affects other 
croplands, winter rye, winter rape, and other cereals (inclusion ≥98%); drained soil share 
greatly explains the appearance of settlement areas, other croplands, forest, grassland, and 
field beans (inclusion ≥90%). Further important influences indicated by 100% inclusion 
are: elevation for fallow and field beans, distance to villages for orchard/garden, population 
density for forest, and patch perimeter-area ratio for other croplands. 

In general, the variables distance to protected areas (mean inclusion 48%), population 
density (32%), drained soil share (51%), and patch shape complexity (fractal dimension, 
66%) are largely important as they are more frequently included and used for 10 to 13 land 
use classes. Topography and soil properties contribute to fewer land use classes with a rela-
tively low importance. The lower importance of topography is largely related to smaller ter-
rain variations and similar potentials for crops throughout the catchment. The low impact of 
soil properties mainly results from the exclusion due to collinearity between soil variables, 
e.g. organic carbon content and moist bulk density are highly correlated with available water 
capacity (r= 0.84 and r= –0.85, respectively) and are, therefore, excluded as available water 
capacity is preferred during variables selection (Table 4). Nevertheless, soil properties in-
deed provide crucial information for the spatial distribution of cropland, e.g. silt content is 
an important explanatory variable for the spatial patterns of major cereals (winter rye 34%, 
winter wheat 98%, and winter barley 58%, respectively, Table 4) and part of the best model 
for these classes. 

3.4  Analysis of probability maps of land use patterns 

The probability maps for each land use class in 2013 are calculated using the best logistic 
regression model and the respective explanatory variables. For most of the land use classes, 
the spatial patterns of one or two defining explanatory variables show up clearly in their 
probability maps. For settlement areas, patterns of population density and drained area share 
are visible in the probability map: higher probability of settlement in areas of higher popula-
tion density and lower percentages of drained area (Figures 2 and 3). Soil depth is part of the 
best model for grassland or pasture, and its outline is prevalent along the Kielstau river and 
to the east of Winderatt lake in the probability map for grassland. As a component of the best 
models for fallow and forest, the slope pattern is particularly visible in the southwestern part 
of the probability maps. For winter rye and winter barley, silt content is a determinative 
variable and results in clearly silt-analogous pattern in the probability maps. The probability 
map for orchard/garden exhibits a pattern similar to the variable distance to villages with 
higher likelihood nearer to villages. Other cereals are clustered near biogas plants, which is 
generally consistent with the surveyed distribution of other cereals in 2013 (Figure 1). The 
probability for field beans depends to a great degree on drained soil share. Field borders are 
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explicitly visible in probability maps for all croplands, underlining the great importance of 
incorporating patch parameters into the cropland models. 

R-G-B composite maps have been produced by overlaying probability maps to visualize 
competition between land use classes. From the composite map of settlement (Red, R), 
grassland/pasture (Green, G), and forest (Blue, B) as shown in Figure 4a, a majority of areas 
are found in these colors without mixing, i.e. settlement areas, grassland/pasture, and forest 
are well separated and do not compete for similar lands. In proximity to water areas, espe-
cially near the Kielstau River, green colors dominate indicating the high suitability for grass-
land or pasture. If the blue channel forest is replaced with winter wheat in Figure 4b, blue 
colors indicate the suitability for winter wheat. They are mostly found in areas with low 
probabilities for settlement, grassland/pasture and forest that are depicted in black in Figure 
4a. The non-mixing colors red, green, and blue in Figure 4b can imply that no competition 
exists between dominant agricultural (e.g. winter wheat) and non-agricultural land use 
classes. In the R-G-B composites of the main croplands in Figures 4c and 4d, the probability 
maps of corn (R) or winter barley (R), winter rape (G), and winter wheat (B) are compared. 
An obvious feature is that mixed and light colors are prevailing in the two maps, suggesting 
that similar areas are simultaneously suitable for two or three crop types. Moreover, mixed 
colors present in the same patches in both composite maps represent the suitability of similar 
fields for these four main crops. Due to relatively high simulated probabilities for corn (de-
picted in red), more purple and magenta colors (mix of red and blue) are dominant in Figure 
4c than in Figure 4d indicating higher probabilities for corn as compared to the competition 
of winter barley with winter wheat and winter rape. The cyan-blue colors dominating 
 

 
 

Figure 3  Probability maps for predicting each land use class pattern in 2013 using the best logistic regression 
models. The corresponding relative operating characteristic (ROC) statistic is provided. 
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Figure 4  R-G-B composites indicating spatial competition among land use classes. Water areas are masked in 
white 
 

Figure 4d represent areas that are suitable for winter rape and winter wheat. The suitability 
of fields for different crop types is in agreement with crop rotations in the Kielstau catch-
ment. The most common rotation is a mix of cereals and rapeseed, followed by a co-
mbination of corn and cereals, and of corn, cereals, and rapeseed (Kandziora et al., 2014). 

4  Discussion 
4.1  Most important explanatory variables 

Our findings indicate which variables are important for the spatial distribution of land use 
classes in a small agricultural catchment in Germany. Most of these results are in agreement 
with our general understanding of the catchment. For instance, grassland or pasture have the 
highest probability near protected areas, the Kielstau river, and Lake Winderatt, which 
agrees with the principle that grassland or pasture instead of cropland is in direct vicinity to 
rivers to sustain water resource quality (Gerrish et al., 1995; Qureshi et al., 2013). Obviously, 
population density is a defining variable for settlement areas (Yue et al., 2013). Simpler 
patch shapes result in higher probability for croplands while more complex shapes are found 
in non-cropland areas. This is a reasonable result as crops are usually grown on larger and 
simpler fields as compared to other land use classes. The visual evaluation of the probability 
maps further confirms the plausibility of using the logistic regression models to simulate 
land use competition. The R-G-B composites of probability maps (Figure 4) indicate no 
strong competition between settlement areas, grassland/pasture, and croplands, which is 
reasonable in a rural environment that is not exposed to strong population pressure. However, 



1802  Journal of Geographical Sciences 

 

the different crops (winter wheat, winter rape, corn, and winter barley) compete for the same 
locations, as indicated by the mixing and light colors in the both R-G-B composites of the 
probability maps Figures 4c and 4d. This is in agreement with the fact that these crops can 
be grown on the same fields. Crop variations are related to farmer decisions as well as to 
crop rotation practices of around three years that occur in the study area (Kandziora et al., 
2014).  

Our analysis shows that the most important variables to explain land use patterns in the 
Kielstau catchment are distance to protected areas, fractal dimension, drained soil share, and 
population density. These variables underline the agricultural character of the rural catch-
ment, as fractal dimension, drainage density, and (low) population density are linked to ag-
riculture. Moreover, the course of the Kielstau River affects the land use pattern as the vari-
ables distance to protected areas (Figure 2) and distance to rivers are linked to the Kielstau 
River, and the soil map includes properties of the flood plain (Figure 2). However, this may 
in part be explained by the fact that our analysis is carried out at the catchment scale. The 
logistic regression models are based on a dataset with a spatial resolution of 10 m. On a 
coarser spatial scale the spatial structure of the explanatory variables will be different and 
also the land use pattern will change, when smaller fields are merged. Consequently, other 
variables may be more important on the large scale. Nevertheless, we are confident that the 
10 m resolution is appropriate for our comparatively small study area. 

4.2  Model performance 

The quantitative model performance as well as the visual evaluation of the probability maps 
(Figure 3) indicates that the derived logistic regression models can reasonably explain land 
use patterns in the Kielstau catchment. The patterns are overall consistent with the land use 
maps for 2013 and 2017 (Figure 1) and the ROC values for both spatial validation and tem-
poral validation are mostly greater than 0.7 indicating a reasonable performance. The lowest 
ROC value for corn (0.65) may be attributed to the fact that corn cultivation is possibly more 
affected than other crops by non-spatial variables like market prices and policies as it may 
be used for biogas production. The assumption that corn fields can be found near biogas 
plants was not verified. This might also be explained by the small size of the study area and 
the small number of biogas plants.  

The range of ROC values for the different land use classes can be explained by character-
istics of rural land cover, e.g., settlement areas (0.97), orchard/garden (0.89), and forest 
(0.84) are well distinguished and thus have strong explanatory variables (e.g. population 
density, distance to villages, drained soil share, respectively), however, the explanatory 
variables are not similarly defining for one crop or the other and, therefore, yield lower ac-
curacies with ROCs for most agricultural land between 0.7 and 0.8 in Table 3. In many other 
studies, agriculture is, therefore, only one lump class (Mottet et al., 2006; Yang et al., 2012), 
whereas this study differentiates eleven agricultural land use classes including eight crop-
land classes. A possible improvement could be achieved if the land tenure system was in-
cluded as a spatial variable. This variable could be used to better represent farmers’ deci-
sions as well as the influence of the market and policies.  

A comparison of the model performances in 2013 and 2017 shows that the agricultural 
classes vary in time and that the performances differ, while they are more or less constant for 
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non-agricultural classes. Usually, a slightly worse performance can be expected for temporal 
validation (Shu et al., 2014). This applies to winter rye, winter rape, and winter barley. But it 
has to be noted that some slight improvements for e.g. winter wheat and other cereals can be 
observed, indicating that the regression models fit the 2013 data moderately better. Since 
models are limited out at five explanatory variables it should not be neglected that if all sig-
nificant variables are included better results can be achieved.  

4.3  Value of landscape metrics for explaining land use patterns 

Landscape metrics have been proven valuable in the context of our agricultural catchment. 
Hence, land patch structure and shape indicators are suitable to characterize and differentiate 
land use patterns, which is in agreement with the use of landscape metrics in the context of 
urban land use change or land cover classification studies (Seto and Fragkias, 2005; Fichera 
et al., 2012). Our results indicate that the landscape metrics provide important complemen-
tary information to the more commonly used biophysical and socioeconomic variables. Due 
to their explanatory power, they may also be useful in other study areas. The derived regres-
sion models are suitable to predict land use patterns and the derived probability maps can be 
used to visualize competition among land use classes in space, by incorporating the R-G-B 
composites as a simple model of land use competition. To simulate future land use patterns, 
the regression models can be incorporated into an intergrated application of CLUE-S (Liu et 
al., 2017) and Markov chain or cellular automata models (Arsanjani et al., 2013). These 
models also account for non-spatial variables like policy and market changes to alter the 
shares of different crops and derive a corresponding land use pattern. 

5  Conclusion 
A set of spatially distributed variables from topography, soil properties, distance variables 
and population density, and landscape metrics are derived to accurately explain land use 
patterns in the Kielstau catchment. From these categories, 20 variables contribute to the lo-
gistic regression models to explain the land use pattern. In particular, the explanatory vari-
ables distance to protected areas, drained soil share, patch fractal dimension, and population 
density are most important to characterize the land use distribution in space. These variables 
are either linked to agriculture or the river course of the Kielstau, which are identified as the 
two main influences for land use distribution in the catchment.  

The derived models are suitable to explain and predict land use patterns. Both probability 
maps and ROC values between 0.71 and 0.97 for spatial and temporal validation underline 
this for all land use classes except that corn is harder to predict (ROC = 0.68, 0.65 for vali-
dation in space and in time, respectively). Non-agricultural classes are explained with higher 
precision, whereas the models for cropland classes yield lower performances. This result is 
mainly attributed to the fact that agricultural fields are usually suitable for more than one 
crop. Moreover, non-agricultural and agricultural classes are well distinguished in space, 
whereas dominant cropland classes compete mainly for the same land, so that modeling their 
distribution in space is particularly challenging. Competition between different classes can 
be explicitly and reasonably identified with probability maps and R-G-B composite maps of 
the main land use classes. The robustness of the models in space and in time indicates their 
potential for an inclusion in a combined modeling approach to produce land use patterns for 
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future scenarios. 

Acknowledgements 
We gratefully acknowledge the financial support from the China Scholarship Council (CSC) 
through a scholarship for the first author. We thank three reviewers and the editor for their 
detailed and constructive comments that helped us to improve the manuscript. 

References 
Alberti M, 2005. The effects of urban patterns on ecosystem function. International Regional Science Review, 

28(2): 168–192.  
Aquilué N, De Cáceres M, Fortin M J et al., 2017. A spatial allocation procedure to model land-use/land-cover 

changes: Accounting for occurrence and spread processes. Ecological Modelling, 344: 73–86.  
Arsanjani J J, Helbich M, Kainz W et al., 2013. Integration of logistic regression, Markov chain and cellular 

automata models to simulate urban expansion. International Journal of Applied Earth Observation and 
Geoinformation, 21: 265–275. 

Baumann M, Kuemmerle T, Elbakidze M et al., 2011. Patterns and drivers of post-socialist farmland abandon-
ment in Western Ukraine. Land Use Policy, 28(3): 552–562. 

BGR, 1999. BUK 200, Bodenubersichtskarte 1:200 000. Bundesanstalt für Geowissenschaften und Rohstoffe: 
CC.1518 Flensburg, Hannover. 

Bonan G B, DeFries R S, Coe M T et al., 2012. Land use and climate. In: Land Change Science. Dordrecht: 
Springer, 301–314. 

Brandes E, McNunn G S, Schulte L A et al., 2016. Subfield profitability analysis reveals an economic case for 
cropland diversification. Environmental Research Letters, 11(1): 014009. 

DeFries R, Eshleman K N, 2004. Land-use change and hydrologic processes: A major focus for the future. Hy-
drological Processes, 18(11): 2183–2186.  

Deng X, Huang J, Rozelle S et al., 2010. Economic growth and the expansion of urban land in China. Urban 
Studies, 47(4): 813–843. 

Dissart J C, Vollet D, 2011. Landscapes and territory-specific economic bases. Land Use Policy, 28(3): 563–573.  
DWD, 2009. Weather and Climate Data from the German Weather Service., Offenbach, Station Flensburg 

1957–2006 and Station Meierwik, 1993–2008, 1993–2008 ed, Offenbach. 
El-Kawy O A, Rød J, Ismail H et al., 2011. Land use and land cover change detection in the western Nile delta of 

Egypt using remote sensing data. Applied Geography, 31(2): 483–494.  
Etter A, McAlpine C, Wilson K et al., 2006. Regional patterns of agricultural land use and deforestation in Co-

lombia. Agriculture, ecosystems & environment, 114(2–4): 369–386.  
Feranec J, Jaffrain G, Soukup T et al., 2010. Determining changes and flows in European landscapes 1990–2000 

using CORINE land cover data. Applied Geography, 30(1): 19–35.  
Fernandes M R, Aguiar F C, Ferreira M T, 2011. Assessing riparian vegetation structure and the influence of land 

use using landscape metrics and geostatistical tools. Landscape and Urban Planning, 99(2): 166–177.  
Fichera C R, Modica G, Pollino M, 2012. Land Cover classification and change-detection analysis using 

multi-temporal remote sensed imagery and landscape metrics. European Journal of Remote Sensing, 45(1): 
1–18.  

Fohrer N, Dietrich A, Kolychalow O et al., 2014. Assessment of the environmental fate of the herbicides flufena-
cet and metazachlor with the SWAT model. Journal of Environmental Quality, 43(1): 75–85.  

Fohrer N, Schmalz B, 2012. Das UNESCO Ökohydrologie-Referenzprojekt Kielstau-Einzugsgebiet–nachhaltiges 
Wasserressourcenmanagement und Ausbildung im ländlichen Raum (in German). Hydrologie und 
Wasserbewirtschaftung 56(4): 160–168. 

Fohrer N, Schmalz B, Tavares F et al., 2007. Modelling the landscape water balance of mesoscale lowland 
catchments considering agricultural drainage systems. Hydrologie und Wasserbewirtschaftung/Hydrology and 
Water Resources Management-Germany, 51(4): 164–169. 

Foley J A, DeFries R, Asner G P et al., 2005. Global consequences of land use. Science, 309(5734): 570–574.  
Forman R T, 2014. Land Mosaics: The Ecology of Landscapes and Regions (1995). Island Press.  
Forman R T, Godron M, 1981. Patches and structural components for a landscape ecology. BioScience, 31(10): 

733–740.  



Chaogui LEI et al.: Explaining land use patterns in a rural lowland catchment in Germany 1805 

 

 

Gerrish J, Peterson P, Morrow R, 1995. Distance cattle travel to water affects pasture utilization rate. American 
Forage and Grassland Council. 

Golon J, 2009. Enviromental Effects of varied Energe Crop Cultivation Scenarios on a Lowland Catchment in 
Northern Germany A SWAT Approach,Thesis (Master), Ecology Centre. Kiel University. 

Hijmans R, van Etten J, Cheng J et al., 2016. Package ‘raster’: Geographic data analysis and modeling. R version 
2.5–8. 

Inkoom J N, Frank S, Greve K et al., 2018. Suitability of different landscape metrics for the assessments of patchy 
landscapes in west Africa. Ecological Indicators, 85: 117–127.  

Kandziora M, Dörnhöfer K, Oppelt N et al., 2014. Detecting land use and land cover changes in northern German 
agricultural landscapes to assess ecosystem service dynamics. Landscape Online, 35.  

Kok K, Veldkamp A, 2001. Evaluating impact of spatial scales on land use pattern analysis in Central America. 
Agriculture, Ecosystems & Environment, 85(1–3): 205–221.  

Lambin E F, Meyfroidt P, 2011. Global land use change, economic globalization, and the looming land scarcity. 
Proceedings of the National Academy of Sciences, 108(9): 3465–3472.  

Lambin E F, Turner B L, Geist H J et al., 2001. The causes of land-use and land-cover change: Moving beyond 
the myths. Global environmental change, 11(4): 261–269.  

LANU, 2003. LANDESAMT FÜR NATUR UND UMWELT SCHLESWIG-HOLSTEIN: Ausschnitt aus dem 
Basisgewässernetz des Landes Schleswig-Holstein für das Einzugsgebiet der Treene bis Treia. (Arc-View- 
Shape), Flintbek. 

Lawrence D, D'Odorico P, Diekmann L et al., 2007. Ecological feedbacks following deforestation create the po-
tential for a catastrophic ecosystem shift in tropical dry forest. Proceedings of the National Academy of Sci-
ences, 104(52): 20696–20701.  

Li X, Yeh A G O, 2002. Neural-network-based cellular automata for simulating multiple land use changes using 
GIS. International Journal of Geographical Information Science 16(4): 323–343. 

Liu G, Jin Q, Li J et al., 2017. Policy factors impact analysis based on remote sensing data and the CLUE-S model 
in the Lijiang River Basin, China. Catena, 158: 286–297.  

Liu J, Zhang Z, Xu X et al., 2010. Spatial patterns and driving forces of land use change in China during the early 
21st century. Journal of Geographical Sciences, 20(4): 483–494. 

Long H, Qu Y, 2018. Land use transitions and land management: A mutual feedback perspective. Land Use Policy, 
74: 111–120.  

LVA, 1992–2004. DEM 25 m Grid Size, DEM 5 m Grid Size Derived from Topographic Maps 1:5 000 and Map 
of Schleswig-Holstein. Land survey office Schleswig-Holstein: Kiel. 

LVA, 2013, 2016. ATKIS®-Digitale Orthophotos (DOP) with a ground resolution of 20 cm. Land Survey Office 
Schleswig-Holstein. 

LVA, 2016. ATKIS® Digitales Basis-Landschaftsmodell (Basis-DLM). Land Survey Office Schleswig-Holstein: 
Kiel. 

LVERMA-SH, Vermessungs-und Katasterverwaltung Schleswig-Holstein, 2004. Automatisierte Liegenscha-
ftskarte (ALK). 

Mas J F, Kolb M, Paegelow M et al., 2014. Inductive pattern-based land use/cover change models: A comparison 
of four software packages. Environmental Modelling & Software, 51: 94–111.  

Mehdi B, Lehner B, Ludwig R, 2018. Modelling crop land use change derived from influencing factors selected 
and ranked by farmers in North temperate agricultural regions. Science of The Total Environment, 631: 
407–420.  

Mitsuda Y, Ito S, 2011. A review of spatial-explicit factors determining spatial distribution of land use/land-use 
change. Landscape and Ecological Engineering, 7(1): 117–125. 

Mottet A, Ladet S, Coqué N et al., 2006. Agricultural land-use change and its drivers in mountain landscapes: A 
case study in the Pyrenees. Agriculture, Ecosystems & Environment, 114: 296–310.  

Mustard J F, Defries R S, Fisher T et al., 2012. Land-use and land-cover change pathways and impacts. In: Land 
Change Science. Dordrecht: Springer, 411–429.  

Müller D, Kuemmerle T, Rusu M et al., 2009. Lost in transition: Determinants of post-socialist cropland aban-
donment in Romania. Journal of Land Use Science, 4(1/2): 109–129. 

Neupane R P, Kumar S, 2015. Estimating the effects of potential climate and land use changes on hydrologic 
processes of a large agriculture dominated watershed. Journal of Hydrology, 529: 418–429.  

Oñate-Valdivieso F, Sendra J B, 2010. Application of GIS and remote sensing techniques in generation of land use 
scenarios for hydrological modeling. Journal of Hydrology, 395(3/4): 256–263.  

Pearce J, Ferrier S, 2000. Evaluating the predictive performance of habitat models developed using logistic re-
gression. Ecological Modelling, 133(3): 225–245.  



1806  Journal of Geographical Sciences 

 

Piquer-Rodriguez M, Butsic V, Gärtner P et al., 2018. Drivers of agricultural land-use change in the Argentine 
Pampas and Chaco regions. Applied Geography, 91: 111–122.  

Pontius Jr R G, Huffaker D, Denman K, 2004. Useful techniques of validation for spatially explicit land-change 
models. Ecological Modelling, 179(4): 445–461. 

Pontius Jr R G, Schneider L C, 2001. Land-cover change model validation by an ROC method for the Ipswich 
watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1–3): 239–248.  

Qasim M, Hubacek K, Termansen M et al., 2011. Spatial and temporal dynamics of land use pattern in District 
Swat, Hindu Kush Himalayan region of Pakistan. Applied Geography, 31(2): 820–828.  

Qureshi M E, Hanjra M A, Ward J, 2013. Impact of water scarcity in Australia on global food security in an era of 
climate change. Food Policy, 38: 136–145.  

Ramachandran R M, Roy P S, Chakravarthi V et al., 2018. Long-term land use and land cover changes 
(1920–2015) in Eastern Ghats, India: Pattern of dynamics and challenges in plant species conservation. 
Ecological Indicators, 85: 21–36.  

Riedel W, Polensky R, 1987. Umweltatlas für den Landesteil Schleswig. Forschungsprojekt des Institutes für 
Regionale Forschung und Information im Deutschen Grenzverein e.V. in Zusammenarbeit mit der Zentralstelle 
für Landeskunde des Schleswig-Holsteinischen Heimatbundes. 

Rounsevell M D A, Annetts J E, Audsley E et al., 2003. Modelling the spatial distribution of agricultural land use 
at the regional scale. Agriculture, Ecosystems & Environment, 95(2/3): 465–479.  

Semwal R L, Nautiyal S, Sen K K et al., 2004. Patterns and ecological implications of agricultural land-use 
changes: A case study from central Himalaya, India. Agriculture, Ecosystems & Environment, 102(1): 81–92.  

Seto K C, Fragkias M, 2005. Quantifying spatiotemporal patterns of urban land-use change in four cities of China 
with time series landscape metrics. Landscape Ecology, 20(7): 871–888.  

Shu B, Zhang H, Li Y et al., 2014. Spatiotemporal variation analysis of driving forces of urban land spatial ex-
pansion using logistic regression: A case study of port towns in Taicang City, China. Habitat International, 43: 
181–190.  

Silverman B W, 1981. Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical 
Society. Series B (Methodological), 97–99. 

Sing T, Sander O, Beerenwinkel N et al., 2005. ROCR: Visualizing classifier performance in R. Bioinformatics, 
21(20): 3940–3941. 

Statistikamt Nord, S.A.f.H.u.S-H, 2013, 2015. Bevölkerung der Gemeinden in Schleswig-Holstein 2. Quartal 
2013; Bevölkerungsentwicklung in den Gemeinden Schleswig-Holsteins 2015. 

StiftungNaturschutz, 2016. Flächenmanagement Kreis SL-Stiftung Naturschutz Schleswig-Holstein. http://www. 
stiftungsland.de/. 

Ulrich U, Hörmann G, Unger M et al., 2018. Lentic small water bodies: Variability of pesticide transport and 
transformation patterns. Science of the Total Environment, 618: 26–38.  

van Meijl H, Van Rheenen T, Tabeau A et al., 2006. The impact of different policy environments on agricultural 
land use in Europe. Agriculture, Ecosystems & Environment, 114(1): 21–38.  

Verburg P H, van Eck J R R, de Nijs T C M et al., 2004. Determinants of land-use change patterns in the Nether-
lands. Environment and Planning B: Planning and Design, 31(1): 125–150.  

Vleeshouwers L M, Verhagen A, 2002. Carbon emission and sequestration by agricultural land use: A model study 
for Europe. Global Change Biology, 8(6): 519–530.  

Wagner P D, Hoermann G, Schmalz B et al., 2018. Characterisation of the water and nutrient balance in the rural 
lowland catchment of the Kielstau (in German). Hydrologie und Wasserbewirtschaftung, 62(3): 145–158. 

Wagner P D, Waske B, 2016. Importance of spatially distributed hydrologic variables for land use change model-
ing. Environmental Modelling & Software, 83: 245–254.  

Wu X, Hu Y, He H S et al., 2009. Performance evaluation of the SLEUTH model in the Shenyang metropolitan 
area of northeastern China. Environmental Modeling & Assessment, 14(2): 221–230.  

Yan Q, Bian Z, Zhang P et al., 2011. Spatialization of population density based on residential spots density. Ge-
ography and Geoinformatics, 27: 95–98. (in Chinese) 

Yang X, Zheng X Q, Chen R, 2014. A land use change model: Integrating landscape pattern indexes and 
Markov-CA. Ecological Modelling, 283: 1–7.  

Yang X, Zheng X Q, Lv L N, 2012. A spatiotemporal model of land use change based on ant colony optimization, 
Markov chain and cellular automata. Ecological Modelling, 233: 11–19. 

Yue W, Liu Y, Fan P, 2013. Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. 
Land Use Policy, 31: 358–370.  

Zhang P, Liu Y, Pan Y et al., 2013. Land use pattern optimization based on CLUE-S and SWAT models for agri-
cultural non-point source pollution control. Mathematical and Computer Modelling, 58(3/4): 588–595. 


