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Abstract: Understanding biogeographic patterns and the mechanisms underlying them has 
been a main issue in macroecology and biogeography, and has implications for biodiversity 
conservation and ecosystem sustainability. Evergreen broad-leaved woody plants (EBWPs) 
are important components of numerous biomes and are the main contributors to the flora 
south of 35°N in China. We calculated the grid cell values of species richness (SR) for a total 
of 6265 EBWP species in China, including its four growth-forms (i.e., tree, shrub, vine, and 
bamboo), and estimated their phylogenetic structure using the standardized phylogenetic 
diversity (SPD) and net relatedness index (NRI). Then we linked the three biogeographical 
patterns that were observed with each single environmental variable representing the current 
climate, the last glacial maximum (LGM)–present climate variability, and habitat heterogene-
ity, using ordinary least squares regression with a modified t-test to account for spatial auto-
correlation. The partial regression method based on a general linear model was used to de-
compose the contributions of current and historical environmental factors to the bio-
geographical patterns observed. The results showed that most regions with high numbers of 
EBWP species and phylogenetic diversity were distributed in tropical and subtropical moun-
tains with evergreen shrubs extending to Northeast China. Current mean annual precipitation 
was the best single predictor. Topographic variation and its effect on temperature variation 
was the best single predictor for SPD and NRI. Partial regression indicated that the current 
climate dominated the SR patterns of Chinese EBWPs. The effect of paleo-climate variation 
on SR patterns mostly overlapped with that of the current climate. In contrast, the phyloge-
netic structure represented by SPD and NRI was constrained by paleo-climate to much larger 
extents than diversity, which was reflected by the LGM–present climate variation and topog-



XU Yue et al.: Biogeographical patterns and determinants of evergreen broad-leaved woody plants in China  1143 

 

 

raphy-derived habitat heterogeneity in China. Our study highlights the importance of embed-
ding multiple dimensions of biodiversity into a temporally hierarchical framework for under-
standing the biogeographical patterns, and provides important baseline information for pre-
dicting shifts in plant diversity under climate change. 

Keywords: evergreen broad-leaved woody plants; species richness; standardized phylogenetic diversity; net relat-
edness index; present climate; Quaternary climate variability; habitat heterogeneity 

1  Introduction 
The spatial patterns and causes of biodiversity are key questions in macroecology and bio-
geography (Rabosky et al., 2015; Fung et al., 2016; Tittensor et al., 2016). Due to aggra-
vated global climate change and habitat loss caused by human activities, the rate of species 
extinctions has been increasing (Cardinale et al., 2012; Marchese, 2015). Understanding the 
spatial patterns and underlying mechanisms of biodiversity is important for identifying the 
origin, dispersal, and extinction of species, and provides a scientific basis for optimizing 
strategies for biodiversity conservation (Gaston, 2009). 

Biodiversity is a complex concept with multiple dimensions (Dreiss et al., 2015). In addi-
tion to the concept of taxonomic diversity, the metrics of phylogenetic diversity (PD) reveal 
direct information on the evolutionary history of taxa and provide novel insights on the 
mechanisms of biodiversity maintenance (Díaz et al., 2016; Jarzyna and Jetz, 2016; Rosauer 
and Jetz, 2015). Thus, comparing taxonomic and phylogenetic diversity can provide addi-
tional insights for biodiversity conservation (Devictor et al., 2010; Xu et al., 2017; Brum et 
al., 2017). For example, using comprehensive avian phylogenies and global distributional 
data for all extant birds, Voskamp et al. (2017) found significant geographical divergence be-
tween species richness (SR) and PD in high elevation areas, deserts, and islands. However, 
while the understanding of the mechanisms underlying biodiversity patterns has substantially 
increased over recent decades, the relative roles of the proposed mechanisms remain con-
troversial (Currie et al., 2004; Clarke and Gaston, 2006). Previous results were not consis-
tent across the different taxonomic and ecological groups that have been investigated (Mao 
et al., 2013; Kubota et al., 2015). Furthermore, reports on the drivers of biodiversity patterns 
have also not been consistent regarding the spatial patterns of taxonomic, phylogenetic, and 
functional diversities (Devictor et al., 2010; Feng et al., 2014), demanding further tests to 
reach a consensus. 

Among the influential factors considered, current climate, paleo-climate, and habitat het-
erogeneity are the most frequently cited explanations for the biodiversity patterns observed 
(Liu et al., 2018). Whether diversity patterns are caused by the current climate or by his-
torical factors has been discussed for a long time. For example, Francis and Currie (1998) 
emphasized the former, while Ricklefs et al. (1999) stressed the necessity of integrating his-
tory and ecology. Other results have emphasized the role of the interactions between con-
temporary environmental factors and evolutionary/historical processes (Ricklefs, 2004). 
Specifically, paleo-climate has received increasing attention as a significant driver for the 
current patterns of species diversity (Carnaval and Moritz, 2008; Kissling et al., 2012a; Ra-
kotoarinivo et al., 2013). As an example, one global-scale study revealed that the endemism 
in birds, mammals, and amphibians seen today was significantly associated with the gla-
cial–interglacial climate change velocity since the late Quaternary (Sandel et al., 2011). 
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Mountains harbor exceptionally high levels of biodiversity (López-Pujol et al., 2011; Qiu 
et al., 2014) and are considered to be global or national diversity hotspots, especially in 
tropical and subtropical regions (e.g. Myers et al., 2000). Benefitting from the heterogeneity 
of climates and soils regulated by topography (Tang et al., 2006), mountains not only inten-
sify intraspecific geographic isolation, leading to allopatric speciation, but also present mul-
tiple environmental gradients for adaptive diversification (Lei et al., 2015; Liu et al., 2016). 
Moreover, the velocity of climate change is lower in mountainous and higher in flat regions 
owing to topographic effects, resulting in distinct rates of extinction (Qiu et al., 2014). 

Evergreen broad-leaved woody plants (EBWPs) have a global distribution and are domi-
nant in many types of forest, shrub land and savanna in tropical and subtropical regions 
(DeFries et al., 2000), supporting the persistence of other biodiversity components in great 
quantities. Most of the 35 global hotspots that have been defined are distributed in tropical 
and subtropical regions dominated by EBWPs (Mittermeier et al., 2011), highlighting the 
critical role of EBWPs in biodiversity conservation. EBWPs are sensitive to environmental 
factors such as light, moisture, and temperature (Sakai, 1979; van Ommen Kloeke et al., 
2012; Kubota et al., 2016), which make them suitable subjects for studying the effects of 
environmental variables on species diversity patterns and the underlying mechanisms. Ac-
cording to the floristic affinity system of Chinese flora (Wu, 1991), 49.8% of angiosperm 
woody species in China have an affinity for tropical regions (Wang et al., 2010). The tropi-
cal affinity of EBWPs in China should be much higher than this value, as EBWPs mostly 
distribute in the tropical and subtropical regions. Along with climate warming in the last 
decades, the number and frequency of EBWPs have been repeatedly observed to increase in 
the temperate forests of Europe (Carraro et al., 2001; Walther, 2002). This sensitivity of 
EBWPs to global warming has been noticed and suggested for its usefulness as indicators 
for climate change (Walther et al., 2001). China has the largest and most diversified sub-
tropical evergreen broad-leaved forests (Song, 2013); therefore, studying the distribution of 
EBWPs in China is critical for understanding their global distribution and for the conserva-
tion of the corresponding biomes. 

In the present study, we associated Chinese EBWPs distribution data with three different 
environmental categories, i.e., current climate, climate shifts between the Last Glacial Maxi-
mum (21 ka, LGM) and the present, and habitat heterogeneity related to topography, to assess 
their relative roles in determining the multiple dimensions of species diversity of Chinese 
EBWPs. Whittaker and Field (2000) suggested that the current climate has the strongest in-
fluence on diversity, with history playing a secondary role. Similarly, here, we hypothesized 
that the effects of current climate, paleo-climate, and habitat heterogeneity on biogeographical 
patterns of the Chinese EBWPs, measured by three indices, would differ significantly and that 
current climate would be the main driver.  

2  Materials and methods 

2.1  Species distribution data 

The species distribution data were mainly taken from the Atlas of Woody Plants in China: 
Distribution and Climate (Fang et al., 2011), which is the most complete atlas of woody 
plants in China and contains county-level distribution maps for 11,405 native species. We es-
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tablished a geographic distribution database for EBWPs in China with a spatial resolution of 
50 km × 50 km (grid cell size), which was subsequently analyzed. We also supplemented and 
modified the species distribution data with field data from 1494 forest plots on 63 mountains 
across China (see Shen et al., 2013 for detailed information). The botanical nomenclature of 
species in the database was standardized according to The Plant List (www.theplantlist.org). 
SR of total evergreen woody plants in each grid cell was taken as a count of EBWP species 
within that grid cell. 

2.2  Phylogeny and phylogenetic indices 

We used Phylomatic v3 (http://phylodiversity.net/phylomatic/) and the Angiosperm Phylog-
eny Group IV (Chase et al., 2016) classification as a backbone to construct a phylogenetic 
supertree for the Chinese EBWPs. The branch lengths in the phylogenetic tree were adjusted 
using the BLADJ algorithm with the differentiation time for angiosperm plants (Wikström et 
al., 2001). This approach has been used widely in analyses of large-scale spatial patterns of 
plant PD (Qian et al., 2016; Tiede et al., 2016). 

We calculated PD following Faith (1992) as the length of all phylogenetic branches re-
quired to span a given set of species, which consistently increases with SR in an assemblage. 
To account for this association with SR, we applied a randomization-adjusted approach to 
calculate standardized PD (SPD). Specifically, for each grid cell, we calculated PD for a ran-
domly-selected set of species in the grid cell and repeated this simulation 1,000 times to esti-
mate a mean of the randomized PD values, and then SPD was calculated using the R package 
“picante” (Kembel et al., 2010) with the following formula: 
 observed randomized randomized) /SPD=( mean PD PDdPD s   (1) 
where, PDobserved refers to the PD value of observed species, mean PDrandomized refers to the 
randomized mean PD, and sdPDrandomized refers to the standard deviation of 1000 iterations 
of PDrandomized. We also calculated the net relatedness index (NRI) for each grid cell based on 
the mean pairwise phylogenetic distance (MPD) using the following formula (Webb et al., 
2002), provided in R package “picante”: 

 NRI = randomized observed randomized( ) / ( )MPD MPD sdMPD    (2) 
where, MPDobserved refers to the observed MPD, MPDrandomized refers to the expected MPD of 
the randomized assemblages (n = 1000), and sdMPDrandomized refers to the standard deviation 
of 1000 iterations of MPDrandomized. A positive NRI value indicates that MPD is lower than 
would be expected by chance (i.e., species are more closely related than expected), and thus 
indicates phylogenetic clustering. Conversely, a negative NRI value indicates that the ob-
served MPD is greater than would be expected by chance (i.e., species are more distantly re-
lated than expected by chance), and thus indicates phylogenetic evenness or overdispersion. 

2.3  Environmental variables 

Current (1950–2000) and LGM data were downloaded on January 20, 2018 from the World-
Clim database (http://www.worldclim.org). For the LGM data, we employed the Community 
Climate System Model (CCSM) and the Model for Interdisciplinary Research On Climate 
(MIROC), both of which were developed based on the Paleoclimate Modelling Intercompari-
son Project Phase II (PMIP2).  
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Temperature and precipitation are two key climate factors in ecological and evolutionary 
theories on plant diversity and distribution (Qian et al., 2016). Stressful and unstable climates 
also constrain species distributions (O'Brien, 2006; Wang et al., 2010). Accordingly, we chose 
six variables to represent the current climate, i.e., MAT, mean annual temperature; MAP, 
mean annual precipitation; MTCM, minimum temperature of the coldest month; PDQ, pre-
cipitation of driest quarter; TSN, temperature seasonality; and PSN, precipitation seasonality. 
We represented paleo-climatic factors using the MAT anomaly (MATA, current MAT–LGM 
MAT), the MAP anomaly (MAPA, current MAP–LGM MAP), the spatial shift velocity of 
MAT (MATV, the ratio of temporal MAT gradient to the spatial MAT gradient), and the spatial 
shift velocity of MAP (MAPV, the ratio of the temporal MAP gradient to the spatial MAP 
gradient) (Loarie et al., 2009; Sandel et al., 2011). 

Topographic heterogeneity promotes the co-existence of species by offering diversified 
niche space (Tews et al., 2004) and promotes species persistence by providing shelters and 
refuges to resist climate change (Fjeldså et al., 2012). To analyze the effect of topographic 
relief on diversity patterns of EBWPs, we used three indices to represent habitat heterogeneity. 
Elevation range (ELER) was calculated as the difference between the maximum and mini-
mum elevations of a grid cell. Ranges of mean annual temperature (MATR) and mean annual 
precipitation (MAPR) were calculated as the differences between the maximum and minimum 
MAT and MAP in a grid cell, respectively. Elevation data were obtained from the Shuttle Ra-
dar Topography Mission (SRTM, http://www.landcover.org/data/srtm/) with a spatial resolu-
tion of 3, which is approximately 90 m at mid-latitudes according to the Beijing1954 Albers 
Equal Area Conic projection. The mean values of the 50 km × 50 km grid cell for each envi-
ronmental variable were processed in ArcMap 10.1 (ESRI, Redlands, CA, USA). 

2.4  Data analysis 

Calculation of phylogenetic relatedness requires at least two species; therefore, grid cells with 
a land area smaller than 1250 km2 or containing fewer than two EBWP species were excluded 
from the following statistical analyses. Firstly, we performed simple regressions to evaluate 
the explanatory power of each predictor for the spatial patterns of SR, SPD, and NRI. Since 
the grid cells were not spatially independent of each other, the degrees of freedom may be 
overestimated and inflate the chance of making a type I error (Legendre and Lagendre, 1998). 
Therefore, we tested the statistical significance of the correlations using a modified t-test (Du-
tilleul et al., 1993). We also used the Spearman’s correlation to explore the collinearity be-
tween the predictive variables (Table 1). SR values are generally not normally distributed and 
are often over-dispersed (Shrestha et al., 2017); therefore, we log-transformed SR to meet the 
assumptions of the general linear regression analysis. Moreover, we compared ordinary least 
squares (OLS) models and geographically weighted regression models for the geographical 
patterns of SR, SPD, and NRI, and quantified the spatial correlogram using Moran’s I. It was 
revealed that significant positive spatial autocorrelation for all three biogeographical patterns 
existed at distances smaller than ~3–6 units (200 km, Moran’s I >0.2, p<0.001), and negative 
autocorrelation only for SR at distances of ~9–19 units, and again positive autocorrelation at 
distances >21 units for SR and SPD (Supplementary Material Appendix, Figure A2). However, 
we focused on the explanatory power of the models (proportion of deviance explained) rather 
than on p values, and there was no spatial autocorrelation found in the residuals of all models. 
Therefore, we only used OLS models to estimate the explanatory power of the environmental 
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determinants. Moreover, we used a partial regression method proposed by Legendre and 
Legendre (1998) to partition the contributions of current climate, current–LGM climate vari-
ability, and habitat heterogeneity to the variation in the spatial patterns of SR, SPD, and NRI, 
respectively. All analyses were conducted using R 3.2.3. 
 

Table 1  Matrix of Pearson’s correlation coefficients among the 13 environmental variables. The boldfaced value 
in each column indicates the most correlated variable within that column. 

 MAT TSN MTCQ MAP PSN PDQ MATA MAPA MATV MAPV ELER MATR MAPR 

MAT 1.000 –0.474 0.922 0.712 –0.548 0.662 –0.650 0.212 –0.171 0.208 –0.215 –0.244 0.279 

TSN –0.474 1.000 –0.718 –0.624 0.336 –0.417 0.800 –0.033 0.814 0.184 –0.427 –0.421 –0.439 

MTCQ 0.922 –0.718 1.000 0.728 –0.599 0.682 –0.798 0.112 –0.420 0.057 0.011 –0.013 0.362 

MAP 0.712 –0.624 0.728 1.000 –0.578 0.846 –0.514 0.306 –0.480 –0.019 0.068 0.037 0.530 

PSN –0.548 0.336 –0.599 –0.578 1.000 –0.734 0.493 –0.168 0.246 0.076 –0.031 0.007 –0.227 

PDQ 0.662 –0.417 0.682 0.846 –0.734 1.000 –0.439 0.292 –0.291 0.050 –0.081 –0.112 0.334 

MATA –0.650 0.800 –0.798 –0.514 0.493 –0.439 1.000 –0.113 0.587 0.066 –0.214 –0.193 –0.240 

MAPA 0.212 –0.033 0.112 0.306 –0.168 0.292 –0.113 1.000 –0.020 0.334 –0.165 –0.162 0.059 

MATV –0.171 0.814 –0.420 –0.480 0.246 –0.291 0.587 –0.020 1.000 0.407 –0.665 –0.661 –0.407 

MAPV 0.208 0.184 0.057 –0.019 0.076 0.050 0.066 0.334 0.407 1.000 –0.512 –0.497 –0.242 

ELER –0.215 –0.427 0.011 0.068 –0.031 –0.081 –0.214 –0.165 –0.665 –0.512 1.000 0.989 0.481 

MATR –0.244 –0.421 –0.013 0.037 0.007 –0.112 –0.193 –0.162 –0.661 –0.497 0.989 1.000 0.444 

MAPR 0.279 –0.439 0.362 0.530 –0.227 0.334 –0.240 0.059 –0.407 –0.242 0.481 0.444 1.000 

3  Results 

3.1  Basic statistics of the biodiversity of EBWPs in China 

There were 6265 species of EBWPs native to China belonging to 123 families and 737 gen-
era. The proportions of four different growth forms (trees, shrubs, vines, and bamboos) were 
30.7%, 53.0%, 8.8%, and 7.5%, respectively. The most species-rich families were Ericaceae 
(790 species), Poaceae (470 species), and Lauraceae (445 species), and the most species-rich 
genera were Rhododendron (593 species), Ilex (210 species), Lithocarpus (131 species), 
Camellia (127 species), and Ficus (111 species). The SR, genus richness and family richness 
per grid cell for all EBWPs ranged from 1–1844, 1–474, and 1–109, respectively. The spe-
cies distributed in areas north of 40°N were mainly frost-tolerant shrubs in Rhododendron, 
Vaccinium, Ledum, Rosa, and Dryas. 

In terms of EBWPs, China harbors 1925 species of trees, belonging to 77 families, and 
305 genera; 3321 species of shrubs, belonging to 106 families, and 452 genera; 550 species 
of vines, belonging to 46 families, and 125 genera; and 470 species of evergreen bamboos, 
which belong to 33 genera of the single family Poaceae. The SR of evergreen broadleaved 
trees, shrubs, vines, and bamboos in each grid cell ranged from 0–689, 0–894, 0–226, and 
0–68, respectively. 

3.2  Biogeographical patterns of EBWPs 

Among those four growth forms of EBWPs, trees were the most restricted while shrubs had 
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broadest distributions (Figure 1). The trees were mostly limited to the Qinling Mountain 
Range (ca. 33°), with a few scattered patches extending to the nearby mountains in the north. 
The shrubs, contrastingly, were distributed throughout China, with only a few empty patches, 
mostly in the central Qinghai–Tibet Plateau and the central Northeast China Plain. Ever-
green vines had a geographical range similar to trees but extending farther north (ca. 40°) 
along the coast of eastern China. Bamboos also extended to the north, but mainly along the 
mountains of the eastern Qinghai–Tibet Plateau, Mt. Taihang, and Shandong Peninsula.  
 

 
 
Figure 1  The spatial patterns of species richness of the four growth forms (i.e., tree, shrub, vine, and bamboo) 
of evergreen broad-leaved woody plants in China 
 

With regard to the diversity centers of the four growth forms of EBWPs, Guangdong 
Province, Hainan Province, Guangxi Zhuang Autonomous Region, and southern Yunnan 



XU Yue et al.: Biogeographical patterns and determinants of evergreen broad-leaved woody plants in China  1149 

 

 

Province were the main regions with high SR of trees, vines, and shrubs, but the SR of 
shrubs was also distinctly high in the subtropical regions. In contrast, regions of high SR of 
bamboos were found to be mostly scattered in the tropical and subtropical mountains, espe-
cially in southern and eastern China. 

The richness of families, genera, and species of EBWPs exhibited similar distribution 
patterns, which decreased with increasing latitude (Figure 2). The regions with higher dive-
rsity were mainly distributed in tropical and subtropical mountainous area, such as the east-
ern Himalaya and Hengduan Mountains (EHHMs), the mountains at the junction of Yunnan, 
Guangxi, and Guizhou provinces, the Nanling Mountain Range, and the mountains on 
Hainan Island. Taiwan Island showed a much lower grid-cell SR of EBWPs than Hainan. 

 

 
 

Figure 2  Distribution patterns for richness of (a) families, (b) genera, and (c) species (SR) for evergreen broad-
leaved woody plants (EBWPs) in China. Empty areas indicate the absence of EBWPs. 

 
In contrast, the SPD of EBWPs revealed a distinct pattern with high values (>1.0) mostly 

occurring in the tropical regions (Figure 3a). Across the broad subtropical zone of ~ 
22.5–32.5°N, SPD in the west was generally lower than in eastern China. Interestingly, SPD 
in the temperate regions was generally higher than that in the subtropical regions, except in 
the northwestern and northeastern parts. SPD values of < −3.0 occurred in the EHHMs of 
Southwest China, and the Greater Hing’an Mountains in Northeast China. Similarly, a clear 
trend appeared to be lacking in the NRI values with increasing latitude (Figure 3b), whereas 
NRI was generally higher in western than eastern China. Moreover, there were two areas 
with especially high NRI values, the EHHMs, and the Greater Hing’an Mountains, indicat-
ing a more clustered phylogenetic structure than that predicted by chance. However, the 
EBWP taxa showed significant random or over-dispersed phylogenetic structuring in the 
eastern part of the tropical, subtropical, and temperate regions of China. 

A significant negative correlation was revealed between latitude and log(SR) (r =  0.830, 
p<0.001), and latitude and SPD (r = 0.166, p<0.05), but no correlation was found be-
tween latitude and NRI (r = 0.065, p>0.05). Among the three biogeographical indices of 
biodiversity, geographical patterns were statistically independent of each other (Figure 
A1). 
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Figure 3  Spatial variation in (a) standardized phylogenetic diversity (SPD) and (b) net relatedness index (NRI). 
Empty areas are those with less than two species of EBWP recorded in one grid cell. 

3.3  The determinants of the biogeographical patterns of EBWPs 

Of the 13 environmental variables, those of the current climate were the significant predictors 
of SR, except PSN, but only MAT had a significant positive correlation with SPD (Table 1). 
No significant correlation was revealed between current climate and NRI. In contrast, no sig-
nificant correlation was revealed between Quaternary climate variables, although the rela-
tionships were mainly negative. The variables of habitat heterogeneity were all significant 
predictors of NRI, and MAPR was significantly positively correlated with SR. Habitat het-
erogeneity was associated with SPD in a generally negative form, but the relationship was 
only significant in terms of ELER and MATR. 
 
Table 1  The r2 of univariate OLS regression models with p values of modified t-test of the biogeographical indices 
against environmental variables, all with spatial autocorrelation. The minus in braces indicate negative relationship, 
the statistical significant p values are boldfaced. 

SR SPD NRI Environmental  
factors Predictors 

r2 p r2 p r2 p 

MAT 0.469 0.038 0.151 0.014 ()0.135 0.078 

MAP 0.733 0.006 ()0.005 0.672 ()0.003 0.779 

MTCM 0.692 0.013 0.073 0.084 ()0.051 0.295 

PDQ 0.463 0.048 0.025 0.344 ()0.018 0.541 

TSN ()0.561 0.033 ()0.013 0.537 ()0.078 0.277 

Current climate 

PSN ()0.297 0.088 0.038 0.336 ()0.084 0.247 

MATA ()0.405 0.098 ()0.061 0.130 0.067 0.260 

MAPA 0.029 0.537 <0.001 0.938 ()0.023 0.388 

MATV ()0.392 0.052 0.029 0.258 ()0.032 0.380 
Paleo-climate 

MAPV ()0.025 0.464 0.032 0.137 ()0.040 0.167 

ELER 0.067 0.251 ()0.112 0.004 0.140 0.003 

MATR 0.053 0.310 ()0.111 0.006 0.149 0.003 Habitat heterogeneity

MAPR 0.219 0.005 ()0.015 0.191 0.059 0.019 
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The environmental variables considered here account for 85.8%, 33.0%, and 39.1% of the 
variation in geographical patterns of SR, SPD, and NRI, respectively. The results of variation 
partitioning indicated that current climate played a primary role compared to paleo-climatic 
variability and habitat heterogeneity in determining the species richness pattern of EBWPs 
across China (Figure 4a). However, the effect of current climate on SPD or NRI was much 
weaker than on SR. Correspondingly, both the paleo-climatic variability and habitat hetero-
geneity played larger roles in the variation of SPD and NRI than on that of SR (Figures 4b 
and 4c). Moreover, the effect of paleo-climatic variation on SR patterns was mostly nested 
within the effect of the current climate, leaving only 1.1% independent effect, whereas for the 
patterns of SPD and NRI, the paleo-climate had much larger percentages of independent ef-
fect. The percentages of variation explained independently by habitat heterogeneity also in-
creased from SR to SPD and NRI. 

 

 
 
Figure 4  The partitioning of the variance (R2, %) in (a) log(SR), (b) SPD, and (c) NRI accounted for by each of 
the three environmental factors using partial regression methods. See Legendre and Legendre (1998) for details of 
the method. CC = current climate; PC = paleo-climate; HH = habitat heterogeneity. 

 

4  Discussion 

4.1  Distribution patterns of EBWPs in China 

EBWPs are unevenly distributed across China. The richness of families, genera, and species 
of EBWPs showed similar distribution patterns decreasing with increasing latitude. The ar-
eas with high taxonomic diversity and PD of EBWPs corresponded with the tropical and 
subtropical mountains in China, as suggested in previous studies (Ying, 2001; Wang et al., 
2010; López-Pujol et al., 2011; Qiu et al., 2014). It has been demonstrated that mountainous 
regions of China act as both species refugia and speciation centers, maintaining high biodi-
versity through geological history (Myers et al., 2000; Tang et al., 2006; Xu et al., 2017). As 
an exception to this rule, high EBWP SR in the EHHMs was coupled with low SPD values 
and high NRI values. This combination of biogeographic indices consistently indicated that 
the rich EBWPs in this region comprised young clades and had high phylogenic relatedness. 
This implied an active diversification (or speciation) center of evergreen woody plants. In 
other words, the EHHMs are a cradle of EBWPs in China, as also being demonstrated for 
other clades (Favre et al., 2015; Lei et al., 2015; Yan et al., 2015). Moreover, Xing and Ree 
(2017) showed that, about 8.0 Ma, the rate of in situ diversification of angiosperms in-
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creased significantly in the Hengduan Mountains, which is temporally congruent with inde-
pendent estimates of orogeny. Another diversification center for EBWPs was shown in the 
Greater Hing’an Mountains in Northeast China, which is also a diversity center of 
cold-tolerant dwarf evergreen shrubs of Vaccinium. However, the combination of high SR 
and SPD and low NRI values consistently imply that the tropical mountains in the southern 
provinces, including Yunnan, Guangxi, Guangdong, Hainan, and Taiwan, are also the main 
museums of EBWPs in China. Moreover, similar levels of biodiversity were observed in 
scattered patches of mountains in the Chinese subtropical region, mainly in the eastern part. 
These patches probably acted as refugia for EBWPs in the Quaternary glaciation events, as 
also indicated by other evidence (Tang et al., 2018; Chen et al., 2018).  

4.2  Relative roles of environmental factors 

Our research has demonstrated that current climate variables dominated the spatial variation 
of SR of EBWPs in China, showing an explanatory power much higher than that of pa-
leo-climate variation at LGM and topography-derived environmental variation that took ef-
fect on longer time scales (with independent contributions of 25.1% versus1.1% and 1.3%, 
respectively, Figure 4a). Similarly, Hawkins and Porter (2003) found that current climate ex-
plained two to seven times more variance in SR patterns of mammals and birds in deglaciated 
North America than paleo-environmental factors. Furthermore, the high explanatory power of 
current climate for biodiversity patterns has been repeatedly demonstrated for numerous 
assemblages of plants and animals (Hawkins et al., 2003; Buckley and Jetz, 2007; Wang et 
al., 2010). The high percentage of joint effects between current climate and paleo-climate 
variables might indicate climate stability in the major distribution areas of EBWPs since the 
LGM. 

While the total explanatory power of the environmental factors for SPD (indicating assem-
blage age) and NRI patterns were much lower than that for SR patterns, paleo-climate and 
habitat heterogeneity appeared to play relatively large independent roles in the SPD and NRI 
patterns (Figures 4b and 4c). These differences indicate that age and phylogenetic composi-
tion were more resistant than the SR of EBWPs to climate changes in the short term. They 
also reveal a clear imprint of the uplift of the Qinghai–Tibet Plateau, a critical geological 
event of longer duration than the glacial–interglacial cycling, for the diversification of Chi-
nese EBWPs. Specifically, the negative correlations between SPD and MATA, TSN indi-
cated that older taxonomic groups occur in areas less affected by LGM–present climate in-
stability, that is, in areas with more stable climate; whereas, the negative correlation between 
SPD and indices of habitat heterogeneity (ELER, MATR, and MAPR) indicate that phy-
logenetically younger groups of EBWPs tend to occupy mountainous areas (Figure 3a). 
Long-term environmental changes have been found to be well correlated with phylogenetic 
structural pattern at large geographic scales (Ma et al., 2016). For example, Kissling et al. 
(2012b) found that global patterns in phylogenetic structure for palm assemblages are strongly 
linked to Cenozoic climate change. Hortal et al. (2011) found a strong increase in phyloge-
netic clustering with increasing LGM–present MAT anomaly for scarab beetles in Europe. 
Feng et al. (2014) also suggested that the LGM–present anomaly in temperature was the 
strongest explanatory factor for PD in forests of China with modern climate also important. 
The importance of climatically stable areas for China’s rich diversity of EBWPs suggests a 
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strong need to focus on protecting these areas from fragmentation and deforestation to main-
tain or enhance their ability to buffer against future climate change. 

4.3  Temperature versus precipitation 

The results of the present study showed that MAP under current climate conditions is the 
best predictor of spatial variance in SR. This agrees with the finding that water is more im-
portant than energy at mid-latitudes in the Northern Hemisphere (Hawkins et al., 2003; 
Wang et al., 2010; Chen et al., 2011). Xu et al. (2016) demonstrated that the impact of en-
ergy on global oak species diversity strongly depends on the availability of water. Li et al. 
(2016) suggested that precipitation significantly affects the relationship between the per-
centage of untoothed species and the temperature of woody plants in China. However, using 
the same data source, Wang et al. (2010) studied the SR patterns of all woody angiosperm 
species in China and found that frost filtering was the primary determinant for the patterns 
observed. Moreover, Qian (2013) provided another study of the spatial patterns of woody 
plant species at a coarser geographical scale (provincial level) and suggested that tempera-
ture seasonality was the dominant factor. Most of the climate in China is deeply influenced 
by the Asian monsoon, which dominantly affects the seasonal synchronicity of both tem-
perature and precipitation, especially in the areas occupied by EBWPs (Song, 2013). There-
fore, a persistent unresolved issue is to determine the independent effects of energy and 
moisture on biodiversity patterns. Here, our data suggested that EBWPs may be more sensi-
tive to limits of precipitation than low temperatures. 

In contrast, spatial patterns of SPD were more strongly tied to Quaternary climate change 
in terms of temperature rather than precipitation (Table 1). This differs from previous stud-
ies from Africa, which demonstrated a more likely explanation for the LGM–present pre-
cipitation anomaly of palm SR across Madagascar compared to the LGM–present tempera-
ture anomaly (Rakotoarinivo et al., 2013). However, Feng et al. (2015) found that endemism 
patterns of plant species in Chinese forests were more strongly tied to MATA than to MAPA, 
which was consistent with the results of our study. The world has been becoming warmer 
and more humid over approximately the same time periods (Wolfe, 1975). Furthermore, 
some previous studies of paleo-climate in China also suggested that the LGM climate was 
much drier than the present in some areas, especially in southern China (Wang et al., 2012). 
Hence, the effects of historical precipitation change may be underestimated in the present 
study. It is suggested that simulations of LGM precipitation are more uncertain than those 
for temperature, and that there is wider variation among different models (Waltari et al., 
2007). Besides, the millennial-scale variability in monsoon strength and precipitation in 
China is likely not well represented by the LGM–present MAP anomaly used to represent 
past changes in precipitation herein (Feng et al., 2015). 

4.4  The impacts of habitat heterogeneity 

Habitat heterogeneity, represented by topographical heterogeneity, spatial climatic or ed-
aphic variation, and land cover diversity in different studies, has long been considered to be 
a critical, sometimes dominant factor in the formation of biodiversity patterns (Kerr et al., 
2001; Kreft and Jetz, 2007; O'Brien et al., 2000). Higher levels of habitat heterogeneity can 
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lead to higher niche diversity for species co-existence (Rahbek and Graves, 2001; Jetz and 
Rahbek, 2002), but also provide a higher chance of spatial isolation leading to increased 
speciation (Graham and Fine, 2008).  

For Chinese EBWPs, habitat heterogeneity has a remarkable (22.5%) contribution to SR 
patterns, but its independent contribution of 1.3% was minor. Specifically, it was only the 
topography-related precipitation variability that showed a significant effect on SR patterns. 
However, the three indices of habitat heterogeneity, namely ELER, MATR, and MAPR, had 
prominent effects on the family age and phylogenetic structuring of EBWPs (Table 1). This 
indicates that habitat heterogeneity plays a larger role as an environmental filter affecting 
community assembly than it does for determining the overall SR. 

Qian et al. (2016) found significant correlations between NRI and temperature indices for 
angiosperm trees in 57 forest plots sampled across a latitudinal transect in China. For the geo-
graphical distribution of Chinese EBWPs, however, significant correlations were found be-
tween NRI and habitat heterogeneity, rather than the climate variables. This is probably be-
cause the two-dimensional biogeographical patterns are far more complex than the 
one-dimensional patterns sampled in forest plots along a primary environmental gradient. Sig-
nificant topographical heterogeneity and the prominent longitudinal moisture gradient, intensi-
fied by the Asian monsoon, substantively complicated the biogeographical patterns in China, 
as demonstrated in previous studies (Chen et al., 2011; Chen et al., 2018; Qiu et al., 2014). 

The biogeographical patterns of taxonomic diversity, phylogenetic diversity and structure 
of EBWPs in China showed highly divergent associations with the potential driving factors. 
In short, SR was most strongly constrained by current climate conditions, while phyloge-
netic structure was affected more by the deep-time environmental context, as indicated by 
the LGM-present climate variation and the topographic variation formed at even longer time 
scales. Hence, our results indicate the necessity of adopting a hierarchical framework of 
multiple spatial and temporal scales, for better understanding the roles of various mecha-
nisms for the origins of biodiversity patterns (Wiens and Donoghue, 2004; Swenson, 2011). 

5  Conclusions 
As a major component of plant diversity, assemblages of EBWPs are optimal for testing the 
environmental constraints on biogeographical patterns. For the first time, this study explored 
the geographical patterns of 6,265 species of EBWP in China. With the partial regression 
methods, the spatial variations of SR, SPD and NRI were able to be accounted for by 85.8%, 
33.0% and 39.1%, respectively. Our results highlighted the importance of tropical and sub-
tropical mountains for maintaining the species diversity of EBWPs in China, and provided 
support for the hypothesis that current climate was the main driver of taxonomic diversity. 
Meanwhile, LGM–present climate variability and topography-related habitat heterogeneity 
played a more important role in shaping the spatial patterns of phylogenetic structure and di-
versity. The results of this study demonstrated the complementary importance of current cli-
mate and paleo-environmental factors in shaping plant biodiversity patterns at the macroscale. 
The generality of this result, regarding the relative importance between contemporary and 
historical factors, however, may be further tested by examining more paleo-climatic proxies 
from a range of archives and linking them to extant diversity patterns. 
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Figure A1  Latitude gradients of (a) families richness, (c) genera richness and (e) species richness of EBWPs in 
50 km50 km grid cells across China. (b), (d) and (f) reflect the detailed information of the latitude gradients of 
families richness, genera richness and species richness of EBWPs distributed north of 40°N in China. 
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Figure A2  Spatial correlograms for the geographic patterns in species richness (SR), standardized phylogenetic diver-
sity (SPD) and net relatedness index (NRI) of the EBWPs in China, and the estimates and residuals of the combined 
models. Spatial correlograms are estimated by Moran’s I coefficients. In the figures, solid dots represent Moran’s I for 
raw data (Y), while crosses and solid dots represent Moran’s I for the estimates and residuals of the explanatory models 
of current climate (CC), the paleo-climate variation (PC) and that of habitat heterogeneity (HH). 


