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Abstract: In this study, we adopt kernel density estimation, spatial autocorrelation, spatial 
Markov chain, and panel quantile regression methods to analyze spatial spillover effects and 
driving factors of carbon emission intensity in 283 Chinese cities from 1992 to 2013. The 
following results were obtained. (1) Nuclear density estimation shows that the overall average 
carbon intensity of cities in China has decreased, with differences gradually narrowing. (2) 
The spatial autocorrelation Moran’s I index indicates significant spatial agglomeration of 
carbon emission intensity is gradually increasing; however, differences between regions have 
remained stable. (3) Spatial Markov chain analysis shows a Matthew effect in China’s urban 
carbon emission intensity. In addition, low-intensity and high-intensity cities characteristically 
maintain their initial state during the transition period. Furthermore, there is a clear “Spatial 
Spillover” effect in urban carbon emission intensity and there is heterogeneity in the spillover 
effect in different regional contexts; that is, if a city is near a city with low carbon emission 
intensity, the carbon emission intensity of the first city has a higher probability of upward 
transfer, and vice versa. (4) Panel quantile results indicate that in cities with low carbon 
emission intensity, economic growth, technological progress, and appropriate population 
density play an important role in reducing emissions. In addition, foreign investment intensity 
and traffic emissions are the main factors that increase carbon emission intensity. In cities 
with high carbon intensity, population density is an important emission reduction factor, and 
technological progress has no significant effect. In contrast, industrial emissions, extensive 
capital investment, and urban land expansion are the main factors driving the increase in 
carbon intensity. 

Keywords: Chinese cities; kernel density estimation; spatial autocorrelation; spatial spillover effect; spatial 
Markov chain; quantile regression panel model 

1  Introduction 
Although the proposal that greenhouse gases, especially carbon emissions, are the primary 
cause of climate change remains controversial, promoting an emission reduction plan to ad-
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dress the challenges posed by climate change is the consensus of mainstream scientific cir-
cles (Liu et al., 2008). In this context, China has achieved rapid and continuous economic 
growth after the reform and opening up, with the associated rapid advancement of urbaniza-
tion and industrialization increasing demand for energy consumption (Wang et al., 2014a, 
2014b). According to statistics released by the International Energy Agency (IEA, 2009), in 
2007, China’s total carbon emissions exceeded the United States and ranked first in the 
world. Facing international public opinion pressure, the Chinese government adopted the 
emission reduction task as binding in the medium and long-term plans for national economic 
and social development in 2009 (Wang et al., 2017), promising to reduce China’s carbon 
emission intensity (CEI) by 40–45% compared with 2005 by 2020. However, the BP World 
Energy Statistical Yearbook (2017), released in 2017, shows that China’s total carbon emis-
sions are still rising, from 20.9% in 2005 to 27.5% in 2014. For China, reducing the intensity 
of carbon emissions while maintaining sustained economic growth remains a big challenge 
(Wang et al., 2015; Wang et al., 2016a, 2016b). Therefore, research evaluating the spa-
tio-temporal patterns and driving factors of CEI will be beneficial to further development of 
emission reduction measures. 

CEI, as carbon emissions per unit of GDP, is a measure of the relationship between car-
bon emissions and economic development in a country or region. For developing countries, 
it is more practical to use CEI to quantify emission reduction targets compared to total car-
bon emissions or per capita carbon emissions (Jotzo and Pezzey, 2007). Many scholars have 
studied the issue of carbon emissions in the last decade with rich results, including meas-
urement and decomposition, the characteristics of spatio-temporal patterns (including re-
gional differences, spatial agglomeration, and spatial correlation), and driving factors of CEI 

(Zhao et al., 2018). The research scale varies from national, regional, and provincial to mu-
nicipal units, although most have focused on the provincial level. In terms of research 
methods, scholars often use the Theil index, coefficient of variation, and spatial autocorrela-
tion (the global Moran’s I index and local G coefficient) to reveal regional differences and 
spatial correlations of CEI. For example, Sun et al. (2012) explored differences in CEI 
among China’s provinces and regions (eastern, central, western, and northeastern) based on 
the Theil index. They found that China’s inter-provincial CEI varies and the differences have 
gradually increased, but intra-regional differences are declining annually, and in-
ter-provincial differences are primarily derived from regional differences. Zhao et al. (2011) 
divided the country into eight economic regions and used the Theil index and global 
Moran’s I to explore the spatial evolution characteristics of regional CEI and also found a 
widening difference in regional CEI across the country caused by greater differences among 
regions, while intra-regional differences were small. In summary, there are significant dif-
ferences in the CEI between provinces in China due to the variations in their geographical 
regions. However, few studies have focused on the city level. In addition, research regions 
are often divided according to habitual experience, such as central, eastern and western parts 
of China, the six economic zones, coastal areas, and interior land areas. In this regard, many 
studies have shown that barriers between regions have gradually decreased over time, and 
elements and products between adjacent cities and counties can move more freely (Li et al., 
2004), which has gradually narrowed the scale of spatial spillover effects. As a result, 
analyses at the provincial scale alone do not address the true situation in China (Pan, 2012). 
In addition, most economic geographers believe that cities are key to regional development 
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and the main source of carbon emissions and building low-carbon cities will be the most 
important component of carbon emissions reduction (Gu et al., 2009; Zhang et al., 2014), 
which highlights the importance of CEI research at the city level. Based on the limitations of 
previous research, this study evaluated spatial spillover effects and driving factors of CEI in 
283 cities across China based on the city level. We further explain the spatial characteristic 
of CEI and explore its influencing factors. 

Many scholars have introduced convergence theory and methods to conduct research on 
spatial and temporal characteristics of carbon emissions (Xu, 2010; Lin and Huang, 2011; 
Pettersson et al., 2014; Wu and Guo, 2016). Because the graphical features of the kernel 
density estimation method can reflect data evolution trends, Ma et al. (2015) and Zhao et al. 
(2018) used it to describe carbon emission performance and intensity over the years. At the 
same time, Zhao et al. (2017) introduced the Markov state transition probability matrix to 
reflect the internal dynamic evolution trend of CEI. However, the above method only ex-
plores changes in the region, ignoring the proximity and spatial characteristics of carbon 
emissions. Considering these two important characteristics, this study adds spatial lag con-
ditions to the traditional Markov chain method and uses the spatial Markov chain transition 
probability matrix to dynamically reveal the spatial and temporal evolution process of CEI 
in cities. Therefore, we address the lack of regional background evaluation in the existing 
literature.  

In terms of driving factors, scholars have primarily used exponential decomposition, 
structural decomposition, cointegration test, Granger causality test and regression empirical 
analysis based on panel data. Cheng et al. (2013) used spatial econometric models and found 
that energy structure, industrial structure, and urbanization rate play an important role in the 
evolution of CEI. Yan et al. (2016) used the Sharpe value decomposition method to decom-
pose and analyze the CEI for 29 provinces in China and found that the contribution rate from 
economic development to the CEI difference is the largest and increases gradually over time. 
Zhou and Wang (2014) used the panel regression model to explore the driving factors of CEI 
and found that capital per capita, urbanization, marketization, and industrial structure are the 
main factors of the difference. In contrast, scholars have mainly discussed the influencing 
factors based on scale, structural, and technical effects. In addition, according to the Interna-
tional Energy Agency (IEA), in 2007, the global transportation sector emitted 66.23 tons of 
carbon dioxide, accounting for 23% of all energy activities. Therefore, transportation is one 
of the most important factors affecting carbon emissions. According to estimates by Cai et al. 
(2011) and others, China’s road transport accounted for 86.32% of transportation emissions 
in 2007, which is the main source of carbon emissions from transportation. Current research 
on the relationship between transportation and carbon emissions mainly includes the influ-
encing factors of transportation carbon emissions (Zhang and Zeng, 2013), the impact of the 
transportation sector (Glaeser and Kahn, 2010), and transportation infrastructure (Xie et al., 
2017) on carbon emissions. Based on existing research results (Li et al., 2018; Su et al., 
2018), this study selected economic development level, population density, industrial struc-
ture, capital investment intensity, foreign capital intensity, land urbanization, and road den-
sity as driving factors, combining the quantile sorting technique in the Markov method and 
quantile regression method to explore the driving factors of urban CEI. 

For these analyses, 283 cities in China were used as the research unit. First, the spatial 
autocorrelation method was used to test the spatial agglomeration of urban carbon emissions. 
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Then, we used the spatial Markov chain to analyze the evolution of regional contexts and 
urban CEI and reveal the spatial spillover effects of urban CEI under different regional con-
texts. Finally, we used the panel quantile regression model to explore the driving factors af-
fecting urban CEI under different regional backgrounds. The research design has three ad-
vantages. (1) The research scale is further reduced to the city level, which is in better 
agreement with the reality of spatial spillover effects. (2) Using the spatial Markov chain is 
effective at revealing the heterogeneity of spatial spillover effects for cities in different re-
gional contexts. (3) Using quantile regression to explore the driving factors under different 
conditions of CEI level provides a basis for emission reduction strategies in cities with dif-
ferent CEI stages. 

2  Data and methodologies 

2.1  Research area and data sources 

As the most concentrated area of human social and economic activities, cities have become 
the most concentrated carbon emissions regions (Gu et al., 2009). Therefore, many countries 
and regions regard cities as an important space carrier for local emission reduction measures 

(Cong et al., 2014) and promote building low-carbon cities. We use cities as the basic unit of 
research and define the urban scope using the administrative boundaries of each city in 2013. 
Due to statistics missing for some cities, 283 cities covering 34 provincial administrative 
units were studied, but Hong Kong, Macao, and Taiwan were excluded. The main variable 
studied was the CEI with a study period from 1992 to 2013. 

In terms of data sources, due to the lack of detailed energy data for China’s cities, it is 
impossible to measure China’s urban carbon emissions comprehensively. To analyze the 
spatial spillover effects and driving factors of China’s urban CEI, urban carbon emissions 
data were compiled from published literature (Wang and Liu, 2017). City socio-economic 
data were obtained from China’s Urban Statistical Yearbook, China’s Regional Economic 
Statistical Yearbook, and the statistical yearbooks from various provinces, regions, and 
counties, Statistical Bulletin of National Economic and social development, and government 
work reports. 

2.2  Research on spatial spillover effects based on spatial Markov chain 

2.2.1  Markov chain 

The traditional Markov chain is a discrete event stochastic process in mathematics, which is 
discrete in time and state, emphasizing that the historical state is not related to the future 
state. Because many geomorphic phenomena have no post-effects, the Markov chain is 
widely used in geography (Xu, 1996). Therefore, the Markov chain method is appropriate for 
evaluating CEI because urban CEI has no post-effects. Specifically, the Markov chain 
method discretizes the urban CEI at different time periods and divides a city’s CEI into k 
types according to quantiles. Then, the evolution process of urban CEI can be approximately 
regraded as a Markov process by calculating various types of probability distributions and 
its transition probabilities. In general, the urban carbon emission state type at time t is rep-
resented by a 1×k state probability vector Et=E1,t, E2,t,⋯, Ek,t. The state transition process for 
urban CEI over the entire study period can be represented by a k×k Markov transition prob-
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ability, which is the matrix M. This study is based on the principle that each type of city has 
a similar CEI and divides the city’s CEI into four types according to quartiles (0.25/0.5/0.75), 
which are represented by k=1, 2, 3, and 4, respectively. A greater value of k is related to a 
greater intensity of carbon emissions. The state type from high intensity to low intensity is 
defined as an upward shift and from low intensity to high intensity is defined as a downward 
shift. mij represents the probability value of the region belonging to type i at time t, which 
transitions to type j at time t+1, and is estimated by the following equation: 

 ij
ij

i

n
m

n
  (1) 

where nij represents the sum of the regions belonging to type i at time t that experiences 
transitions to type j at time t+1 during the entire study period, and ni is the sum of regions 
belonging to type i in all years of transition in the study period. 

2.2.2  Spatial Markov chain 

Regional connection and interaction processes create spatial spillover effects between re-
gions, which reveal the spatial spillover effect between regions and are important in under-
standing regional development. The spatial Markov chain can better describe such regional 
spatial spillover patterns, and is essentially a product of the traditional Markov chain that 
introduces the concept of “space lag” (Gallo, 2004). From a geospatial perspective, regional 
phenomena are not isolated in geospatial space. Regional phenomena are always affected by 
the condition of geographically adjacent areas, that is, the state of regional context will have 
an impact on the state transition process of the region. The spatial Markov chain method 
expresses the regional context by introducing a “space lag”, thus addressing the deficiencies 
of the traditional Markov chain that ignored spatiality (Chen and Zhu, 2013). The spatial 
Markov chain transition probability matrix is based on the spatial lag type of region a at 
time t and decomposes the traditional Markov chain into k k×k conditional transition prob-
ability matrices. In the kth conditional matrix, mkij is the probability that a certain region a 
will shift from state type i at time t to the state type j at time t+1 under the condition that the 
spatial lag type is k. The spatial lag value for region a is the weighted average of the attrib-
ute values for a spatial neighboring area. The specific equation is as follows: 
 Laga b abY W  (2) 

where the spatial weight matrix Wab represents the spatial relationship between region a and 
region b, and the subjacency principle is used to define the spatial relationship in this paper, 
due to missing statistics, for cities without neighboring cities, we define the closest city as 
the neighboring city. Yb represents the attribute value of region b, and Laga is the spatial lag 
value for region a, indicating the neighborhood state of region a. 

By comparing the elements in the Markov transition probability matrix and spatial 
Markov transition probability matrix, the importance of the regional background to the re-
gional transition can be judged. 

2.3  Research on the driving factors based on quantile regression model 

Most regression models have been developed using the classical least squares method, fo-
cusing on the influence that the independent variable x has on the conditional expectation 
E(y│x) of dependent variable y, which is essentially the mean regression and depicts the 
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concentrated trend. However, the distribution of most data does not meet the classical as-
sumption of the least squares method, and the conditional expectation E(y│x) poorly reflects 
the whole conditional distribution (Chen, 2010). To resolve this flaw, Koenker and Bassett  

(1978) proposed the “Quantile Regression”. The quantile regression characterizes the re-
gression of the dependent variable using different independent variables quantiles, and the 
results can cover the influence of independent variables on the overall conditional distribu-
tion. In addition, this method uses the weighted average of the absolute values of the residu-
als as the objective function of minimization, so the estimation results are not affected by 
extreme values and are more stable than the least squares method. In the quantile regression, 
the τ quantile function Q(τ) of the explained variable y is defined as: 

 
      :   0 1Q inf y F y    ≥

 
(3) 

where τ represents the percentage of data below the regression line compared to the total 
data; therefore, the distribution of y is divided into two parts according to τ, the proportion 
less than quantile Q(τ) is τ, and the proportion greater than quantile Q(τ) is (1–τ).  

For panel data, the general model is: 
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(4) 
where i denotes different individuals, t denotes the time of sample observation, xit denotes 
the k×1-dimensional independent variable of the i-th individual in t period, u denotes a ran-
dom error term vector, βi denotes an unknown coefficient of k×1-dimension, and αi repre-
sents the individual effect of the i-th individual. The conditional quantile function of panel 
quantile regression parameter estimation is: 
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(5) 

where τ (0, 1), and when τ takes different values, solving the weighted absolute residual 
minimization results in the parameter estimator at different quantile points. Parameter β is 
generally solved from the following equation: 
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where ρτ(u) is a piecewise linear quantile loss function, and the specific expressions are: 
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In response to various problems in panel quantile estimation methods (Luo and Tian, 2010), 
Koenker proposed a penalty effect quantile regression method for fixed effects. The method 

appropriately adjusts the individual effect by adding the penalty term  
1

n

i
i

P  


 | with 

the adjustment parameter λ to effectively reduce the variance caused by the estimation αi 
(Koenker, 2004). After adding the penalty term, the coefficient of the explanatory variable at 
the quantile can be obtained by solving the minimization problem using the following equa-
tion: 

 
  

1 1 1 1
min

q T N N
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w y x x     
   

   
 

(8) 

where wk is the weight coefficient used to control the degree of influence on the estimation 
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coefficients of the q quantiles. 
The factors affecting the intensity of carbon emissions have been explored in the pub-

lished literature. The improved STIRPAT model based on the IPAT model proposes that the 
environmental pressure caused by human activities is mainly affected by population (P), 
affluence (A), and technological progress (T) and establishes a stochastic model between 
these three factors and the environmental impact (I) (York et al., 2003). The STIRPAT model 
is widely used in China to study various environmental impact indicators, such as carbon 
emissions, air pollution, and energy consumption. In recent years, many scholars have ex-
panded the STIRPAT model. In addition to population, affluence, and technology, influenc-
ing factors include urbanization, economic growth, foreign trade, and industrial structure 
(Jiao and Chen, 2012). In addition, the hypothesis of the environmental Kuznets curve can 
be verified by adding a quadratic term or polynomial of wealth to the model. Based on the 
STIRPAT model and relevant CEI research results, this study analyzed the impact of human 
factors, such as affluence, population, industrial structure, foreign investment, urbanization, 
and road traffic on CEI (Table 1). Furthermore, we added the quadratic term (SA) for wealth 
to verify the environmental Kuznets curve hypothesis between wealth and environmental 
impact. It should be noted that, considering that government behavior values land urbaniza-
tion, this study used land urbanization indicators to measure urbanization (Dong et al., 2018). 
CEI, urban affluence, population density, urbanization, and road density were placed loga-
rithmically into the model. 
Table 1  Main variables used in the applied model 

Type Name Units Explanation 

Explained  
variable 

Carbon Emission Inten-
sity (CEI) 

Tons / 10,000 yuan Total urban carbon emissions / GDP 

Affluence (A) yuan Per capita GDP 

Population (P) (person/km2) Total population / city area 

Industry Structure (IS) % Second industry added value / GDP 

Investment Intensity (CI) % Total fixed assets investment / GDP 

Foreign Direct Invest-
ment (FDI) 

10,000 dollars / 
10,000 yuan 

Actual use of foreign capital / GDP 

Technology progress (T) 10,000 yuan / ton of 
standard coal 

Reciprocal of energy intensity (Total 
energy consumption / GDP) 

Land urbanization (UB) % Road 500 m buffer area / city area 

Explanatory 
variables 

Road Density (RD) km/100 km2 Kilometer mileage / city area 

 

In the model, for the null hypothesis “H0: all ui=0” in the fixed effect panel model and 
F(282,5935)=21.41 with a p value is 0.0000; therefore, the null hypothesis was rejected. 
Using the LSDV method for further investigation, most individual dummy variables were 
found significant (p=0.0000), so the null hypothesis that “all individual dummy variables are 
0” could be rejected; that is, the model should not adopt the mixed regression model. Next, 
Prob > chi2 = 0.0000 was obtained using the Hausman test, which indicated that the model 
should use the fixed effect model. Therefore, the fixed-effect penalty quantile regression 
model was used to make estimates, and the R program package rqpd provided by Koenker 
was used to perform the calculation. The set estimation method was used to solve it, and the 
standard error was obtained through the bootstrap method (Koenker, 2004). 
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3  Empirical results and analysis 

3.1  Time series and spatial correlation analysis of urban CEI 

Before analyzing the spatial spillover effects and influencing factors, the time series and 
spatial correlation of urban CEI were analyzed. Figure 1 shows the spatial distribution of  

 
Figure 1  CEI spatial patterns at the city level in China (1992–2013) 
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CEI in Chinese cities from 1992 to 2013. As shown, regions with higher CEI in 1992 were 
mainly concentrated in Heilongjiang, Jilin, Inner Mongolia, Ningxia, Shanxi, Shaanxi, Hebei, 
and Henan Provinces and the Pearl River Delta region. In contrast, by 2013, high CEI re-
gions were mainly concentrated in Heilongjiang, Ningxia, and Shanxi Provinces. This dis-
tribution indicates that the overall CEI of Chinese cities has a downward trend, with par-
ticular prominence in the central, southern, and eastern regions. 

Figure 2 is a box-plot of urban CEI showing that during the 22-year study period, the av-
erage CEI of urban cities in China gradually decreased with differences between city 
shrinking and converging. To further understand the distribution of urban CEI, this study 
selected the four years, 1992, 2000, 2005, and 2013, for further kernel density estimates 
(Figure 3). The overall trend in urban CEI changed; the kernel density curve is a transition 
from “squat” to “high-thin” and the peak shifted to the left. This shows that both the overall 
intensity and overall gap in urban CEI decreased, indicating that the government’s carbon 
emission reduction measures have been effective. From the fluctuations at the end of the 
kernel density curve, between 2000 and 2013, numerical difference in cities with higher CEI 
gradually increased. This observation indicates that while the urban CEI decreased overall, a 
small part of the high intensity region has continued to miss the emission reduction target, 
and the gap with other cities increased. 

 
Figure 2  Box-plot of CEI at the city level in China 

The box-plot and kernel density estimation methods only analyze the trend and distribu-
tion of urban CEI in the time dimension but cannot reflect the spatial characteristics of CEI. 
Therefore, the global Moran’s I index was adopted to portray the spatial characteristics of 
CEI of Chinese cities and test the spatial correlation. Table 2 shows the global Moran’s I 
index annual changes during the entire study period. All the years pass the test at the 1% 
significance level, indicating that urban CEI shows significant spatial clustering and positive 
spatial correlations in spatial distribution. Between 1992 and 2013, the overall Moran’s I 
index showed a weak upward trend with fluctuations that gradually decreased. This observa-
tion indicates that the spatial agglomeration of urban CEI gradually increased, and the en-
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ergy utilization efficiency and technical level between adjacent cities had a certain spillover 
effect. Furthermore, the exchange and cooperation between cities and regions was generally 
stable while the level of spatial agglomeration decreased.  

 
Figure 3  Kernel density estimates of CEI at the city level in China 

Table 2  Moran’s I for CEI at the city level in China (1992–2013) 

Year Moran’s I Z value Year Moran’s I Z value 

1992 0.359 8.717 ** 2003 0.434 11.018 ** 

1993 0.416 10.459** 2004 0.435 11.903 ** 

1994 0.336 8.807 ** 2005 0.498 11.564 ** 

1995 0.325 8.653 ** 2006 0.478 11.003 ** 

1996 0.292 7.565 ** 2007 0.464 12.150 ** 

1997 0.460 11.741 ** 2008 0.443 11.124 ** 

1998 0.316 8.143 ** 2009 0.489 10.880 ** 

1999 0.431 11.005 ** 2010 0.448 10.599 ** 

2000 0.411 10.504 ** 2011 0.435 9.534 ** 

2001 0.414 10.453 ** 2012 0.428 11.903 ** 

2002 0.417 10.516 ** 2013 0.380 11.564 ** 

Note: * indicates significant at the 5% level, and ** indicates significant at the 1% level 

3.2  Analysis of spatial spillover effects of urban CEI 

Urban CEI is divided into four types: low intensity, relatively low intensity, relatively high 
intensity, and high intensity, corresponding to k=1, 2, 3, and 4, respectively. 

Figure 4 shows the spatial distribution of CEI in Chinese cities during the entire study pe-
riod. The upward transfer of cities accounted for 57.95%, the downward transfer of cities 
accounted for 13.07%, and cities that remained stable accounted for 28.98% of the total 
number of cities. From the perspective of spatial distribution, the areas of upward transfer 
were mainly concentrated in northeastern and central China as well as provincial areas of 
Inner Mongolia, Shandong, and Guangdong. The downward transfer areas were concen-
trated in Guangxi, Yunnan, Shanxi, Ningxia, and southern Gansu Provinces, presenting a 
strong geographical agglomeration. 

Table 3 shows the Markov transition probability matrix for the type of CEI in China. 
From the traditional Markov probability matrix, four important observations can be made. 
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Figure 4  Spatial patterns of CEI changes in intensity types at the city level in China (1992–2013) 

Table 3  Markov matrix for CEI classes at the city level in China (1992–2013) 

t/t+1 n 1 2 3 4 

1 1439 0.896 5 0.098 0 0.005 6 0 

2 1457 0.129 0 0.771 4 0.095 4 0.004 1 

3 1512 0.001 3 0.171 3 0.779 8 0.047 6 

4 1535 0.002 0 0.000 7 0.109 4 0.887 9 
 

(1) The probability values on the diagonal of the probability matrix are larger than the 
probability values of the non-diagonal. The lowest value is 77.98%, and the highest value is 
89.65%; that is, throughout the study period, the minimum probability of maintaining the 
original state is 77.98%, which indicates that the city’s CEI type has strong stability.  

(2) On the diagonal, the stability of the relatively low intensity and relatively high inten-
sity in the middle (77.14%, 77.98%) is significantly lower than the low and high intensity 
types at both ends (89.65%, 88.79%). From the probability values on both sides of the di-
agonal, the probability of the two types of upward transfer in the middle (12.9%, 17.13%) is 
greater than the probability of downward transfer in the middle (9.54%, 4.76%), which in-
dicates that the relatively low intensity and relatively high intensity types show good mo-
mentum for upward transfer.  

(3) There is a “Matthew effect” in the intensity of urban carbon emissions. In the type 
transfer process for consecutive years, the probability of the region maintaining low inten-
sity is 89.65%, and the probability of a downward transfer is only 10.35%, which indicates 
that there is a convergence of the time dimension in the region with high carbon emission 
efficiency. The probability of maintaining an initial high-intensity type is 88.79%, and the 
probability of upward transfer is only 11.21%, indicating that the region may fall into the path 
of resource dependence and path locking, and it will be difficult to achieve energy efficiency.  

(4) The non-diagonal and non-diagonal sides have a small probability value, and the 
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maximum value is only 0.54%. Therefore, achieving technological progress and improving 
carbon emission efficiency is a continuous and gradual process. It is difficult to achieve 
rapid development in a short period of time, but at the same time, rapid development is not 
entirely impossible. 

China’s urban CEI is not independent of geography. City CEI is often affected by regional 
location, with strong spatial agglomeration and spatial interaction effects (Lin and Huang, 
2011; Wang et al., 2013). Concurrently, knowledge and technology spillovers have regional 
characteristics, and the spillover intensity and spatial distance attenuation have exponential 
function patterns (Wang et al., 2003). Figure 5 is a spatial distribution diagram of urban CEI 
type transfer after joining the urban neighborhood state. As shown, regions where the re-
gional and neighborhood state types are an upward transition mainly concentrated in the 
northeastern and central China, as well as Shandong and Guangdong. The areas transferring 
downwards are mainly distributed at the junction of Shaanxi, Gansu, and Sichuan provinces, 
which shows clear geographical agglomeration. 

 
Figure 5  Spatial patterns of CEI class transition for city units also showing neighborhood transitions in China 
(1992–2013) 

The spatial Markov chain method can discern the influence of different neighborhood 
types on the probability of urban CEI class transition. Based on the traditional Markov tran-
sition probability matrix, the neighborhood type is added to obtain the spatial Markov tran-
sition probability matrix (Table 4). Assuming that the regional background (neighborhood 
type of the region) is not important for the transfer of the region, then the transfer probability 
matrix under different regional backgrounds should be equal and the corresponding elements 
in the traditional Markov transfer probability matrix should be equal. Comparing Table 3 
and Table 4, we make four observations.  

First, this assumption is not true. Based on different regional background conditions, the 
state transition of the region shows a large difference. Therefore, the regional background has 
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a significant impact on the state transition of the region. 

Table 4  Spatial Markov matrix for CEI classes at the city level in China (1992–2013) 

Spatial Lag t/t+1 n 1 2 3 4 
1 659 0.9408 0.0561 0.0030 0 
2 357 0.1345 0.7703 0.0924 0.0028 
3 257 0.0039 0.2257 0.7237 0.0467 

1 

4 176 0 0 0.1364 0.8636 
 

1 478 0.8766 0.1192 0.0042 0 
2 467 0.1370 0.7687 0.0878 0.0064 
3 314 0 0.2070 0.7516 0.0414 

2 

4 204 0.0098 0.0049 0.1422 0.8431 
 

1 244 0.8361 0.1516 0.0123 0 
2 462 0.1364 0.7727 0.0887 0.0022 
3 483 0.0021 0.1843 0.7723 0.0414 

3 

4 313 0.0032 0 0.1374 0.8594 
 

1 58 0.8103 0.1724 0.0172 0 
2 171 0.0760 0.7778 0.1404 0.0058 
3 458 0 0.1026 0.8384 0.0590 

4 

4 842 0 0 0.0855 0.9145 
 

Second, different neighborhood types have varying influences on regional state transitions. 
Generally speaking, if a region is adjacent to a region with low CEI, the probability of its 
CEI transferring upward will increase and transferring downward will decrease, and the 
neighbor will play a positive role in the regional state. If a region is adjacent to a region with 
high CEI, the probability of the CEI transferring upward will decrease and transferring 
downward will increase, and the neighbors will have a negative effect on the regional state. 
For example, for a region with high CEI, the probability of upward transfer is 11.21%, and 
in the low CEI background context, the probability of upward transfer increases to 13.64%. 
In the context of high intensity regions, the probability of an upward transfer is reduced to 
8.55%. For regions with low CEI, the probability of downward transfer is 10.35%, when in 
the low CEI background context, the probability of downward transfer is reduced to 5.92%, 
while in the context of high intensity regions, the probability of its downward transfer in-
creased to 18.97%.  

Third, regional state types are affected differently by the regional background. For regions 
with lower CEI, when the neighborhood state types are 1, 2, and 3, the probabilities of up-
ward and downward transfer are similar, about 13% and 9%. However, when there is an ad-
jacent region with high CEI, the probability of upward transfer decreases to 7.6% and 
downward transfer increases to 14.62%. This observation indicates that areas with low CEI 
are more sensitive to neighbors with high CEI and are more easily negatively affected.  

Fourth, from a dynamic perspective for the whole study period, 50.9% of the regions and 
the neighbors have the same state transition direction. The number of regions where the re-
gion and the neighbor type are simultaneously transferred upwards is 110, the number with 
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downward transfer is 3, and the number of states that have not transferred is 31. Therefore, 
the regional and neighborhood CEI state transfer show synergy, with most having a coordi-
nated upward transfer.  

From this analysis, we conclude there is a spatial spillover effect on the CEI based on the 
regional background, and the type of spatial spillover has important significance. To test the 
statistical significance of this spatial spillover, a hypothesis test is required. The original 
assumption is that the types of CEI in the region are independent, regardless of the type of 
spatial lag. The model formula for the specific test is as follows: 

 
 

 

1 1 1
2

ijn lk k k
ij

b
ijl i j

m
S log

m l  

       
    


 

(9) 

where, k is the CEI type; mij is the traditional Markov transition probability, mij(l) and nij(l) 
represent the spatial Markov transition probability of the spatial lag type l and the corre-
sponding number of cities; and Sb obeys the chi-square distribution with a degree of freedom 
of k(k‒1)2. 

In the case where the degree of freedom is not adjusted, i.e., the element with a zero in the 
transition probability matrix throughout the study period is excluded, the degree of free-
dom is 4×(4‒1)2=36. From this formula, under the confidence level of α=0.005, 

2 (93.76 40 66.77)bS    . Therefore, we reject the assumption that China’s urban CEI 
class transfer is independent in space during the 1992–2013 period, and that there is a sig-
nificant spatial correlation between the type of CEI and the type of state in the field. 

Energy intensity is an important indicator of regional socioeconomic development, which 
has strong energy dependence; therefore, the spatial spillover effect pattern for energy inten-
sity has important significance. The spatial Markov chain analyses show that the CEI in 
Chinese cities has significant spatial spillover effect and regional synergy. The spatial spill-
over effect shows two patterns: when in the high CEI region, the probability of rising local 
CEI increases, while in the low CEI region, the probability of a decline in local CEI in-
creases. The results further illustrate the spatial correlation and spatial interaction of regional 
energy intensity. The regional synergy shows that the change in energy intensity in the re-
gion tends to be consistent, and a coordinated change of regional economic development 
leads to a coordinated change of energy consumption within the region. Concurrently, dif-
fering development patterns between regions show different energy needs and intensities. 

Regional economic development is a complex system formed by the interaction of labor, 
capital, technology, and other elements in specific systems, resources, cultures, and other 
geographical environments (Zeng et al., 2015). Therefore, development has regional differ-
ences and intra-regional similarities. During marketization, the flow of factors between re-
gions has caused various spillover effects, while payment transfers and technology diffusion 
have caused polarization and spillovers in China’s regional economic development (Long, 
2003). The market potential theory of new economic geography points out that areas with 
high economic level and rapid development have great demand for products in surrounding 
areas, leading to a strong driving effect on them (Pan, 2012), and economic spillover effects 
make the energy demand between regions more spatially dependent. Moreover, transporta-
tion infrastructure is characterized by regional externality, with the network connecting 
many regions into one, which reduces the cost of factor flow (Zhang, 2012) and promotes 
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the flow of inter-regional factors. More frequent factor flows require more energy to support 
but flows such as labor and capital strengthen the correlation in energy demand between 
regions. According to the first law of geography, the spatial correlation and dependence of 
local development are more manifested within the region. Under the conditions of the inter-
nal factor flow and improved interconnection infrastructure construction, the regional inter-
nal economic development pattern has gradually converged. In addition, technological 
spillover effects from exogenous and endogenous forces also affect regional energy intensity 
and characteristics (Li and Wang, 2008). The socio-economic activities of the region have 
complex spatial interaction processes, and patterns in spatial spillover effects of energy in-
tensity are the result of the interaction of various factors, such as economic and institutional 
factors. 

3.3  Analysis of driving forces of urban CEI 

Although total carbon emissions in China have been increasing in the past two decades 
(1992–2013), the CEI has shown a downward trend, as the economic growth rate is gener-
ally higher than the growth rate of carbon emissions (Li et al., 2010; Zhang, 2010; Cheng et 
al., 2013). At present, China is in a transitional period of economic growth, dropping from 
10.45% in 2010 to 6.9% in 2017. In this context, the nation’s emission reduction goals face a 
formidable challenge. The goal of analyzing the driving forces of urban CEI is to identify 
key factors that promote and reduce the intensity of carbon emissions from the urban level 
and identify effective measures for different types of cities. 

To compare the mean regression coefficients of the traditional panel data model, we first 
estimated the common fixed effect panel model. In the panel quantile model estimation, five 
representative points, 10%, 25%, 50%, 75%, and 90%, were selected for estimation, and the 
total results are shown in Table 5. The panel quantile regression results show the variation in 
the elastic coefficients of all variables in the urban CEI distribution. We first focus on the 
impact of urban affluence on urban CEI. In both the mean regression and quantile regression, 
at a significance level of 1%, the logarithmic primary term for GDP per capita is positive 
and the secondary term is negative, indicating that there is an inverted “U-shaped” relation-
ship between per capita GDP and CEI. Therefore, the intensity of carbon emissions in cities 
increases with the increase in per capita GDP. After the per capita GDP reaches a certain 
level, the CEI will decrease with increasing per capita GDP. 

From the regression results, population density and technological progress can signifi-
cantly reduce urban CEI. Energy is the basic guarantee for the living and production of ur-
ban residents, and demographic factors are closely related to urban energy demand. As a key 
factor in the demographic factor, population density mainly affects the CEI by changing the 
way people live and behave, with two impacts (Liu et al., 2017; Chai, 2013). First, some 
cities will benefit from the economies of scale and agglomeration effects of high urban 
population density, promoting the sharing of urban public service facilities, the formation of 
knowledge spillovers, labor pools, and specialized intermediates to enhance urban produc-
tivity and reduce energy consumption. However, too high an urban population density cre-
ates the problem of uneconomical agglomeration. Overcrowding leads to rising competition 
costs, traffic congestion, and excessive construction, operation and maintenance costs for 
excessive infrastructure demand (Cai and Sun, 2013; Chen and Yang, 2007). From the em-
pirical results presented in this study, the population density has a significant negative effect 
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on CEI and there is no clear uneconomical agglomeration phenomenon. The absolute value 
of the estimated coefficients for each quantile of population density is greater than the mean 
regression coefficient, indicating that the mean regression has a tendency to exaggerate the 
negative influence. As the quantile changes, there is a significant difference in the popula-
tion density estimation coefficient. The absolute value of the quantile coefficient greater than 
50% is significantly larger than the absolute value of the estimated coefficient for the first 
50% quantile, and the estimated coefficient varies from –0.0813 for the 75% quantile to 
–0.0665 for the 10% quantile. The compact emission reduction effect from population is 
clear for cities with high CEI; for cities with lower CEI, appropriately increasing population 
density is not the preferred emission reduction measure.  

Table 5  Fixed effect and quantile regression estimates 

(1) (2) (3) (4) (5) (6) 
Variables 

FE q10 q25 q50 q75 q90 
A 2.138*** 1.5515*** 1.6227*** 1.6329*** 1.4469*** 1.2669*** 
 (8.85) (4.97) (5.58) (5.97) (5.16) (5.08) 
       

SA –0.140*** –0.1018*** –0.1066*** –0.1102*** –0.1071*** –0.1023*** 
 (–10.60) (–5.69) (–6.14) (–6.49) (–6.15) (–7.07) 
       

P –0.210*** –0.0665** –0.0747*** –0.0792*** –0.0813*** –0.0771*** 
 (–2.76) (–2.42) (–2.65) (–2.89) (–2.97) (–2.81) 
       

IS 0.369*** 0.1758** 0.1963** 0.3458*** 0.4681*** 0.4350*** 
 (3.21) (2.25) (2.16) (2.85) (4.88) (5.22) 
       

CI 0.159 0.0982** 0.0954 0.1408 0.2881** 0.4066*** 
 (1.65) (2.42) (1.36) (1.46) (2.53) (3.34) 
       

FDI 5.427** 8.6024*** 7.7062*** 6.3488*** 4.9094*** 3.3846*** 
 (1.99) (5.15) (4.85) (4.09) (3.84) (3.03) 
       

T –0.0221*** –0.2610*** –0.2528*** –0.2087*** –0.0922 –0.0182 
 (–4.80) (–4.48) (–3.68) (–2.71) (–1.12) (–0.41) 
       

UB 0.0426*** 0.0347*** 0.0377*** 0.0474*** 0.0672*** 0.0836*** 
 (4.79) (4.77) (4.9) (5.4) (5.98) (6.77) 
       

ROD 0.0435*** 0.0301*** 0.0248*** 0.0187*** 0.0092 0.00349 
 (6.04) (3.17) (3.06) (2.64) (1.42) (0.65) 
       

Cons –6.114*** –4.4682*** –4.5841*** –4.3932*** –3.0907** –1.9161* 
 (–4.91) (–3.14) (–3.58) (–3.76) (–2.54) (–1.71) 

N 6226 6226 6226 6226 6226 6226 

Note: The t statistic is represented in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01 

In general, technological progress reduces energy intensity by increasing energy effi-
ciency, that is, consuming less energy for the same GDP. However, technological progress 
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has both positive and negative effects on energy consumption. While technological progress 
can improve energy efficiency, at the same time, the return effect means that technological 
progress stimulates economic activity and increase energy consumption, thereby offsetting 
energy savings due to efficiency gains. In addition, due to the threshold and time lag effect 
for technological progress (Li and Zhou, 2006; Li and Qu, 2012), in less developed areas, 
the emission reduction effect from technological progress may not be reflected. The empiri-
cal results presented in this study show that technological progress has a negative effect on 
CEI, and the negative effect of technological progress under high quantile (75% and 90%) is 
not significant, while other quantiles at the 1% confidence level show a significant negative 
effect. The absolute value of the estimated coefficient increases as the quantile decreases, 
and the negative effect of technological advancement reaches a maximum at the 10% quan-
tile. Therefore, technological progress is the main emission reduction factor in areas with 
low CEI. The energy saved by technological progress is greater than the energy demand in-
creased by economic growth. In areas with high CEI, the contribution of technological pro-
gress to emission reductions is not significant. 

Factors including industrial structure, investment intensity, foreign capital intensity, ur-
banization, and road density have contributed to the increase in urban CEI. Prior work sug-
gests that one of the driving forces for China’s carbon emission growth comes from indus-
trial structure (Zhang, 2011). In a sample from this study, the number of cities in which the 
secondary industry added value accounted for more than 50% of the GDP, approximately 
58% of the total cities in China in 2013, and China’s urban industrial structure is still domi-
nated by the secondary, tertiary, and then primary industries. Furthermore, the internal 
structure of the secondary industry is also unreasonable, with high energy consumption, high 
emissions, low efficiency, and strong energy dependence (Zheng and Liu, 2011). Because 
estimated coefficients show significant positive values in both mean regression and quantile, 
the proportion of the secondary industry is an important factor leading to an increase in ur-
ban CEI in China. For different CEI condition quantiles, the estimation coefficient decreases 
with the decrease of the quantile point, which indicates that the secondary industry has a 
stronger promotion effect in areas with high CEI. Because most regions with high CEI are 
still in the stage of rapid industrialization, coal-led energy structure and extensive industrial 
development patterns have increased energy consumption. Regions with relatively low CEI 
are mostly economically developed regions. Environmental regulation, industrial transfer, 
and upgrading have generally improved the energy efficiency of the secondary industry 
(Xiao et al., 2014; Zhao and Qiu, 2014).  

The intensity of investment also promotes the growth of carbon emissions. The estimated 
coefficient increases with the increase in the quantile, but it is not significant at the mean 
return and 25% and 50% quantile points. In areas with high CEI, investment-driven exten-
sive economic development is one reason for the increase in carbon emissions (Guo, 2010).  

The relationship between foreign investment and energy consumption in the literature has 
generally been discussed in conjunction with the “Pollution Haven Hypothesis” and “Pollu-
tion Halo Hypothesis”. The “Pollution Haven Hypothesis” is that FDI has transferred 
high-energy and high-pollution industries, which has led to an increase in carbon emissions 
to the host country. The “Pollution Halo Hypothesis” is that under domestic environmental 
regulation, FDI raises the technical level of the host country through knowledge and tech-
nology spillovers, which improve energy efficiency and reduce energy intensity. The em-
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pirical results from this study support the “Pollution Haven Hypothesis”. From the perspec-
tive of city level, the intensity of foreign investment has a significant positive effect on the 
intensity of carbon emissions. In terms of different conditional quantile levels, foreign in-
vestment intensity shows a stronger promotion effect on areas with low CEI. One possible 
explanation is that most regions with high CEI are those with relatively low economic and 
technical development. The emission reduction effect brought by FDI technology spillover 
offsets some of the increased energy consumption; low CEI, due to the high competitive 
pressure of FDI companies, has hindered the technology spillover of FDI (Li and Liu, 2011).  

China’s urbanization is accompanied by urban land expansion and utilization type trans-
formation, which has changed the urban carbon sink and carbon cycle process. Concurrently, 
urban land development, including infrastructure and building construction, will also bring 
subsequent energy needs (Zhao et al., 2009). Our empirical results show that land urbaniza-
tion has a significant positive role in CEI, and the estimation coefficient increases with in-
creases in the conditional quantile. In areas with high CEI, the positive effect of land ur-
banization reaches a maximum, showing that local governments relying on land finance and 
urbanization of extensive and contagious land development have brought enormous pressure 
on urban emission reduction (Tian, 2011).  

A reasonable urban structure can reduce traffic congestion and improve traffic efficiency, 
thereby reducing emissions. However, our empirical results show that excluding the 75% 
and 90% conditional quantile levels, which are insignificant, road density plays a significant 
positive role in the CEI at a confidence level of 1%. These results are supported by existing 
literature (She et al., 2015). The estimated coefficient decreases with the decrease in quantile, 
indicating that the effect of road density is stronger in areas with lower CEI. One possible 
explanation is that transportation has become an important factor in increasing energy con-
sumption in areas with low CEI (Pan et al., 2010). That is, the increase in road density in 
low CEI areas has improved urban accessibility, spurred demand for transportation, and in-
creased energy consumption in the transportation sector (Park, 2014). 

The heterogeneity of urban CEI driving forces is mainly affected by two factors. From the 
vertical perspective, the main driving forces of CEI vary at different stages of urban devel-
opment. From the horizontal perspective, differences in urban development patterns will 
also cause differences in CEI driving forces. In the early and middle stages of urbanization, 
industrialization and urbanization are rapid with city expansion and development from the 
investment of a large amount of capital; the relatively primary industrial structure and ex-
tensive growth increase energy consumption. From the middle and late stages of urbaniza-
tion, the speed of urbanization and industrialization slow down and the industrial structure 
becomes gradually optimized, which improves the city’s functions and attracts foreign in-
vestment. Under the combined effect of FDI technology spillovers and internal and external 
factors accumulated by local technology, energy efficiency gradually increases. However, 
due to the improvement of the traffic network and demand for economic development, the 
mobility between the elements increases, resulting in an increase in energy consumption in 
the transportation sector. In addition, the city’s development pattern also significantly affects 
the city’s CEI. For example, resource-based cities in Shaanxi, Shanxi, Inner Mongolia, and 
Heilongjiang rely on the development and utilization of resources to form an industrial clus-
ter with high energy consumption and high emissions. Therefore, the industrial structure of 
these cities is still the main factor in carbon emissions. In more developed cities along the 
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eastern coast, the rising proportion of service industries, industrial transfer, and upgrades 
have reduced the energy consumption of industrial structures. 

This analysis shows that for cities with low CEI, economic growth and technological 
progress are key measures to reduce carbon emissions. In addition, appropriate population 
density and compact urban development patterns can also reduce emissions, while foreign 
investment intensity and traffic emissions are the main factors that increase CEI. For cities 
with high CEI, focusing on the development of compact cities, appropriately increasing 
population density, and exerting population size and agglomeration effects are important 
means of reducing emissions, while industrial emissions, extensive capital investment, and 
urban land spread are the main factors promoting CEI.  

4  Discussion and conclusions 
This study uses the kernel density estimation method and the spatial autocorrelation method 
to derive the temporal and spatial evolution pattern of CEI in 283 cities in China for the 
1992–2013 period. The kernel density estimation results show that the overall CEI for cities 
decreased and the difference narrowed. In addition, the distribution of urban CEI does not 
follow a normal distribution, and the information contained at both ends of the distribution 
cannot be expressed by mean regression. Therefore, the quantile regression method is a bet-
ter choice for exploring the driving forces of CEI. The spatial autocorrelation Moran’s I in-
dex indicates that there has been a significant spatial agglomeration of urban CEI that 
gradually increased, but differences between regions tend to be stable.  

The spatial dynamic analysis process based on the Markov chain and spatial Markov 
chain shows that there is a Matthew effect in China’s urban CEI, and both low-intensity and 
high-intensity cities have shown a maintenance in the dynamic transfer process for 
neighboring years. Moreover, a “spatial spillover” effect in urban carbon emissions is clear. 
There are heterogeneity characteristics of spillover effects in different regional contexts, 
wherein low CEI neighbors can effectively increase the probability of CEI transferring up-
wards and vice versa. In addition, we find a trend in the regional convergence for urban CEI, 
and more than half the regions have the same dynamic direction of urban and regional back-
grounds in adjacent years. 

To further explore the mechanisms driving urban CEI, we used the quantile regression 
method to evaluate economic development, population density, industrial structure, capital 
investment intensity, foreign capital intensity, technological progress, land urbanization, and 
road density. We find that urban economic development level, population density, and tech-
nological progress are conducive to reducing urban CEI, while industrial structure, capital 
investment intensity, foreign investment intensity, land urbanization, and road density in-
crease urban CEI. In cities with low CEI, economic growth and technological progress are 
key factors for reducing emissions. Appropriate population density and compact urban de-
velopment patterns can also reduce emissions; while foreign investment intensity and traffic 
emissions are the main factors in increasing carbon emissions. In cities with high CEI, fo-
cusing on the development of compact cities, appropriately increasing population density, 
and exerting population size and agglomeration effects are important means of reducing 
emissions; industrial emissions, extensive capital investment, and urban land expansions are 
the main factors in increasing CEI. We propose that in areas with low CEI, foreign invest-
ment should be directed to low-energy, low-pollution, high-efficiency, high-tech industries, 
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while at the same time exerting the knowledge spillover effect brought by foreign invest-
ment. Furthermore, focusing on road traffic energy consumption, improving transportation 
structure, and developing transportation energy-saving technologies can be used to achieve 
emission reduction goals. For regions with high CEI, optimizing industrial structure and im-
proving capital utilization efficiency are key to further reducing CEI. However, local gov-
ernments should diminish the disorderly expansion of cities due to excessive dependence on 
land finance. 

More generally, this study finds that the spatial Markov chain method can effectively 
measure the spatial and temporal evolution process and patterns of CEI in cities and regions, 
and intuitively reveal the heterogeneity and regional characteristics of the “space spillover” 
effect of CEI. This method narrows the evolution scale to adjacent years, shows the con-
tinuing process of regional CEI evolution, and highlights regional transfer trends in the con-
text of the neighborhood. In addition, the scale of research at the urban level can better ex-
plain the heterogeneity of urban development within provinces and the convergence of pro-
vincial junctions, providing a scientific basis for governments to formulate emission reduc-
tion strategies for different cities. Quantile regression analysis is an important mechanism 
for exploring driving forces that can identify more comprehensive explanations for CEI. 
This method emphasizes the heterogeneity of driving forces in the context of different CEI, 
thus avoiding the idealized mean regression model. The results of this research better reflect 
true conditions, and as such can be used to formulate targeted policy measures for various 
cities across the country. 
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