
J. Geogr. Sci. 2019, 29(1): 29-48 
DOI: https://doi.org/10.1007/s11442-019-1582-5 

© 2019    Science Press    Springer-Verlag 

                    
Received: 2018-07-20  Accepted: 2018-09-10 
Foundation: National Key Research and Development Program of China, No.2017YFC1502904; National Natural Science 

Foundation of China, No.41530749, No.41571043 
Author: Ma Danyang (1990–), PhD, E-mail: mady.13s@igsnrr.ac.cn 
*Corresponding author: Yin Yunhe (1979–), PhD and Professor, E-mail: yinyh@igsnrr.ac.cn 

   www.geogsci.com   www.springerlink.com/content/1009-637x 

Sensitivity of arid/humid patterns in China to future 
climate change under a high-emissions scenario 
MA Danyang1,2,3, DENG Haoyu1,2, *YIN Yunhe1, WU Shaohong1,2, ZHENG Du1,2 

1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Re-
sources Research, CAS, Beijing 100101, China; 

2. University of Chinese Academy of Sciences, Beijing 100049, China; 
3. Henan Province Development and Reform Commission, Zhengzhou 450018, China 

 

Abstract: Changes in regional moisture patterns under the impact of climate change are an 
important focus for science. Based on the five global climate models (GCMs) participating in 
the Coupled Model Intercomparison Project Phase 5 (CMIP5), this paper projects trends in 
the area of arid/humid climate regions of China over the next 100 years. It also identifies the 
regions of arid/humid patterns change and analyzes their temperature sensitivity of re-
sponses. Results show that future change will be characterized by a significant contraction in 
the humid region and an expansion of arid/humid transition zones. In particular, the 
sub-humid region will expand by 28.69% in the long term (2070–2099) relative to the baseline 
period (1981–2010). Under 2°C and 4°C warming, the area of the arid/humid transition zones 
is projected to increase from 10.17% to 13.72% of the total of China. The humid region south 
of the Huaihe River Basin, which is affected mainly by a future increase in evapotranspiration, 
will retreat southward and change to a sub-humid region. In general, the sensitivity of re-
sponses of arid/humid patterns to climate change in China will intensify with accelerating 
global warming. 
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1  Introduction 
The dynamic responses of terrestrial systems to climate change have been at the frontier for 
research in the discipline of geography (Wu et al., 2016). A climate zone is the synthesis of 
many climatic factors and is closely related to broad-scale vegetation type (Bailey, 2009). It 
allows both moisture and thermal conditions to be examined simultaneously for a better as-
sessment of multivariate climate change (Grundstein, 2008). The mean global surface tem-
perature has increased by ~0.85°C (0.65°C–1.06°C) between the years 1880 and 2012 (IPCC, 
2013). Climate scenarios project a further increase in global mean surface temperature of 
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0.3°C to 4.8°C by the end of 21st century. Accelerating climate change is projected to have major 
implications for climate zones and may cause significant zonal shifts (Mahlstein et al., 2013). 

The impact of climate change on the spatial distribution of climate zones has become in-
creasingly evident in recent decades at both global (Chan et al., 2015; Reid et al., 2015; 
Huang et al., 2016a) and regional (Gerstengarbe et al., 2009; Feng et al., 2012; Zhu et al., 
2015) scales. According to observational studies, there have been significant expansions in 
semi-arid regions worldwide (Huang et al., 2016a), as well as poleward shifts in temperate, 
continental, and polar climate zones (Chan et al., 2015). Dry and wet climate zones in China 
have shown marked fluctuations and contrasts over the latter half of the 20th century (Yang 
et al., 2002). The drying trend in northern China has extended to the east and south (Ma et 
al., 2005). The boundary between semi-arid and sub-humid regions has likewise migrated 
(Zheng et al., 2013). The dynamics of climate zones have been used to evaluate the per-
formance of climate models, based on methods such as Köppen classification (Lohmann, 
1993; Gnanadesikan et al., 2006), Thornthwaite clustering (Elguindi et al., 2014), and 
K-means clustering (Zhang et al., 2016). Belda et al. (2015) suggested that the global climate 
models (GCMs) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) needs to 
be improved to boost the performance in simulating the distribution of climate classification.  

Changes in drought risk and aridity in many regions are among the primary effects an-
ticipated under global warming (Dai, 2013; Trenberth et al., 2013; Greve et al., 2015). 
Changes associated with moisture conditions have great effects on the spatial and temporal 
distribution of arid/humid climate regions (AHCRs) (Yin et al., 2015), but quantifying those 
effects remains a challenge. Recent studies have reported a general consensus that projected 
changes in temperature and precipitation will cause considerable shifts in AHCRs over the 
global landmass (Hanf et al., 2012; Feng et al., 2014; Rohli et al., 2015). According to Feng 
et al. (2014), existing climate types will gradually shift towards warmer and drier types over 
2071–2100, with notable expansion in arid and semi-arid climates by between 8.4% and 
15.9%. Projections of more arid and/or semi-arid regions in the 21st century have been in-
vestigated in West Africa (Sylla et al., 2015), the Mediterranean (Gao et al., 2008; 
Alessandri et al., 2014), and China (Li et al., 2013; Cheng et al., 2015). As greenhouse gas 
emissions intensify in future, the area of bioclimatic zones prone to desertification in China 
will tend to increase (Ci et al., 2002). Under the high-emissions scenario, the range of Cwa 
(Monsoon-influenced humid subtropical climate) and Dwa (Monsoon-influenced 
hot-summer humid continental climate) climates in Eastern China is projected to expand 
(Cheng et al., 2015). Zhao et al. (2014) pointed out that arid and semi-arid areas globally 
will experience a significant temperature rise under various concentration pathways. Wet 
regions will become wetter and dry regions become drier. However, to what extent future 
climate change will affect regional shifts in China is still uncertain and differs from region to 
region. 

Following these considerations, climate observations and CMIP5 GCM simulations were 
used in this study to estimate reference evapotranspiration based on the revised Pen-
man–Monteith model. Combining reference evapotranspiration with precipitation, an aridity 
index was constructed to classify arid/humid climate types. We examined the trend in hy-
droclimatic variables under the high-emissions scenario and investigated the change in 
AHCR areas. This reveals the sensitivity of arid/humid patterns to climate change and indi-
cates the regions that are most sensitive. The results help to understand more deeply the 
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driving mechanisms responsible for variations in the land surface system, the evolution of 
plant communities, and the probability of desertification. They also provide a scientific 
foundation for developing appropriate strategies for adapting to climate change. 

2  Materials and methods 

2.1  Data sources 

2.1.1  Meteorological data 

We obtained quality-controlled monthly observations of maximum and minimum air tem-
peratures, precipitation, relative humidity, sunshine duration, and wind speed from 581 me-
teorological stations in China for the period 1981–2010 (Figure 1). Data were provided by 
the National Meteorological Center of the China Meteorological Administration (CMA). 
Observations from individual meteorological stations were deleted from the dataset if a sta-
tion was built after 1981, one station’s location changed during the study period, another 
station was closed before 2010, or more than 5% of the data were missing. Missing data 
were estimated by averaging the values obtained from the same station during other years. 
To meet the model input requirements, ground-based point meteorological data were inter-
polated on a 0.5° × 0.5° grid using a thin-plate spline method. 

 
Figure 1  Distribution of 581 meteorological stations and arid/humid climate regions across China for the pe-
riod 1981–2010 
2.1.2  Climate simulations 

To derive the regional mean temperature changes and corresponding spatial and temporal 
shifts in AHCRs across China, monthly climate data from 1950 to 2099 were utilized from 
the CMIP5 multi-model dataset (Taylor et al., 2012). These data are available from the In-
ter-Sectoral Impact Model Intercomparison Project (ISI-MIP) (Hempel et al., 2013; War-
szawski et al., 2014). Five GCMs (HadGEM2-ES, IPSL-CM5A-LR, GFDL-ESM2M, 
MIROC-ESMCHEM, and NorESM1-M) with a horizontal resolution of 0.5°×0.5° partici-
pate in the ISI-MIP (Table 1). The representative concentration pathway (RCP) 8.5 scenario 
with radiative forcing of ~8.5 W m–2 in 2100 was selected (Moss et al., 2010). This scenario 
provides a large range of temperature increases and is suitable for assessing the impacts of 
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future climate change (Mahlstein et al., 2013; Piontek et al., 2014; Leng et al., 2015). 

Table 1  Global climate models used in this study 

Model name Original resolution 
(latitude × longitude) Modeling center Country 

NorESM1-M 1.875° × 2.5° Norwegian Climate Centre Norway 

MIROC-ESM-CHEM 2.8°×2.8° Atmosphere and Ocean Research Institute 
(The University of Tokyo), National Institute 
for Environmental Studies, and Japan 
Agency for Marine-Earth Science and Tech-
nology 

Japan 

IPSL-CM5A-LR 1.875°×3.75° Institut Pierre-Simon Laplace France 

HadGEM2-ES 1.25°×1.875° Met Office Hadley Centre UK 

GFDL-ESM2M 2.0°×2.5° Geophysical Fluid Dynamics Laboratory USA 

Before simulation data are used to study climate change impacts, correction is recom-
mended to reduce the bias of climate model simulations compared with the observed climate 
(Feng et al., 2012; Engelbrecht et al., 2016). Here, the simulated climatic variables were 
adjusted to have the same climatological annual mean as the real observations over China 
for the baseline period 1981–2010. First, the annual mean anomalies were calculated, based 
on differences between observed and GCM-generated data for the baseline period, for each 
of the five model simulations. The anomalies were then added to the scenario data to provide 
model inputs for the period 2011–2099 (Yin et al., 2013). 

The shifts in climate zones were analyzed under the 21st century warming levels from 
1°C to 6°C, relative to the baseline period. Projecting impacts for a given global warming is 
useful, as this is consistent with the approach of the UNFCCC (United Nations Framework 
Convention on Climate Change) in phrasing mitigation targets (Vautard et al., 2014; Swain 
et al., 2015; Roudier et al., 2016; Schleussner et al., 2016). Although global temperature 
thresholds provide useful information, local conditions are most important to those living 
with, and adapting to, the consequences of climate change (Joshi et al., 2011). Here, the 
years of warming over China were determined by applying an 11-year low-pass filter to the 
annual regional land-surface temperature anomalies, to eliminate inter-annual variability for 
each model. These years are generally considered to be the central points of the 11-year cli-
matic means, as suggested by difference calculations between climate zones in China (Chen 
et al., 2015, Engelbrecht et al., 2016). 

The multi-model ensemble (MME) means of the five models were computed. These 
models are assumed to be independent and are given equal weight in this study. The MME 
can be used to provide both a consensus representation of the climate system and a measure 
of the confidence to be placed in the consensus (Taylor et al., 2012). The MME approach is 
expected to outperform individual models in simulating global and regional climates (Pierce 
et al., 2009; Knutti et al., 2010; Zhao et al., 2014). The GCM ensemble means show good 
agreement with observed values in China and are thus able to reproduce variations in aridity 
during the baseline period (Yin et al., 2015). 

2.2  Arid/humid zone classification 

Many previous studies have relied on Köppen climate classification schemes (Crosbie et al., 
2012; Chan et al., 2016; Engelbrecht et al., 2016), based primarily on temperature and pre-
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cipitation. The complex interplay of water supply and demand, including both precipitation 
(P) and reference evapotranspiration (ETo), is critical for projecting changes in dryness 
(Cook et al., 2014; Greve et al., 2015; Mcevoy et al., 2016) and dryland dynamics (Huang et 
al., 2016b). The aridity index (AI), usually expressed as the ratio between ETo and P 
(Budyko, 1974; Wu et al., 2010), is widely used as an indicator of regional moisture condi-
tions and is an effective criterion to classify AHCRs. 

In general, ETo reflects the maximum water demand of an environment to maintain its 
water balance, and P reflects the water supply over large regions. Currently, since it is diffi-
cult to obtain observed ETo over large regions, ETo is often simulated using models. Rea-
sonable prediction of future ETo is important to reduce uncertainty in the assessment of cli-
mate-zone shifts. One widely used method to simulate ETo is the Penman–Monteith model 
(Allen et al., 1998), which emphasizes the important role of radiative and aerodynamic con-
trols on ETo. It is thus more appropriate for projections of long-term drought and dryland 
conditions under climate change (Sherwood et al., 2014; Huang et al., 2016b). The modified 
Penman–Monteith model, recommended in 1998 by the Food and Agriculture Organization 
(hereafter the FAO56-PM model), has been applied in both arid and humid environments 
(Allen et al., 1998). Radiation is calculated in the model by an Ångström formula, the accu-
racy of which is determined by empirical coefficients within regional limits. In our previous 
studies, solar radiation in the FAO56-PM model was calibrated for China and proved to be 
suitable in representing arid/humid zones (Yin et al., 2008). Therefore, the Pen-
man–Monteith model was again used in the present study to simulate ETo over China.  
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where Rn is the net radiation (MJ m–2), G is the soil heat flux (MJ m–2), γ is the psychromet-
ric constant (kPa °C–1), Δ is the slope of the saturation vapor pressure curve (kPa °C–1), T is 
the average temperature (°C), U2 is the wind speed at 2 m height (m s–1), es is the mean 
saturation vapor pressure (kPa), and ea is the actual vapor pressure (kPa). 

Under climate change, the AI has significance for bioclimate beyond the simple associa-
tion with precipitation and temperature (Moral et al., 2016). According to the study of Wu et 
al. (2005), AI is conventionally used to classify the land surface at a broad scale into four 
zones: humid, sub-humid, semi-arid, and arid. These zones are represented by specific types 
of natural vegetation: forest, forest steppe including meadow, steppe, and desert, respec-
tively (Table 2). 

Table 2  Criteria for demarcating the arid/humid climate regions of China according to aridity index (AI) 

Arid/humid climate region Aridity index (AI = ETo/P) Natural vegetation type 

Humid AI < 1.0 Forest 

Sub-humid 1.0 ≤ AI < 1.5 Forest steppe (including meadow) 

Semi-arid 1.5 ≤ AI < 4.0 Steppe (meadow steppe, and desert steppe) 

Arid AI ≥ 4.0 Desert 

2.3  Sensitivity assessment of AHCR shifts due to warming 

The fundamental idea of sensitivity analysis is to establish a quadratic function relationship 
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between changes in AHCR area and temperature increase, thereby allowing measurement of 
the sensitivity of AHCR shifts to warming from the slope of the quadratic curve. First, an 
11-year running mean was applied to AI series on a grid scale from 2011 to 2099, to reduce 
the effect of short-term climate variability and improve the robustness of the results. The 
percentage area change in AHCRs over China was counted year by year, by determining 
whether climate types shift in future relative to the baseline period. Using a quadratic func-
tion, the area of AHCR shift corresponds to temperature increase according to the national 
mean temperature anomaly, as shown in Eq. 2. The slope of the fitted curve (Eq. 3) is the 
rate of area change with temperature, which is deemed to reflect the sensitivity of AHCR 
shifts to warming. A rate of >0 indicates positive sensitivity, whereas a rate of <0 indicates 
negative sensitivity. 
 2y ax bx c    (2) 
 2s ax b   (3) 
where y is the area change as a function of the regional mean temperature anomaly x, relative 
to the baseline period; s is the rate of area change; a, b, and c are parameters fitted to the model. 

3  Results 

3.1  Future changes in ETo, P, and AI over China 

Changes in multi-model projected ETo, P, and AI under the RCP8.5 scenario relative to 
1981–2010 are shown in Figures 2 and 3. Generally, all three variables increase to a greater 
extent over the long term (2070–2099) than over the mid term (2040–2069), although re-
gional discrepancies exist. According to the MME results, ETo is likely to increase across 
almost the entire country, especially in eastern areas. The increase reaches 10%–20% in the 
mid term and >20% in the long term, for Northeast China and southern parts of the Qinling 
Mountains–Huaihe River Basin. P has a tendency to increase similar to ETo but with a dif-
ferent spatial pattern. P tends to increase more in the north, including the Tibetan Plateau, by 
>30% in the long term, compared with <10% in the south. AI mainly increases in the south-
east and decreases in the northwest. The most notable AI increase is in the middle and lower 
reaches of the Yangtze River and western Xinjiang, where the increase could reach 20% in 
the long term. The decrease in northwestern areas is likely to be >10% over the mid to long 
term. AI changes in the range of –10% to ~10% in North and Northeast China, and increases 
by >10% in the east of Northeast China. 

Changes in the variables differ between the five GCMs. The most notable change in AI 
was simulated by the IPSL-CM5A-LR model. AI is likely to increase >20% in the long term 
in all areas, except in Tibet and the west of Northeast China. With the HadGEM2-ES model, 
AI increases slightly in the southeast coast and to the west of Xinjiang, whereas the clearest 
decrease of >10% is seen in most northern parts. As changes in ETo projected by 
IPSL-CM5A-LR and HadGEM2-ES are similar, the AI changes are attributed mainly to the 
changes in P. Relative to the baseline period, P simulated by IPSL-CM5A-LR is negative in 
Xinjiang and south of the Yangtze River. Therefore, the smallest increase in total P gave the 
largest increase in AI. P simulated by HadGEM2-ES is positive across almost the entire 
country, with a 30% increase in the long term. Therefore, the largest increase in total P led to 
the smallest change in AI. For both ETo and P, the difference among GCMs in the long term 
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is greater than in the mid term, and the difference in P is larger than that in ETo. 

 
Figure 2  Percentage deviations over China in reference evapotranspiration (ETo), precipitation (P), and aridity 
index (AI) for 2040–2069, relative to the baseline period under the RCP8.5 scenario 
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Figure 3  Percentage deviations over China in reference evapotranspiration (ETo), precipitation (P) and aridity 
index (AI) for 2070–2099, relative to the baseline period under RCP8.5 
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3.2  Spatio-temporal changes in AHCRs over China 

Figure 4 shows the anomalies in areal changes in AHCRs over China relative to the baseline 
period 1981–2010 under RCP8.5. For the MME mean, the proportion of humid regions 
shows a significant reduction from 2011 to 2099, at a rate of –0.030% per year (p < 0.01). 
The areas of sub-humid and semi-arid regions show significant expansions at rates of 
0.017% (p < 0.05) and 0.011% (p < 0.05), whereas the arid region shows no significant 
change. Compared with observations during the baseline period, the sizes of humid and arid 
regions show an average decline of 1.28% and 1.53%, respectively. The sub-humid region 
expands by 1.98% on average, and the semi-arid region shows an average anomaly of 0.84%. 
The differences in simulated AHCR areas between the GCMs are indicated by average stan-
dard deviations of 5.14%, 3.44%, 3.74%, and 3.79% for the period 2011–2099. 

 
Figure 4  Area percentages (%) of (a) humid, (b) sub-humid, (c) semi-arid, and (d) arid regions in China during 
the 21st century, expressed as anomalies relative to the baseline period under RCP8.5. The time series were 
smoothed using an 11-year running mean 

The spatial distribution of AHCRs in China from the mid to long term under RCP8.5 is 
shown in Figure 5, with summary statistics presented in Table 3. Both humid and arid re-
gions are likely to shrink in future, and their respective areas are projected to reduce by 
5.93% and 1.95% over 2040–2069 relative to the baseline period. The humid region will 
evidently shrink, as shown by its projected 12.61% decrease over 2070–2099. On the con-
trary, sub-humid and semi-arid regions are likely to expand, with projected increases of 
16.28% and 1.38% in the mid term, respectively. The expansion of the sub-humid region 
reaches 28.69% in the long term. The arid region mainly decreases in the mid term, but in-
creases over the long term. The areas of humid and sub-humid regions vary much more over 
the long term than over the mid term. 

The multi-model simulated distributions of AHCRs across China show certain similarities 
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(Figure 5). Northwest China is the main arid region, where a clear increase in future pre-
cipitation may result in a significant decrease in aridity index. Shrinkage of the arid region 
will occur primarily in the northwest, especially in northwest Tibet, possibly leading to a 
northward shift in the arid region’s southern boundary (Figures 1 and 5). In addition, part of 
the semi-arid region north of Xinjiang may become arid, causing the entire region to shift 
northward. The boundary between semi-arid and sub-humid regions is projected to shift 
northwards in the east of the Tibetan Plateau, and shift southeastwards in Northeast China 
and east of the North China Plain. With the semi-arid region of Inner Mongolia shifting 
eastwards, the semi-arid region in Northeast China will expand. 

Table 3  Percentage areas (%) of arid/humid climate regions (AHCRs) in China for the periods 2040–2069 and 
2070–2099 under RCP8.5, and the amount of change (%) relative to the baseline period 

GCM Period Humid Sub-humid Semi-arid Arid 

  Area Change Area Change Area Change Area Change 

 1981–2010 35.76  13.94  24.61  25.69  

2040–2069 32.78 –8.33 15.27 9.54 26.65 8.29 25.29 –1.56 NorESM1-M 

2070–2099 31.47 –12 16.26 16.64 26.04 5.81 26.23 2.1 

2040–2069 32.13 –10.15 16.24 16.5 27.62 12.23 24.01 –6.54 MIROC-ESM-CHEM

2070–2099 32.75 –8.42 17.02 22.09 26.8 8.9 23.43 –8.8 

2040–2069 35.37 –1.09 16.35 17.29 22.33 –9.26 25.95 1.01 IPSL-CM5A-LR 

2070–2099 30.18 –15.6 18.87 35.37 23.14 –5.97 27.81 8.25 

2040–2069 34.45 –3.66 17.15 23.03 21.67 –11.95 26.74 4.09 HadGEM2-ES 

2070–2099 33.97 –5.01 18.71 34.22 21.54 –12.47 25.78 0.35 

2040–2069 34.15 –4.5 17.14 22.96 26.15 6.26 22.56 –12.18 GFDL-ESM2M 

2070–2099 30.26 –15.38 20.03 43.69 26.13 6.18 23.57 –8.25 

2040–2069 33.64 –5.93 16.21 16.28 24.95 1.38 25.19 –1.95 Multi-model mean 

2070–2099 31.25 –12.61 17.94 28.69 24.98 1.5 25.83 0.54 

 
The increase in evapotranspiration will likely cause a significant rise in the aridity index 

over most areas in the east of China (Figures 2 and 3). Thus, the humid regions of Northeast 
China and in the south will shrink relative to the baseline period (Figures 1 and 5). Generally, 
the humid region will shift to the south. The humid region of the Huaihe River basin is pro-
jected to shrink and be gradually replaced by the sub-humid region. This means that the 
boundary between humid and sub-humid regions will lie in the far south. Moreover, the hu-
mid region will become sub-humid in Daxing’an, Xiaoxing’an, and the Changbai Mountains 
in Northeast China and part of the southeast of the country. Changes simulated by different 
GCMs for humid and sub-humid regions are essentially consistent, but the results concerning 
semi-arid and arid regions are variable. Specifically, NorESM1-M, MIROC-ESM-CHEM, 
and GFDL-ESM2M show that the semi-arid region mainly shrinks but the arid region main-
ly expands. However, the other two GCMs give contrasting results (Figure 5). 

3.3  Sensitivity of AHCR shifts to warming 

Using the 11-year running mean of the AI series from 2011 to 2099, the proportions of 
AHCR areas that shift relative to the baseline period under RCP8.5 were calculated. Figure 6a  



MA Danyang et al.: Sensitivity of arid/humid patterns in China to future climate change  39 

 

 

 

 
Figure 5  Spatial distribution of arid/humid climate regions (AHCRs) across China during 2040–2069 and 
2070–2099 under RCP8.5 
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Figure 6  Shifts in arid/humid climate regions (AHCRs) across China and the rate of change with temperature 
anomaly relative to the baseline period under RCP8.5. (a) Percentage area change (%). (b) Rate of percentage area 
change (%°C–1). Before quadratic curve fitting, data were smoothed using an 11-year running mean. The original 
data points are shown as dots in (a) 

shows a quadratic curve that fits the areas of change and the temperature anomalies. Figure 
6b shows the corresponding rates indicating the sensitivity of AHCR shifts to warming. All 
shifting areas show an increasing trend as the temperature anomaly rises. Among the GCMs, 
the GFDL-ESM2M changes from a decreasing to an increasing trend at ~2°C. The MME 
results show that the percentage area affected by AHCR shifts in China increases from 10.24 
± 1.89% to 14.19 ± 3.30% for the common 1.14%–3.87% range of temperature anomalies. 

Whereas the GFDL-ESM2M rate changes from negative to positive, all other GCMs show 
continuously positive rates. Specifically, the changing rates of MIROC-ESM-CHEM and 
IPSL-CM5A-LR gradually slow down with rising temperatures, suggesting a weakening 
sensitivity of AHCR shifts to warming. For the MME mean, the greater the temperature in-
crement, the higher the sensitivity of AHCR shifts. In general, the rate of change ranged 
from 0.73 (± 1.34%°C–1) to 2.16 (± 2.16%°C–1). This means that the area of AHCR shift will 
increase by 1.44% as the average temperature rises by 1°C. 

3.4  AHCR shifts with 2°C and 4°C warming 

Figures 7 and 8 illustrate the changed and unchanged areas of AHCRs, as projected after 2°C 
and 4°C warming under RCP8.5, simulated by various GCMs. From the MME statistics 
(Table 4), given 2°C and 4°C warming relative to the baseline period, the following results 
emerge. The humid region mainly shrinks, with its area projected to reduce by 13.03% and 
9.95%, occupying 3.56% and 4.66% of the country, respectively. The sub-humid region 
considerably expands, increasing by 33.15% and 50.29%, occupying 4.62% and 7.01% of 
the country for 2°C and 4°C warming, respectively. The semi-arid region also expands, pro-
jected to increase by 13.49% and 16.65%, and occupying 3.32% and 4.10% of the country, 
respectively. The arid region remains mostly unchanged. The AHCR areas of expansion and 
contraction increase from 2°C to 4°C warming, except for the arid region. According to the 
MME results, the total area of change in China is projected to increase from 10.17% for 2°C 
warming to 13.72% for 4°C warming, bringing a further increase of 3.55%. 

In spatial terms, the Huaihe River Basin and Northeast China are the primary regions ex-
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periencing a shrinking humid region and expanding sub-humid region, as well as parts of 
Southwest China. Expansion of the semi-arid region would occur mainly in the transition 
zone between the sub-humid and semi-arid parts of eastern China, and in the transition zone 
between arid and semi-arid parts of western China. The difference between the models is 
projected to be larger for the reduced humid region and expanded sub-humid region. Stan-
dard deviations are 1.83% and 2.08% at 2°C warming, and 1.20% and 1.10% at 4°C warm-
ing, respectively. The difference between the models is projected to be the smallest in terms 
of the amount of arid-region change. 

 
Figure 7  Spatial distribution of humid, sub-humid, semi-arid, and arid regions over China for 2°C warming 
under RCP8.5, showing changed and unchanged areas relative to the baseline period 

Concerning differences between GCMs, the reduction in the humid region and expansion 
of the sub-humid region are both projected to be the largest by the MIROC-ESM-CHEM 
model, as is the total area of change (13.29% for 2°C warming and 15.42% for 4°C warm-
ing). For GFDL-ESM2M, although the total area of change is projected to be the smallest 
among models (8.55% for 2°C warming and 11.78% for 4°C warming), the contraction of 
the humid region and expansion of the sub-humid region are greater for 4°C warming than 
for 2°C warming. The NorESM1-M model projects the largest increase (4.87%) in the total 
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area of change from 2°C to 4°C warming, caused mainly by a shift from a humid to a 
sub-humid climate in the Huaihe River basin, and shifts from a sub-humid to a semi-arid 
climate in the Loess Plateau and the North China Plain. 

 
Figure 8  Spatial distribution of humid, sub-humid, semi-arid, and arid regions over China for 4°C warming 
under RCP8.5, showing changed and unchanged areas relative to the baseline period 

According to the models indicating change, the various climate regions are more likely 
to shrink or expand at their peripheries (Figure 9). Almost all of the contraction of the 
humid region (99.73% for 2°C warming and 99.75% for 4°C warming) would be replaced 
by the sub-humid region. The area of shrinkage in the sub-humid region to the east of 
105°E would mostly become semi-arid (67.86% for 2°C warming and 72.20% for 4°C 
warming), whereas elsewhere it would mostly become humid (64.77% for 2°C warming 
and 73.45% for 4°C warming). Similarly, the reduced part of the semi-arid region in 
Northwest China would become mostly arid (73.91% for 2°C warming and 82.08% for 
4°C warming), or become sub-humid elsewhere (63.05% for 2°C warming and 85.03% for 
4°C warming). In addition, over 90% of the decrease in the arid region would be replaced 
by a semi-arid climate. 
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Table 4  Percentage change in the areas of humid, sub-humid, semi-arid, and arid regions over China for 2°C 
and 4°C warming under RCP8.5, relative to the baseline period 

2°C 4°C 
GCM  

Humid Sub- 
humid

Semi-
arid Arid Humid Sub- 

humid 
Semi- 
arid Arid 

Expansion 0.47 3.61 3.26 0.73 0.72 6.28 4.84 1.10 

Contraction 3.23 2.54 1.19 1.09 5.05 4.07 2.38 1.44 

NorESM1-M 

Total changed 8.06 12.93 

Expansion 0.87 8.05 4.24 0.13 1.64 8.33 4.92 0.54 

Contraction 6.61 2.84 1.68 2.17 6.15 4.06 2.64 2.57 

MIROC-ESM-C
HEM 

Total changed 13.29 15.42 

Expansion 1.59 3.75 2.25 2.55 3.17 7.00 2.63 1.61 

Contraction 2.50 2.89 3.85 0.90 2.95 3.63 5.74 2.10 

IPSL-CM5A-LR 

Total changed 10.13 14.41 

Expansion 1.23 4.97 3.35 1.24 1.22 7.81 3.41 1.58 

Contraction 3.57 3.68 2.69 0.86 4.08 3.33 5.32 1.30 

HadGEM2-ES 

Total changed 10.79 14.03 

Expansion 1.12 2.72 3.50 1.21 0.58 5.62 4.70 0.88 

Contraction 1.87 2.04 2.00 2.64 5.08 3.05 1.34 2.32 

GFDL-ESM2M 

Total changed 8.55 11.78 

Expansion 1.06 4.62 3.32 1.17 1.47 7.01 4.10 1.14 

Contraction 3.56 2.80 2.28 1.53 4.66 3.63 3.48 1.94 

Multi-model 
mean 

Total changed 10.17 13.72 

 
Figure 9  Spatial distribution of humid, sub-humid, semi-arid, and arid regions over China for 2°C and 4°C 
warming under RCP8.5 relative to the baseline period, showing the number of models projecting change within 
each region 

4  Discussion 
This study used an aridity index (AI) to classify arid/humid climate regions (AHCRs) in 
China. Changes in AHCR patterns under future warming were then analyzed. Results indi-
cate that changes in the 21st century under the RCP8.5 scenario are characterized by a sig-
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nificant contraction in the humid region and a significant expansion in the arid/humid transi-
tion zone. This is consistent with the conclusions of Wang et al. (2016), who posited that the 
boundaries of the East Asian climate transition zone would shift southeast and northwest, 
with a higher migration rate for the southern boundary. Research based on the Köppen clas-
sification system has shown that the subtropical humid region in Southeast China will con-
tract substantially by the end of the 21st century, relative to the end of 20th century, particu-
larly for the higher-emission scenarios RCP6.0 and RCP8.5 (Chan et al., 2016). Other re-
search that used soil moisture to classify AHCRs also showed a significant contraction in the 
humid region of China, and a southeast expansion of the semi-arid and sub-humid climate 
zones in Northern China (Li et al., 2013). A global-scale study indicated that dryland areas 
will occupy 50% and 56% of the global land area under the RCP4.5 and RCP8.5 scenarios, 
respectively, with the greatest expansion in semi-arid regions (Huang et al., 2016b). In con-
trast, our study shows a greater expansion in the sub-humid region. This discrepancy possi-
bly relates to the index ranges used for climate classification, as the semi-arid definition (AI 
= P/ETo, 0.2 ≤ AI < 0.5) employed by Huang et al. (2016b) covers a wider range than that 
used here. 

Changes in AHCR areas and boundaries are closely related to regional arid/humid trends, 
and are influenced by both natural factors and human activities. Based on observations and 
model simulations (Dai, 2013; Fu et al., 2015), some scholars regard changes in atmospheric 
circulation and sea-surface temperature as key drivers of land-surface precipitation change, 
and consider that decreasing precipitation is the main reason for the intensification of 
drought in many tropical and subtropical regions. However, temperature change may have 
additional important effects on shifts in climatic regimes as global warming continues during 
the 21st century (Feng et al., 2014). Rising temperatures will lead to increasing deficits in 
water vapor pressure, increasing evaporation demands, and decreasing soil moisture. The 
mutual reinforcement of these effects will promote drought processes (Sherwood et al., 2014; 
Huang et al., 2016b), and thus change the regional arid/humid patterns. 

Changes in vegetation cover caused by climate change or human activities may in turn 
affect drought trends or moisture conditions. Zeng et al. (2009) used an air–ocean–land cou-
pling model to investigate the dynamics of vegetation composition. They found that the su-
perposition of warming effects and albedo feedback from vegetation cover may enhance the 
expansion of deserts in subtropical semi-arid regions in the future. In our study, the atmos-
pheric water-demand increase due to climate warming exceeds the precipitation increase. 
The tendency for a shift towards greater aridity in most humid regions in Eastern China may 
therefore affect the evolution of the AHCR pattern. This finding is essentially consistent 
with Wang et al. (2014) analysis based on the Palmer drought severity index (PDSI). 

We also investigated the sensitivity of AHCR patterns to climate change in China. We 
found an increase in area of the arid/humid transition zone, as derived from the multi-model 
average, with an increase in regional average temperature. Moreover, the faster the tem-
perature rise, the faster the response of the arid/humid transition zone. For Köppen climate 
zones at the global scale, changes under the RCP8.5 scenario will accelerate with rising 
temperatures, with the rate by the end of the 21st century reaching approximately twice that 
of the early 20th century (Mahlstein et al., 2013). As a result, nearly one-third of temperate 
arid lands will change to subtropical arid lands over the next century, possibly accompanied 
by changes in vegetation type and ecosystem services (Schlaepfer et al., 2017). 
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Our research also indicates how the junction between arid/humid zones in China is usu-
ally the area of significant transformation. Affected by the interaction of the East Asian 
summer monsoon and the mid-latitude westerly winds (Qian et al., 2009), the arid/humid 
transition zone extending from southwest to northeast China displays strong gradients in 
climate and ecosystem types (Fu, 1992). Agricultural and grazing land uses overlap. How-
ever, the ecological environment of the transition zone is fragile and highly sensitive to both 
climate change and human activity (Shi, 1996). As global warming intensifies, the 
arid/humid transition zone may face a growing risk of natural disasters, land degradation, 
and desertification (Huang et al., 2016b; Wang et al., 2016). Jiang et al. (2017) found that 
the sub-humid and semi-arid regions are similarly sensitive to climate change under the 
RCP4.5 scenario, that climate-sensitive regions will expand in China, and that humid re-
gions will change to sub-humid regions in future. 

Accurate climate modeling is crucial for simulating changes in the geographical distribu-
tion and areas of various climatic types (Zhang et al., 2016). Model uncertainty is one source 
of general uncertainty in climate prediction, and the discrepancies between models vary with 
time, space, and amount of warming (Mahlstein et al., 2013; Chen et al., 2015; Belda et al., 
2016). Mahlstein et al. (2013) posited that under the RCP8.5 scenario, ~20% of the world’s 
land area will experience a change in Köppen climate zone by the end of this century. Re-
sults vary from 17% to 27% for individual models, and the discrepancies between models 
increase with higher global average temperatures. For multi-model simulations, Belda et al. 
(2016) showed that the difference was the smallest for desert climates, the largest for north-
ern and tundra climates, and that scenario RCP8.5 resulted in a greater difference than 
RCP4.5. Chen et al. (2015) found that for simulations of extreme temperature and precipita-
tion indices in China, the uncertainty increases over time. Furthermore, the contribution of 
scenario uncertainty will exceed climate-model uncertainty towards the end of the century. 
In a study of future AHCR change in China, Yin et al. (2015) noted that aridity index values 
show a stronger volatility and a weaker trend compared with other climatic factors such as 
temperature, precipitation, and potential evapotranspiration, and that the difference between 
models is relatively small. Based on the corrected aridity index, the present study found that 
multi-model difference in humid zone variation in China is slightly larger than that for the 
three drier climate zones. 

5  Conclusions 
We combined climate observation data, CMIP5 GCM forecast data, and simulated reference 
evapotranspiration (ETo) data based on the revised Penman–Monteith model to calculate 
aridity index (AI) values across China. Projected spatial patterns of arid/humid zones corre-
sponding to different levels of climate warming were then mapped. By analyzing future 
changes in the areas covered by arid/humid zones and their sensitivity to temperature in-
crease, the following main conclusions were arrived at. 

On the whole, ETo, P, and AI all increase under the RCP8.5 scenario, relative to the base-
line period 1981–2010. The ETo increment is high in the east and low in the west, whereas 
the P increment is high in the north and low in the south. The AI increases in the southeast 
and decreases in the northwest. The projected amount of change differs between models, but 
is generally greater in the long term (2070–2099) than in the mid term (2040–2069). The 
degree of change in evapotranspiration is generally higher than that for precipitation. This 
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may result in a humid to sub-humid transition for the southern part of the Huaihe River Basin. 
During the 21st century, the humid region will contract significantly (p < 0.01), whereas 

the sub-humid and semi-arid regions will expand (p < 0.05). Compared with observed values 
for the baseline period, the sub-humid region will change the most. Its percentage of the na-
tional land area in China will increase at an average rate of 1.98%, to expand by 28.69% in 
the long term. The humid region will contract in Eastern China, causing a southward shift in 
the boundary between humid and sub-humid zones in the Huaihe River basin, a southeast-
ward shift in the boundary between sub-humid and semi-arid zones in North and Northeast 
China. In contrast, aridity will decrease in Western China, causing a northward shift in the 
boundary between arid and semi-arid zones. 

Under the RCP8.5 scenario, areal changes in arid/humid zones according to the 
multi-model mean will continue increasing with rising temperature. For most GCMs, the 
temperature sensitivity of changes in arid/humid climate regions will gradually increase as 
the temperature anomaly increases. In general, the humid region will mainly contract, 
whereas sub-humid and semi-arid regions are mainly projected to expand. The national total 
area of land experiencing such changes will increase from 10.17% for 2°C warming to 
13.72% for 4°C warming. 
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