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Abstract: Climate change is a global phenomenon but is modified by regional and local en-
vironmental conditions. Moreover, climate change exhibits remarkable cyclical oscillations 
and disturbances, which often mask and distort the long-term trends of climate change we 
would like to identify. Inspired by recent advancements in data mining, we experimented with 
empirical mode decomposition (EMD) technique to extract long-term change trends from 
climate data. We applied GIS elevation model to construct 3D EMD trend surface to visualize 
spatial variations of climate change over regions and biomes. We then computed various 
time-series similarity measures and plot them to examine spatial patterns across meteoro-
logical stations. We conducted a case study in Inner Mongolia based on daily records of pre-
cipitation and temperature at 45 meteorological stations from 1959 to 2010. The EMD curves 
effectively illustrated the long-term trends of climate change. The EMD 3D surfaces revealed 
regional variations of climate change, while the EMD similarity plots disclosed cross-station 
deviations. In brief, the change trends of temperature were significantly different from those of 
precipitation. Noticeable regional patterns and local disturbances of the changes in both 
temperature and precipitation were identified. The trends of change were modified by regional 
and local topographies and land covers.  
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1  Introduction 

Global climate change has been widely recognized as a new natural threat to biodiversity 
(Dawson et al., 2011) and human welfare (de Sherbinin, 2011) in the 21st century. Many 
modern techniques have been developed by scientists to collect evidences concerning cli-
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mate change contained in tree rings, ice cores, greenhouse gas levels, shoreline changes, 
glacier and permafrost melt, radiocarbon dating, air and sea temperature, phenology, etc. 
Among them, weather conditions – daily temperature and rainfall – have long been recorded 
and analysed to provide a direct evidence of climate change. For instance, climate change 
has been manifested in increased global temperatures, but also in increasing frequency of 
extreme weather events such as floods and droughts, severe winds, and increased tempera-
ture extremes of both hot and cold (National Climate Assessment, 2014; Rahmani and Zar-
ghami, 2015; Xia et al., 2015).  

Global climate change (e.g., global warming, increased/decreased precipitation, and 
extreme weather event) is regarded as one of the primary factors that are impacting 
grassland ecosystems (Kyselý et al., 2012; Piras et al., 2015; Ribalaygua et al., 2013). For 
instance, the Mongolia Plateau is getting warmer and drier. The average temperature of 
Mongolia increased by 1.5°C to 2.5°C in the 1990s and 2000s (Lu et al., 2009), while the 
annual precipitation decreased by about 7.0% during the same period (Wang et al., 2013). 
Global climate change is assumed to affect growth condition as well as spatial distribution of 
plant communities (Li S et al., 2013). Drying and warming climate usually increases fluc-
tuation of vegetation productivity (Bai, 2008; Gong, 2015) and leads to plant community 
degradation (Li and Xie, 2013; Xie et al., 2017).  

Moreover, ecosystem researchers have recognized that different plant communities show 
varied responses to climate change (Brown et al., 2013). Although precipitation and tem-
perature are two main climate factors affecting vegetation response (Han, 2016; Wang et al., 
2012), plant communities respond differently to short-term or long-term changes of precipi-
tation and temperature, respectively (Chuai, 2007; Yuan, 2015). Second, vegetation re-
sponses to climate change display significant local and regional variations (Bai, 2008; Lu et 
al., 2009; Xie et al., 2017). Third, climate change displays apparent regional variations. For 
instance, mountainous regions are usually more sensitive to climate change than flat and low 
elevation regions (Damsø et al., 2015). Unique locational arrangements of land masses, 
oceans or water bodies, dominant air flows, topographies and elevations can have significant 
impacts on local meteorological conditions and thus lead to distinct regional patterns of cli-
mate change (Cheng et al., 2015). Even within the same river basin, the yields of rice and 
wheat could display significant regional variations because of the influence of agro-climatic 
factors, such as variation in temperature, length of maturity period and leaf area index 
(Mishra et al., 2013; Swain and Thomas, 2010). Climate change in combination with land 
use change could make water quality and land productivity deteriorate swiftly and lead to 
noticeable spatial variations (Jordan et al., 2014). 

Furthermore, studies of vegetation response to climate change are facing many challenges. 
Climate changes contain remarkable cyclical oscillations and disturbances, which often 
mask and distort the long-term trends we would like to identify (Kennedy et al., 2014). An-
nual cycles are critical phenomena of temperature and precipitation. When analysing climate 
change, we should bear in mind that the seasonal changes are interacting with a lot of other 
dynamics, such as long-term warming/cooling or drying/wetting trends, abrupt weather 
events (flooding, drought, hot wave, and cold front), pollutant emissions, solar activity cy-
cles, etc. Traditional analytical methods based on the comparisons between minimum, aver-
age and maximum values of temperature and precipitation are not capable of separating 
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long-term trends from cyclical fluctuations and abrupt changes or capturing temporal dy-
namics or regional patterns of climate change (Chamaille et al., 2007). As a result, it is al-
most impossible to study long-term interactions between meteorological conditions and the 
underlying landscape, vegetation and topography by simply analyzing the records of tem-
perature and precipitation. Therefore it is desirable to apply an effective data analysis 
method to break down climate variations into individual processes, i.e., cyclical, long-term 
and abrupt components. Only with this type of data mining and pre-processing is it feasible 
to investigate spatial patterns and interactions between climate change and regional envi-
ronmental factors.  

In this paper, we will examine diverse responses of plant communities to climate change 
and their spatial variations, visualize temporal trajectories and spatial patterns of climate 
change at regional scale, and compare spatial variations of climate change across meteoro-
logical stations. Since current GIS tools are not adequately supporting analysis and visuali-
zation of temporal trajectories and spatial patterns of climate change, we integrate recent 
computational data mining approaches with GIS. In particular, we will synthesize advanced 
signal processing and denoising techniques to extract long-term trends of climate change. We 
will also adopt the similarity analysis and surface visualization methods often seen in big 
data analytics to visualize spatial variations of the identified change trends and to analyse 
their relationships with landscape, vegetation and topography at region, biome and 
weather-station scales. 

2  The study area, data and method 

2.1  The study area and data 

Inner Mongolia Autonomous Region (IMAR, 37°24'–53°23'N, 97°12'–126°04'E) is located 
in China’s northern border region with a total area of about 1,180,000 km2 (Figure 1). IMAR 
is also located in the southern portion of the Mongolian Plateau with an average altitude of 
1000–1200 m. The climate of the steppe area is a typical temperate continental climate, with 
an annual precipitation of 50–450 mm and an annual average temperature of 1–10 . The ℃

climate in the study area experiences a gradual transition from humid and semi-humid re-
gions to semi-arid and arid regions from east to west. Precipitation shows a gradual decrease 
from northeast to southwest, while temperatures gradually increase from the northeast to-
ward the southwest (Li J et al., 2013). 

Grassland is the dominant land cover in IMAR, which is concentrated in the central part 
of IMAR, while most of the forest is located in the northeastern section dominated by 
broad-leaf and needle-leaf forests and cropland in the southern and eastern regions (Li J et 
al., 2013). Traditionally, grazing has long been the primary economic activity in IMAR. 
However, since the late 20th century, due to many coupled natural and human factors, such 
as climate change, economic development, population growth, and overgrazing, grassland 
ecosystems in IMAR suffered severe degradation and even desertification in some areas. 
Grasslands occupy almost 40% of the earth’s land surface, support nearly one third of global 
population (Gibson, 2009), and boast many important ecological functions, including soil 
and water conservation, carbon sequestration, wildlife habitat, etc. (Carlier et al., 2009). In 
addition, the Mongolian Plateau is the largest stretch of grasslands remaining on the earth, in 
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which IMAR is an important part (Xie et al., 2017). Therefore, the selection of IMAR grassland 
as the case study has important implications in both academic research and policy management.  

 

Figure 1  The map of the study area (Meteorological stations are numbered from east to west) 

The vegetation map of Inner Mongolian Autonomous Region in 2010 was provided by 
Inner Mongolian Institute of Grassland Surveying and Planning (Li S et al., 2013). Mete-
orological data was extracted from the China Meteorological Data Service Center (CMDC, 
2013), consisting of 50 surface meteorological stations distributed in Inner Mongolia (Figure 1) 
over 50 years, 1959–2010. The data includes the longitude and latitude information of each 
meteorological station, daily precipitation and temperature of each meteorological station. 

2.2  The research methods 

The paper synthesizes three groups of methods: (1) trends analysis derived from computa-
tional data mining (empirical mode decomposition – EMD) to extract long-term trends of 
change from cyclical climate data; (2) similarity analysis stemmed from data mining to ex-
amine spatial variations of climate change across meteorological stations; and (3) GIS 3D 
and 2D visualization techniques to reveal regional and cross-station patterns of plan com-
munity responses to climate change. 

(1) Trends analysis of cyclic climate change 
Data mining is a newly acknowledged-field that has received vast attention from com-

puter science and information science researchers. Data mining refers to an analytic process 
designed to search for consistent patterns and/or systematic relationships between variables 
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from large volumes of data (also known as “big data”) (Jain and Srivastava, 2013). One vital 
goal of data mining is to construct models and then to apply these models to new data to 
generate predictions (Huang et al., 1998).  

Signal processing and intelligent recognition is one technique within an increasingly 
growing data mining toolbox. Data mining in many fields involves constantly monitoring 
real-time conditions on the basis of signals collected by sensors. The datasets of these sig-
nals are usually recorded or saved in the form of time series. Therefore, suitable signal 
processing techniques are needed in order to extract information from such signals and to 
disclose underlying dynamics embedded in these time-series data (Gao and Yan, 2011). 
These techniques serve two purposes to represent the reality sensed by various sensors: first 
to determine the parameters to create an abstract model of the reality, and second to confirm 
the model that can represent the reality to certain degree (Huang et al., 1998). The challenge 
is to represent the real world as close as possible while eliminating as much noises and 
abrupt interference on data/signal as possible. In the past, many methods were developed to 
achieve this goal according to the special field in which the data analysis is applied. In gen-
eral, these signal processing techniques could be grouped into three approaches: Fourier 
transform, wavelet transform, and empirical mode decomposition. 

Fourier methods traditionally are used to approximate any general function as a sum of 
trigonometric functions (Grafakos and Teschl, 2013). Wavelet transforms, also called 
“mathematical microscopes (Bovik, 2009, p. 463)”, include a suite of signal processing 
techniques that are developed to filter signals by using a different centre frequency in the 
band-pass filter, in which small scales of the noise frequency can be removed to get 
good-quality and useful signals (Portilla et al., 2003). Wavelet-based denoising at various 
scales aims to achieve high resolution in both the time and frequency domains (Dai et al., 
2006; Chen and Xu, 2005). The principle of EMD is to decompose the signal into a group of 
similar sinusoidal signals, which was defined by the signal itself, named the intrinsic mode 
functions (IMFS), and a residue (Huang, 1998; Gloersen and Huang, 2003; Rao and Hsu, 
2008). The IMFS reveal the status of the signal in various scales, and the residue told us the 
trend of the signal, which is the statistic we are interested in this paper. 

In recent years, due to the increasing popularity of computational data mining, the EMD 
method has been applied in many research fields, such as, removing noise of time series data 
(Huang et al., 2001; Peng et al., 2005); analysing the properties of time series data in fi-
nance (Huang et al., 2003); and applications in hydrology and environment (Rao and Hsu, 
2008), goaf surface deformation (Zhang, 2011), temperature trend extraction (Xian et al., 
2008), image-based land cover classification (Demir and Ertürk, 2010) and vegetation 
analysis (Chen and Xu, 2005; Ghasemi et al., 2013; Cheng et al., 2014). Mathematically, 
EMD iteratively applies an intrinsic mode function (IMF), which decomposes complex sig-
nals into a number of distinct, simple, and non-sinusoidal signals along with a trend curve. 
This EMD trend curve reflects the trend of change of time-series signals and is used to iden-
tify long-term trend of changes hidden in the cyclical datasets of climate change and eco-
logical evolution.  

The mathematical algorithm of EMD is not the same as Fourier method and the Discrete 
Wavelet Transform although they belong to the same family of time domain signal analysis 
techniques (Zhang et al., 2015). EMD can be applied to decompose non-linear and 
non-stationary datasets in comparison with Fourier. Contrasting to wavelet denoising, EMD 
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method has similar distortion magnitude in the process of denoising signals (Luan et al., 
2004). However, the application of EMD denoising does not require to set up a priori classi-
fication function as wavelet algorithm does. This enables EMD method becomes more ro-
bust and stable. 

(2) Similarity measurement of spatial variations of climate change across meteorological 
stations 

We adopt a time series analysis of climate change to characterize climate change dynam-
ics and reveal their spatial variations across meteorological stations. Various methods have 
been developed based on temporal trajectories to characterize changes in ecosystem dynam-
ics in recent years (Lhermitte et al., 2011). These methods are also suitable to the studies of 
climate change due to the similar nature of temporal dynamics. The key techniques in these 
time series analyses are methods of identifying similarities or dissimilarities between two 
sequences of measurements (Goshtasby, 2012; Zastrow, 2015).  

(a) Euclidean distance 

 2 ( )( )'st s t s td x x x x    (1) 

where xs is a data vector with the size of (1 × s), and xt is another data vector with the size of 
(1 × t). In our case, s = t. The symbol, ', represents the transposition operation of a vector 
(e.g. (xs – xt)' represents the transposed vector of the original vector ( xs – xt)).  

(b) Standardized Euclidean distance 

 2 1( ) ( )'st s t s td x x V x x    (2) 

where V is the n-by-n diagonal matrix whose jth diagonal element is S(j)2, where S is the 
vector of standard deviations. Each coordinate difference between rows in X is scaled by 
dividing by the corresponding element of the standard deviation. 

(c) City block metric 
Manhattan distance assumes that in going from one pixel to the other it is only possible to 

travel directly along pixel grid lines and diagonal moves are not allowed. Therefore, the dis-
tance between centroid is given by: 
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(d) Chebyshev distance 
Chebyshev distance or the L∞ metric (Luan et al., 2004), is defined on a vector space 

where the distance between two vectors is the greatest of their differences along any coordi-
nate dimension. 

  maxst j sj tjd x x   (4) 

(e) Cosine distance 
Cosine distance measures the similarity between two vectors of an inner product space in 

terms of the cosine of the angle between them. This technique has been used to measure co-
hesion within clusters in the field of data mining.  
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(f) Correlation coefficient 
Pearson correlation coefficient is suitable for determining the similarity between images 
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with intensities that are known to be linearly related (Goshtasby, 2012). The correlation co-
efficient between sequences X ={xi: i = 1, . . . , n} and Y = {yi: i = 1, …, n} is defined by 
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(g) Spearman distance 
A similarity measure relating to the Pearson correlation coefficient is Spearman’s rank 

correlation or Spearman’s Rho (Goshtasby, 2012). If image intensities do not contain ties 
when they are ordered from the smallest to the largest, then by replacing the intensities with their 
ranks and calculating the Pearson correlation coefficient between the ranks in two images, 
which will give Spearman rank correlation. This is equivalent to calculating (Goshtasby, 2012): 
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where  
rsj is the rank of xsj taken over x1j, x2j, ...xmj 
rs and rt are the coordinate-wise rank vectors of xs and xt, i.e., rs = (rs1, rs2, ... rsn) 
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Spearman rank correlation is less sensitive to outliers, impulse noise and occlusion. It is 
also less sensitive to nonlinear intensity difference between images than Pearson correlation 
coefficient (Goshtasby, 2012). Because of these features, Spearman rank correlation has 
been used to measure trends in data as a function of time or distance. 

(3) Visual data mining methods for identifying regional and cross-station patterns 
In geographical information science, 3D surface models are important tools in GIS for 

conducting spatial analysis and visualizing the outcomes of the spatial analysis (Li et al., 
2005). A typical example is the digital elevation model (DEM) that represents the earth’s 
elevation surface. In this paper, we are using the same technique to visualize the EMD trend 
line as an elevation surface over the entire study area. These EMD 3D trend surfaces clearly 
visualize the regional patterns of climate change during the study period (1959 – 2010) over 
the study area and can be examined visually. In addition, 2D contour lines derived from the 
3D surfaces are also plotted to provide different views of the regional patterns of climate 
change. The 3D and 2D surfaces clearly depict regional patterns of plant community re-
sponses to climate change and help reveal topographical impacts on varied responses of 
plant communities to climate change.  

The similarity measures are also plotted as 2D maps to visualize spatial variations of pre-
cipitation and temperature across the meteorological stations. The 2D similarity plots visibly 
reveal geographical differences of precipitation and temperature in the study area. 
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3  The case study of climate change in Inner Mongolia 

As a starting point, we calculated annual precipitation by adding daily precipitation and an-
nual average temperature by averaging daily temperature at each station. As a result, we got 
51 records of annual precipitation and annual average temperature for all 50 meteorological 
stations. In order to identify long-term trends of climate change at 50 stations, we ran re-
gression analysis of precipitation against the year and temperature against the year, respec-
tively. We then plotted the regression slopes of precipitation and temperature as curves over 
the stations from east to west (Figure 2). Apparently, 38 out of 50 stations observed a decline 
in precipitation because they had negative slopes (under the 0.000 horizontal line). Moreover, 
the precipitation slope curve showed obvious ups and downs, revealing significant differ-
ences of change among the stations. On the contrary, the temperature slope curve was much 
smoother. 44 out of 50 stations witnessed an increase in temperature.  

 

Figure 2  Regression slopes of precipitation and temperature, 1959–2010, at meteorological stations 

Next, we examined variations of climate change over three scales, regional, vegetation 
type, and meteorological station, by using the methods we introduced before. The daily pre-
cipitation and temperature data from 1959 to 2010 over 45 meteorological stations were 
analysed. Five stations were located in urban areas and were excluded from the analysis due 
to the paper’s focus of exploring different responses of vegetation communities to climate 
change. Through EMD method, we transformed the daily climate data at each station incre-
mentally into a long-term trend curve. The trend curves of temperature and precipitation 
were visualized as 3D surfaces and 2D plots by all stations from east to west. Furthermore, 
we applied the above-mentioned eight different similarity measurements to the EMD curves 
for all 45 stations. For each similarity measurement, we created a similarity matrix of 4545 
stations and then examined its sensitivity of spatial variations by stations. For sensitive 
similarity measurements, we created 2D plots to illustrate station-wide variations. 

In the first visualization, we produced a vegetation map with the meteorological stations 
numbered from the east to the west and with ten types of vegetation mapped in different 
colours. The vegetation map helped explain the east-to-west distribution patterns of different 
biomes. From the vegetation map we could see the “wettest” grasslands (the meadow types) 
matched with the Da Hinggan Mountains stretching north to south in the eastern region of the 
study area and the Heilongjiang River (Figure 1). The typical steppe and hay grassland are 
located in the northeastern-central section and the southwestern-central section. The de-
sert-type grasslands occupy the northwestern-central section and the western section. The 
dryness increased toward the west. The spatial pattern of biomes deeply affected the trends 
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of precipitation and temperature changes from 1959 to 2010. 

3.1  The temporal trends of temperature changes 

Several trends of temperature changes were identified on Figures 3 and 4: (1) temperature wit-
nessed an overall and consistent increase in the past 50 years; (2) temperature changes were 
moderate in the first 35 years but dramatic in the recent 15 years; (3) temperature changes 
showed a regional pattern, becoming warmer from east to west (because the widths of cold 
temperature bands were decreasing from east to west but the widths of warm temperature bands 
were increasing); (4) the regional pattern of temperature changes revealed noticeable spatial 
variations; and (5) regional variations of temperature changes were impacted by biomes. For 
example, around station 12 in meadow area close to the Heilongjiang River (Figures 1, 3 and 4), 
the relative EMD value increased from 0 to 10, station 5 in mountain area from 0 to 20 and 
station 40 in desert area from 0 to 30. In other words, the change trends differed locally and 
regionally. The desert and mountain areas responded quicker to the temperature increase than the 
wet biomes.  

 

Figure 3  Temperature EMD surface diagram 

It was clear that the EMD values constantly increased over most stations in the past 50 
years (Figure 3). The range of the EMD value changes was 10 to 30, depending on the types 
of biome and topography where the stations were located. In general, the EMD values in-
creased by 10–12 points before 1995 but jumped additional 18–20 points from 1995–2010 
(Figure 4). Moreover, the trend curves of EMD were raised from east to west except for 
several unique regional patterns (Figures 3 and 4). Firstly, most of the stations of 1–12, are 
located in the east edges of the Hulun Buir Steppe and the valleys of Da Xinggan Mountains 
with relatively less productive biomes (primarily salt meadow and some typical steppe). 
Therefore, the EMD changes were over 16–18 points. However, there were a couple of sta-
tions (2 and 6) around the Hulun Lake, which showed that the EMD changes were less than 
15 points. Secondly, from stations 16 to 32, except for stations 25 and 26, we saw a wide 
stretch of blue belt and the EMD increase was a little bit over 10 points (Figure 4). Most of 
these stations were located in Xilinhot Typical Steppe, which was the heartland of Eurasian 
temperate grasslands (Xie et al., 2009), and, hence, the EMD increases were moderate. Fi-
nally, from station 34 and further west, we witnessed an extensive brown and red stretch of 
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higher EMD values, which signified apparent warming impacts. Most of these stations were 
located in either deserts or desert steppe with much drier environments. Therefore, the EMD 
curves were raised much higher than the remaining areas (Figure 3). Clearly different envi-
ronments showed diverse susceptibility to climate change.  

 

Figure 4  Temperature 2D contour diagram 

3.2  The temporal trends of precipitation change  

The temporal trends and spatial patterns of precipitation changes in the past 50 years were 
different from those of temperature changes. First, the precipitation generally decreased 
from east to west but showed complicated temporal trajectories and spatial patterns. Secondly, 
there was a singular precipitation increase event (reflected by higher EMU values) in the 
past 50 years. This precipitation increase was centered on the Hulun Lake area (Xin Barag 
Left Banner) and extended to the east section of the Hulun Buir Steppe and the northern sec-
tion of the Da Xinggan Mountains (Figures 5 and 6). This increase event started from 

 

Figure 5  Precipitation surface diagram 
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1975, reached the maximum around 1990–1994, and returned to normal in 2004, lasting al-
most 30 years. Thirdly, the precipitation variation in the west section of the Hulun Buir 
Steppe and the Xilin Gol Steppe gradually decreased. Moreover, the decrease was more ap-
parent in the wetter areas. For instance, the precipitation EMD curves over the western Hu-
lun Buir and the eastern Xilinhot (stations 14–24) declined more noticeably and quickly than 
those over the western Xilinhot (stations 27–32). Fourthly, over the deserts and desert 
steppes (stations 4–6, 25–26 and 34–44), the precipitation EMD curves did not show a clear 
increasing trend (Figure 6). Finally, the EMD curves over the desert areas displayed moder-
ate temporal changes (Figure 5) although no clear linear trends were identified. 

 

Figure 6  Precipitation contour diagram 

3.3  Similarity measurement results 

We applied the above-mentioned seven similarity measurements to the EMD dataset of 45 
meteorological stations. We computed the similarity measurements of the EMD values 
across 45 meteorological stations. In other words, we compared similarity degrees among the 
meteorological stations. We also calculated the root mean square error (RMSE) to examine 
the sensitivity levels of these similarity measures (Table 1). The values of RMSE for tem- 
perature were usually lower than 0.30 and showed slight changes between different simi- 
larity measures. Thus, the spatial variation of temperature across meteorological stations was 

Table 1  Seven similarity measures: Root Mean Square Errors (RMSE) 

Precipitation RMSE Temperature RMSE 

Chebyshev 0.4249 Chebyshev 0.3008 

City block 0.3870 City block 0.2600 

Correlation 0.5956 Correlation 0.2896 

Cosine 0.3898 Cosine 0.2264 

Euclidean distance (E.D.) 0.4170 Euclidean distance (E.D.) 0.2654 

Spearman 0.5912 Spearman 0.2805 

Standardized E.D. 0.4413 Standardized E.D. 0.3042 
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gradual and not dramatic. However, the RMSE values for precipitation were usually above 
0.38. Especially, the RMSE values of correlation distance (C.D.) and Spearman distance (S.D.) 
measurements were above 0.50 and almost close to 0.60. The higher RMSE values indicated that 
the similarity measures were poor for pre-
cipitation (Veerasamy et al., 2011), which 
reflected significant variations in precipi-
tation among the meteorological stations. 
For the purpose of revealing spatial varia-
tions across the stations, we were reporting 
C.D. and S.D. measures in the following 
graphics. 

Figures 7 and 8 were the S.D. and C.D. 
cross-difference maps of 45 stations in 
precipitation, respectively. Both displayed 
clear and similar patterns. These maps 
could be clearly read in four quads. The 
upper left (U-L) quad revealed the simi-
larities or differences of the stations 
numbered 1 to 23. In comparison, the 
similarities between them were the small-
est. Moreover, significant different simi-
larities were identified around stations 3, 
9–11, 13, 15, and 20 in this quad. Seen 
from Figure 1, we found out that these 
stations were either far away in distance 
from the stations numbered around them, 
or these stations were located in different 
biomes. The lower right (L-R) quad was 
another extreme, displaying dense small 
cells and thus indicating apparent differ-
ences between these stations numbered 
above 23. The different similarity meas-
ures in these two quads were consistent 
with the biomes observed on ground. The 
stations in U-L were located in meadow and 
typical grasslands, while the stations in 
L-R were largely located in deserts, desert 
steppes and steppe deserts. The remaining 
two quads depicted similarity comparisons 
between the stations located in quads 1 and 
4. In other words, the similarity differences 
were identical in these quads. The varia-
tions were intermediate between U-L and 

 

Figure 7  Cross-station plot of Spearman distance for 
precipitation 

 

Figure 8  Cross-station plot of correlation distance for 
precipitation 

 

Figure 9  Cross-station plot of Spearman distance for 
temperature 
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L-R quads.  
Figures 9 and 10 were the S.D. and C.D. 

cross-difference maps of 45 stations by 
temperature, respectively. The tempera-
ture similarity maps showed different 
characteristics from the precipitation 
maps. First, there were no apparent spatial 
patterns. Second, the similarity differ-
ences of the meteorological stations in 
terms of temperature were generally 
smaller in comparison with precipitation. 
Third, the S.D. temperature map was re-
vealing more information than the C.D. 
map. For instance, the S.D. map indicated 
that there existed some temperature irregularities among the stations numbered 1 to 11. On 
the other hand, the C.D. map displayed more descrambled similarities.  

4  Conclusions and discussion 

We developed a statistical-cum-visual method on the basis of data-mining techniques that 
became available in recent years in order to investigate long-term trends and examine spatial 
patterns of ecological, environmental and geographical processes that are signified with 
cyclical or seasonable dynamics. We applied the EMD technique to extract long-term cli-
mate change trends and used 3D surface maps and 2.0D contour maps to visualize differ-
ences of change trends in three scales of region, biome and station. Moreover, we experi-
mented with another data-mining technique, the similarity measurement, and compared 
seven types of commonly used similarity measures. We also visualized these similarity 
measures by using the cross-station plots. We tested these methods through a case study of 
investigating climate change in Inner Mongolia based on the daily observations of precipi-
tation and temperature from 1959 to 2010 at 45 meteorological stations.  

The case study confirmed that the selected data-mining methods and geo-visualization 
techniques innovatively and effectively revealed long-term climate change trends and 
visualized spatial patterns of climate change in three scales, region, biome and station. 
Moreover, two data-mining methods, EMD and the similarity measurement, complemented 
each other, disclosing different characteristics of spatial patterns of climate change. 

Temperature, during the study period (1959–2010), increased across the study area based 
on the EMD trend-curves. However, the increases of temperature revealed significant temporal 
variations and spatial patterns. Temperature increased gently before 1995 and dramatically 
after 1995. Temperature increased slowly in the biomes of meadow and typical grasslands 
but quickly in the desert-type grasslands. When the environment was drier, the temperature 
increased more quickly. Furthermore, the similarity measurement illustrated that temperature 
trend (EMD) curves showed slight variation over meteorological stations. The cross-station 
similarity plots of temperature by the stations did not reveal noticeable spatial patterns.  

On the other hand, the change trends of precipitation in the past 50 years on the basis of 

 

Figure 10  Cross-station plot of correlation distance for 
temperature 
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EMD curves displayed complicated temporal trajectories and spatial patterns. A significant 
increase centre was accompanied by an overall decrease in other areas. From the perspec-
tives of regional and biome scales, no clear linear trends were identified. Furthermore, from 
the station point of view, based on the similarity measures and cross-station plots, similar 
change trends of precipitation were found for the stations located in the meadow and typical 
grasslands. However, this finding didn’t hold for the stations located in desert-type grasslands.  

The above findings provided very convincing evidences to support the IPCC predictions 
that the climate change varied significantly by location and through time. The influences of 
climate change showed different temporal trends and spatial disparities at varied scales. The 
reactions to climate change displayed different trajectories over different regions, biomes 
and locations. The integrated data-mining-cum-visual method was very effective in reveal-
ing change trends and their spatial patterns of climate changes. The methods developed in 
this study are also suitable for investigating long-term trends and spatial patterns of other 
ecological processes that are signified with cyclical or seasonable fluctuations. 

Finally, there is a noticeable limitation of current method. Although the primary gradients 
of precipitation and temperature changes are from east toward west, there is a significant 
distance in the south-north direction. Moreover, the meteorological stations are not located 
in the same latitude. Using the westward locations of the meteorological stations to describe 
the spatial pattern of east-toward-west vegetation responses to climate change neglected 
spatial variations of south-toward-north changes. 
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