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Abstract: Taking the semi-arid area of Yulin City as an example, this study improves the vul-
nerability assessment methods and techniques at the county scale using the VSD (Vulner-
ability Scoping Diagram) assessment framework, integrates the VSD framework and the 
SERV (Spatially Explicit Resilience-Vulnerability) model, and decomposes the system vul-
nerability into three dimensions, i.e., exposure, sensitivity and adaptive capacity. Firstly, with 
the full understanding of the background and exposure risk source of the research area, the 
vulnerability indexes were screened by the SERV model, and the index system was con-
structed to assess the characteristics of the local eco-environment. Secondly, with the aid of 
RS and GIS, this study measured the spatial differentiation and evolution of the so-
cial-ecological systems in Yulin City during 2000–2015 and explored intrinsic reasons for the 
spatial-temporal evolution of vulnerability. The results are as follows: (1) The spatial pattern of 
Yulin City’s SESs vulnerability is “high in northwest and southeast and low along the Great 
Wall”. Although the degree of system vulnerability decreased significantly during the study 
period and the system development trend improved, there is a sharp spatial difference be-
tween the system vulnerability and exposure risk. (2) The evolution of system vulnerability is 
influenced by the risk factors of exposure, and the regional vulnerability and the spatial het-
erogeneity of exposure risk are affected by the social sensitivity, economic adaptive capacity 
and other factors. Finally, according to the uncertainty of decision makers, the future scenar-
ios of regional vulnerability are simulated under different decision risks by taking advantage of 
the OWA multi-criteria algorithm, and the vulnerability of the regional system under different 
development directions was predicted based on the decision makers' rational risk interval. 

Keywords: social-ecological systems (SESs); VSD assessment framework; vulnerability; Yulin City 

1  Introduction 

Arid and semi-arid regions are sensitive to global environmental change (IPCC, 2014). In 
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the Loess Plateau region of China, drought, soil erosion and other disturbances cause the 
regional environment to be very fragile. However, with the development of a socio-economy 
and rapid urbanization, unreasonable land utilization and other disturbances introduced by 
human activities have made human-environmental conflicts a core problem restricting the 
sustainable development of the eco-environment and society in semi-arid regions. Therefore, 
researchers have focused on related issues, such as the ability of ecologically vulnerable 
areas to adapt to multiple disaster risks and the restoration of the eco-environment, which 
are mainly related to natural disaster assessment and prevention (Rosa et al., 2013; Wang et 
al., 2014; Xin et al., 2009), regional eco-environment regulation and sustainable develop-
ment (Nguyen et al., 2014; Gómez-Ortiz et al., 2013; Li et al., 2003; Zhao et al., 2011), 
natural resources and land use evaluation (Sannwald et al., 2012), and environmental evolu-
tion (Stoetzel et al., 2017; Wang et al., 2002; Lin et al., 2001). Most research results put 
emphasis on application-oriented single-perspective analysis (Al-Kalbani et al., 2014), 
which separates the connections in the human-environmental system. Due to the influence of 
system theory, some scholars began to attach importance to regional system associations, 
and some studies of the vulnerability of economical-environmental systems and hu-
man-environmental relationship evolution have been performed (Lu et al., 2013; Tian et al., 
2013; Perry et al., 2013;Liu et al., 2002). However, the studies ignore the inherent connec-
tivity of human and natural environmental factors and the influence of multiple disturbances; 
thus, the validity of the evaluation results needs to be verified. 

Compared to traditional studies of human-environmental relationships, vulnerability re-
search, based on the social-ecological system theory (Holling, 2001), integrates various 
perspectives and analysis methods to assess risks, sensitivity, adaptation and resilience 

(Ciftcioglu, 2017; Sannwald et al., 2012; Nelson et al., 2007), and this work provides a 
new mode of thinking about human-environmental relationships (Speranza et al., 2014; 
Cumming et al., 2011; Turner et al., 2003). However, two difficulties still exist. On the one 
hand, the complex evaluation indexes, unsystematic data organization methods and lack of 
an inductive theoretical model for coordinating the different data, indicators and information 
are obstacles in the vulnerability assessment. On the other hand, the lack of spatial-temporal 
revolution of elements in the human-environmental system and the uncertainty of distur-
bance risk measurements hinder the application of the evaluation outcomes. In recent years, 
research focus has moved from effects to adaptation and resilience. Additionally, studies 
about the human-environmental system’s vulnerability emphasizing cross-scale and 
multi-factor integration are gradually becoming valued by scholars (Yang et al., 2015; Shi et 
al., 2014; Polsky et al., 2007 Acosta-Michlik et al., 2008; Patterson et al., 2004). Consider-
ing theoretical frameworks, Vulnerability Scoping Diagram (VSD) and Agents’ Differential 
Vulnerability (ADV) have been proposed by Polsky et al. (2007) and Acosta-Michlik et al. 
(2008). Polsky and Acosta-Michlik, respectively, to provide a clear and comprehensive as-
sessment method of vulnerability through its multi-data organization, explicit vulnerability 
connotation and index system construction method. Considering methods, Frazier et al. 
(2014) developed the SERV model to improve the accuracy and spatial availability of vul-
nerability assessments and to solve uncertain and indistinct problems in the index construc-
tion. With a distinct index system as well as the integration of various indexes of the envi-
ronment’s multiple risks and factors, this model can improve our understanding of the spa-
tial-temporal differences and characteristics of an social-ecological systems (SESs) vulner-
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ability. The American mathematician Yager R.R. constructed the Ordered Weighted Averag-
ing (OWA) algorithm (Yager, 1988; Yager, 1996). The principle of the algorithm is to rear-
range the spatial data according to the attribute value. Furthermore, depending on the ag-
gregation of data criterion weight and order weight, the preference of different subjects (de-
cision-making risks) is simulated under the linguistic quantification operator. The OWA as-
sessment method presents decision-making differences owing to subjective weight error and 
difference values among index factors, and it reflects the decision makers’ attitude with re-
gard to avoiding risks in decision problems, which can reduce the subjective cognition of 
decision makers impacting evaluation results. This method is an effective means to construct 
future scenario simulations of a social-ecological system. Therefore, integrating systematic 
vulnerability based on evaluation and technical methods can be used to effectively under-
stand the interactions and evolution of the coupled human-environmental system. 

Yulin City is an ecologically vulnerable area in China and experiences serious problems 
related to drought, soil desertification and soil erosion. During the period of “the 12th 
Five-Year Plan” (2011–2015) and “the 11th Five-Year Plan” (2006–2010), the energy indus-
try in Yulin City entered the rapid development stage, and urbanization accelerated markedly, 
leading to considerable transformations in the regional human-environmental relationships. 
Therefore, this study has chosen Yulin City as an example to measure its disaster exposure 
risks and vulnerabilities associated with human activities and data was collected on Yulin 
City at typical times during 2000–2015. Based on the SES theory and by applying the inte-
gration analysis framework of vulnerability and the SERV model, this research expresses the 
spatial-temporal dynamics of vulnerability from 2000 to 2015 in Yulin City. Moreover, this 
work simulates the future development scenario of the SES via OWA and can act as a refer-
ence to the relevant departments in terms of disaster warning and adaptation management. 

2  Study area 

The study area is located between 107°28'E–111°15'E and 36°57'N–39°34'N. Yulin City, the 
northernmost prefecture-level city in 
Shaanxi Province (Figure 1), is located at 
the juncture of the Loess Plateau and the 
southern margin of the Mu Us Sandy 
Land in a semi-arid region in China. 
Yulin City has 1 district and 11 counties, 
with a total population of 3.645 million, 
and land area of 43,578 km2. In terms of 
landforms, taking the Great Wall as a 
boundary, the northern parts are sandy 
areas, accounting for 42% of the total 
area, and the southern parts are a 
hilly-gully region, approximately 58% of 
the total area. The area features a tem-
perate, semi-arid, continental monsoon 
climate, with four distinct seasons, short 
frost-free periods, an annual average 

 
Figure 1  Location of the study area (Yulin City, Shaanxi 
Province, China) 
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temperature of 10°C, an average precipitation of approximately 400 mm and a frost-free 
period of 150 days. Meteorological disasters, such as drought, hail and frost, are common. 
Moreover, the combination of hilly landforms composed of loess in the southern areas and 
the concentrated summer precipitation results in regional soil erosion and other serious eco-
logical problems. Moreover, the regional energy and mineral resources include coal, oil, 
natural gas, rock salt and others, which have led to large-scale predatory energy exploitation 
since the late 1980s and caused eco-environmental damage in Yulin City. The advancement 
of urbanization, irrational land use and industrial economic developments have further ag-
gravated the disturbance of social-ecological systems. 

3  Materials and methods 

3.1  Theoretical structures and models 

Vulnerability is decomposed into three dimensions – exposure, sensitivity and adaptive ca-
pacity –to describe a social-ecological system. The basic idea of the VSD assessment 
framework is used to guide the whole process from data management to results simulation 
(Figure 2). Based on the indicators selection principles of SERV, this study constructs multi-
ple factors and an explicit assessment index for quantitative evaluation of vulnerability and 
further selects proper indexes from the system corresponding to the actual habitat status at the 
county scale, as referenced from the Shaanxi Province and county almanac. Combining the 
SERV model and the RS/GIS spatial statistical analysis method, this study evaluates the 
vulnerability of the SES at the county scale, the spatial-temporal dynamic evolution and the 
shifting trends. Finally, the OWA algorithm is used to simulate the risks of the future system’s 
vulnerability for different development scenarios in Yulin City, thus allowing evaluation re-
sults to be applied in regional practice. 

 

Figure 2  Ideas and methods of regional vulnerability assessment under the framework of VSD 
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3.1.1  VSD integration framework 

The theoretical structure of the vulnerability assessment is related to the whole study’s cien-
tific quality. By reviewing all the assessment theories and models proposed domestically and 
internationally, it can be observed that most focus on the causes and mechanisms of vulner-
ability and explore the inherent relationships among driving factors from different perspec-
tives. However, the assessment framework for multiple factors and multiple risk distur-
bances at the regional scale is limited, and the VSD framework (Polsky et al., 2007) has 
made great achievements in many cases. VSD defines vulnerability as three dimensions – 
exposure, sensitivity and adaptive capacity – and organizes the data using a progressive 
method of dimension layer–index layer–parameter layer, with eight steps of normative 
evaluation process (Figure 2). The deconstruction of the vulnerability assessment under this 
framework is in accord with the trend of integration analysis, and the clear evaluation proc-
ess can guide the whole process from data processing to results application (Polsky et al., 
2007; Huang et al., 2003). 

3.1.2  SERV vulnerability model 

To overcome limitations of previous vulnerability assessments, Frazier et al. (2014) pro-
posed the SERV model, representing exposure (degree), sensitivity and adaptability through 
indexes related to the natural environment, social economy, spatial and local characteristics, 
which are used to evaluate regional vulnerability. This model serves to link theories to dis-
aster risk research more directly. This model also incorporates local specific indicators into 
the evaluation index system, thereby differing from the previous general ways to organize 
data. As information provided by specific indicators in each county to reflect the local habi-
tat status, this method solves the problem of the spatial distribution imbalance and depend-
ence index. Simultaneously, due to the inherent connectivity of vulnerability factors, indica-
tors expressing interactions among sensitivity and adaptability are emphasized. Moreover, 
SERV captures a key but overlooked point: vulnerable regions are not always in exposed 
regions; thus, the model suggests that limited resources should be allocated to more vulner-
able regions, not just highly exposed areas, when developing adaptive strategies for regions 
(Frazier et al., 2014). The SERV model changes our way of thinking about assessing spatial 
vulnerability and helps to design targeted disaster reduction strategies, thus guiding the im-
plementation. This model uses three elements for independent calculation, and its static 
vulnerability calculation equation is as follows: 
 V= [E+S] – AC (1) 
where V represents the vulnerability, E represents the exposure, S represents the sensitivity, 
and AC represents the adaptive capacity. 

3.2  Index system construction 

In the field of global environmental change, Adger (2006), Smit (2006), and Turner et al. 
(2003) generally agree that vulnerability refers to the sensitivity of a social-ecological sys-
tem exposed to risk or to internal or external disturbances and a state in which the structure 
and the function of systems may be damaged due to the lack of adaptive capacity. Exposure, 
sensitivity and adaptive capacity are the three core components of system vulnerability 
(Turner et al., 2003; Roberts et al., 2003; Adger, 2006; Smit, 2006). Exposure refers to the 
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degree of the external environmental pressure or risk disturbance and stress experienced by a 
system. Sensitivity is the extent to which exposed units are susceptible to being affected ei-
ther positively or negatively. Adaptive capacity represents the self-regulating ability of the 
system in the face of risks and stress as well as the recovery potential in response to external 
interventions (adaptive management) (Chen et al., 2010). The higher the degrees of expo-
sure and sensitivity, the higher the vulnerability of the social-ecological system, while the 
higher the adaptive capacity, the lower the vulnerability of the social-ecological system. 
Therefore, based on the VSD framework and the SERV model, this study links the natural 
environment, social economy and local specific indicators to disaster risks, thereby building 
an evaluation index system of social-ecological system vulnerability from the three dimen-
sions of exposure, sensitivity and adaptive capacity (Tables 1 and 2).  

3.2.1  Exposure (risk) indicators 

The exposure risk in Yulin City is mainly caused by drought, soil erosion and human activi-
ties; hence, indicators of drought, soil erosion and human activities are considered with an 
analytic hierarchy process to determine the weight (Table 1). Drought risk is measured with 
a comprehensive drought state index, which combines hydrological drought (SRI) and me-
teorological drought (SPI) (Sun et al., 2014). The universal soil loss equation (USLE) is used 
for risk assessment of soil erosion (Zhang et al., 2011; Qin et al., 2009). Human activity 
disturbance is mainly due to the urbanization process and disturbances of the regional social  

Table 1  Index system of exposure risk assessment 

Dimen-
sion layer 

Element 
type 

Index layer Weight Indicator description and calculation 

Standardized precipitation 
index (SPI)

0.2751 Drought 

(0.4126) 
Standardized runoff index 
(SRI) 

0.1375 

SPI-SRI drought state model, combining the 
meteorological and horological drought inde-
xes, adopting 12 months of data to reflect per-
iodic changes in the river water level and reservoir 

Rainfall erosion (R) 0.0345 

Soil erodibility (K) 0.0629 

Length of slope (LS) 0.0307 

Crop cover and  
management (C) 

0.0900 

Soil  
erosion  
(0.3275) 

Soil and water conservation 
measures (P) 

0.1095 

 
Universal soil loss equation (USLE): 
A=R×K×LS×C×P 
A: Soil loss volume; R: Rainfall erosion;  
K: Soil erodibility; LS: Length of slope;  
C: Crop cover and management; 
P: Soil and water conservation measures 

Urbanization rate (UB) 0.1049 

 

 

 

 

 

 

 

Exposure 

Human 
activities 
(0.2599) 

Land use intensity (LD) 0.1550 

Calculation formula of comprehensive land 
use intensity (Wang et al., 2006):  

SSAL
ni

iix /
4




  

Lx: Comprehensive index of land use degree in 
the xth sample; Ai: Classification index of land 
use grade i; Si: Land use area of grade i; S: 
Total land area of the sample area 

Notes: (1) Drought, soil erosion and human activity indicators are positively related to exposure. (2) SPI and SRI 
were calculated by standardized precipitation index (SPI) formula from water regime of hydrology and water resources 
bureau of Yunnan province. (3) Precipitation erosion force factor (R), soil erodibility factor (K), and slope length factor 
(LS) data were from the National Earth System Science Data Sharing Infrastructure, and the data layer was generated via 
the spatial matching process. (4) Crop coverage and management factors (C) were estimated via the functional relation-
ship between vegetation coverage N and vegetation coverage factor C: C=0.6508–0.3436lgN. (5) By integrating the 
results of Hu Wenmin and Cai Chongfa and combining practical land use status in the study area to determine the values 
for the soil and water conservation measures factor (p), the p values of different land use types were determined.  
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ecosystem related to land use intensity. Finally, the three elements of exposure are processed 
with the weighted raster operation of ArcGIS to draw the regional exposure risk layer. 

3.2.2  Sensitivity/adaptive capacity index 

Jones and Andrey (2007) and Frazier et al., (2013) stated that there are different key factors 
of vulnerability in different research fields, locations and specific research scales. For ex-
ample, the six counties of northern Yulin City are heavily reliant on the energy industry, and 
the county economic development is relatively better than that of the six agricultural coun-
ties of southern Yulin City, which are impoverished mountainous counties. Compared with 
the six counties in the south, indexes such as energy consumption and the number of em-
ployees employed in extractive industries are more likely to be the key factors of the sensi-
tivity of the system in the northern six counties, while indexes such as the output value of 
major agricultural crops better represent the adaptive capacity (i.e., coping with vulnerability 
risk) of the six counties in the south. In addition, due to the vulnerability factors related to 
interaction and internal connectedness, the same factors affect the factors of sensitivity and 
adaptive capacity in different ways; for example, the forest area for soil conservation not 
only characterizes the sensitivity of soil erosion but is also an adaptive measure used to limit 
the risk of soil erosion. Therefore, through the existing literature research and reorganizing 
the data compiled in County Yearbooks over the years, this article summarizes the elements 
that have affected the sensitivity and adaptive capacity. In consideration of the actual situa-
tion in the study area, using the index selection principle of the SERV model, this research 
carefully screens the indexes to distinguish general and specific factors for different counties. 
Using this method, this study preliminarily constructs an index system of sensitivity and 
adaptive capacity for the counties in the study area. Additionally, this study adopts principal 
component analysis (PCA) to simplify and compress the relationships among a series of in-
dexes in order to retain the significant variables for which the principal component load co-
efficient is ≤–0.5 or ≥0.5. After screening, this study constructs the final indicators of sensi-
tivity and adaptive capacity (Table 2), uses the variance contribution rate of the principal 
component analysis as the weight, and takes the principal components as variables to calcu-
late the index layer of system sensitivity and adaptive capacity. 

3.3  Data sources and processing 

The data in this study mainly include remote sensing images and land use type captured in 
2000, 2005, 2011, and 2015; meteorologic and hydrologic data (1954–1990 and 2002–2015); 
and Yulin City social statistics data (2000–2015). The remote sensing images of the study 
area are the products of the geospatial data cloud produced by the TM instruments aboard 
the Landsat 4 and 5 satellites, and these images were used to calculate and obtain the vege-
tation cover data in the study area in typical years. The land use data are from ten years of 
the Shaanxi provincial ecological database and were used to obtain data on land use intensity 
and soil conservation measures. The vector data of precipitation, runoff, slope, slope length 
and soil erosion factors are from the National Earth System Science Data Sharing Infrastru-
cture. Population, environment, society, economic development and other indicators were 
calculated based on the original data from the Yulin City Statistical Yearbook (2000–2015). 

3.3.1  Data spatialization 

The spatial processing includes remote sensing data, precipitation/runoff data and statistical  
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Table 2  Screening results of the sensitivity/adaptive capacity index 

Dimen-
sion  
layer 

Principal 
component 

factor 
Universal index 

Index 
proper-

ties 
Specific index 

Index 
pro- 

perties 

Basic popula-
tion principal 
component

The proportion of female population (%) 
The proportion of agricultural population (%) 
The proportion of employed population of agriculture, 
forestry, animal husbandry and fishery (%) 
Natural population growth rate (‰) 
The average education level of labor (years) 
Population density (people/km2) 

+ 
* 
– 
+ 
– 
+ 

The number of 
employees em-
ployed in extrac-
tive industry (peo-
ple) 

 
 

* 

Agriculture 
and land  
principal 

component

The proportion of cultivated land area (%) 
The proportion of paddy field/irrigated land area (%) 
The growth rate of housing construction area (%) 
The proportion of abandoned cultivated land area due 
to disasters (%) 
Grain yield per unit area (ha/kg) 

* 
* 
+ 
+ 
– 

Aquaculture area 
(ha) 
Main cash crop 
yield (Chinese ju-
jube etc.) (tons) 

* 
 

– 

Ecology and 
environment 

principal 
component

Forest coverage (%) 
The proportion of effective irrigation area (%) 
Area of forest for water and soil conservation (103 ha)
Total energy consumption (tons of standard coal) 

– 
– 
– 
* 

Total emission of 
industrial 
waste/waste water 
(104 tons) 

 
 

+ 

Sensi- 
tivity 

Economic 
development 

principal 
component

Per capita gross domestic product (yuan) 
The proportion of total value of output of agriculture, 
forestry, animal husbandry and fishery (%) 
Industrial structure dependence index 
Engel’s coefficient 
Comprehensive energy consumption per unit GDP 
(10,000 yuan/ tons of standard coal) 

– 
– 
+ 
+ 
+ 

Industrial water 
consumption per 
unit GDP (tons/104 
yuan) 

 
 

+ 

Education 
and technol-
ogy principal 
component

The number of teachers of per ten thousand people 
possessed (people/10,000 people) 
The proportion of students on campus (%) 
The number of communications equipment per 100 
households (telephone/100 households) 
Comprehensive utilization of product output value of 
“three wastes” (104 yuan) 
The proportion of fiscal expenditure on education (%)

+ 
 

+ 
 

+ 
 

+ 
 

+ 

The attainment rate 
of the industrial 
wastewater (%) 
Water saving irri-
gation machinery 
(suits)/drainage and 
irrigation power 
machinery (kw) 

 
+ 
 
 
 

+ 

Social infra-
structure 
principal 

component

The number of medical beds of per ten thousand people 
possessed (people/10,000 people) 
The number of health service employees (people) 
Fiscal expenditure on water affairs of agriculture and 
forestry (104 yuan) 
Social security expenditure per capita (104 
yuan/10,000 people) 
The number of employees of transportation, storage 
and postal service (people) 

 
+ 
+ 
 

+ 
 

+ 
 

+ 

/  

Adap-
tive  

capac-
ity 

Population 
and economy 

principal 
component

Per capita net income of farmers (yuan) 
The density of social fixed assets investment (104 
yuan/ km2) 
The total output value of agriculture, forestry, animal 
husbandry and fishery (104 yuan) 
The third industrial added value accounted for the 
proportion of GDP (%) 
Local fiscal expenditure (104 yuan) 
Industrial structure diversification index 

+ 
 

+ 
 

+ 
 

+ 
+ 
+ 

/  

(To be continued on the next page) 
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(Continued) 

Dimen-
sion layer 

Principal com-
ponent factor

Universal index 
Index 

properties
Specific index 

Index 
properties 

Adap-
tive ca-
pacity 

Disaster pre-
vention and 
mitigation fa-
cilities principal 
component 

Reservoir capacity (104 m3)  
The density of drought resistant infrastructure 
(number/km2) 
Afforestation area in the year (ha) 
The area of forest for water and soil conserva-
tion (1000 ha) 

+ 

+ 

+ 

+ 

Dike length (km) + 

Results of sensitivity principal component Results of adaptive capacity principal component 

Years 2000 2005 2011 Years 2000 2005 2011 

Minimum eigenvalue 1.070 1.139 1.330 Minimum eigenvalue 1.202 1.062 1.351 

Cumulative contribution rate 91.94% 90.75% 89.99% Cumulative contribution rate 88.30% 89.53% 88.75% 

Notes: (1) Sensitivity and adaptive capacity: these two dimensions have no influence on each other. The detailed re-
sults of principal component analysis in each year are not listed here separately. “+” indicates that the indexes and the 
sensitivity or the adaptive capacity are positively correlated. “–” indicates that the indexes and the sensitivity or the 
adaptive capacity are negatively correlated. “*” indicates a moderate index, in which a certain value of the index value is 
the best. The moderate value is calculated from the standard mean value of indexes of each year in the study area. (2) 
The index system of the dimension of sensitivity and adaptive capacity is composed of universal indexes and specific 
indexes. Among them, the universal index is suitable for index factors of the whole region and the specific index reflects 
the index factor satisfying the actual habitat of each county. (3) The minimum eigenvalue means that principal compo-
nent analysis of the index system in this year was used to extract the principal components with minimum eigenvalues. 
In Table 2, all the minimum eigenvalues are greater than 1, and the cumulative contribution rate is greater than 85%, 
indicating that the extraction of the principal components is representative.  

 

data. (1) The remote sensing data are based on Landsat 4–5 TM data, after using ERDAS 
software to process the original remote sensing images. The Mosaic Tool is adopted to syn-
thesize three periods of remote sensing images for the study area. Modeling the band opera-
tion yields the NDVI data covering the study area, and using the mask extraction tool of 
ArcGIS provides the NDVI data for three typical years in Yulin City, which are used to cal-
culate the vegetation coverage. (2) This research adopts the inverse distance weighted inter-
polation method for point source data, such as precipitation and runoff, in order to achieve 
spatial deterministic interpolation and spatialization. (3) For attribute data without X and Y 
coordinates, such as social statistics, this research uses ArcGIS software to input the attrib-
ute data into an attribute list for the administrative division vector in the study area, thereby 
achieving the spatialization of the data attributes. This study takes a grid as the basic re-
search unit in order to ensure the agreement between the indexes and the spatial locations. 
We define the spatial data grid size as 30 m×30 m, and the spatial data are fit to the grid us-
ing unified Krasovsky ellipsoidal coordinates and Albers projection. 

3.3.2  Data standardization 

To eliminate the problem of inconsistent dimensions in the index data, this research stan-
dardizes the original data of the social statistics. Considering that the positive and negative 
indicators of vulnerability assessment have different effects on the vulnerability of the sys-
tem, different standardization methods are adopted. The range standardized method is applied 
to the positive and negative indicators. For the moderate indexes (that is, the indexes in 
which moderate values are the best) with a certain ambiguity, this study adopts the method of 
fuzzy membership function based on the work of the American scholar L.A. Zadeh for 
non-dimensional processing (Duan, 2005). 
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3.4  Analytical methods 

3.4.1  Variation slope method 

Using the variation slope method to calculate the change in the slope of vulnerability for 
each grid pixel, this research performs a regression simulation between the vulnerability 
indexes of the social-ecological system of Yulin City during 2000–2015 and time in order to 
express the variation trend of regional vulnerability over 16 years. The variation slope is 
positive, which indicates that the vulnerability of the region shows an increasing trend. In 
contrast, a negative value would indicate that the vulnerability of the region shows a de-
creasing trend. The specific calculation formula of the slope variation is as follows (Chen et 
al., 2008): 

 1 1 1
2

2

1 1

n n n

i i
i i i

slope
n n

i i

n i SESsVI i SESsVI

X

n i i

  

 

  
    

  
 

   
 

  

 
 (2) 

where n represents the year; SESsVI represents the vulnerability index of the ith pixel in the 
raster data; Xslope represents the variation slope of the grid pixels and the degree of long-term 
changes in regional vulnerability. The F test is used to test the significance of the variation 
slope and is calculated as follows: 
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squares. Yi is the actual value of SESsVI of the ith year, and Ŷ  is its regression value; Y  is 
the average value of each year. According to the calculation of the variation slope and the F 
value significant test, the results can be divided into three categories: significant increase 
(Xslope>0, P<0.05), significant decrease (Xslope<0, P<0.05), and no significant change 
(P>0.05). 

3.4.2  OWA analytical method  

The Ordered Weighted Averaging (OWA) algorithm is a method based on the ordered 
weighted mean, and the core of this method involves calculating the criterion weight and 
order weight of spatial index data. By adjusting the size of the decision risk among the 
transformation of logical operations, the OWA algorithm obtains results for different risk 
evaluations. It uses the AHP method to determine the weight of each index, while determin-
ing the order weight has various methods. This study adopts the fuzzy quantification model 
first proposed by Yager, as this model is simple, easy to understand, and widely used (Yager, 
1988, 1996). The specific formula is as follows: 
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where Vj represents order weight; a is the decision risk coefficient, which depends on the 
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degree of optimism of the decision maker facing decision risks; and Wk represents the im-
portance degree of the index, which can be calculated with formula (8): 
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where n is index number, and rk represents the assignment of the index importance according 
to the index value, for which the maximum value is 1, the second largest value is 2, and the 
minimum value is n. 

4  Result analysis 

4.1  Exposure risk analysis 

According to the specific exposure risk type in the study area, this research adopts the Ar-
cGIS raster calculator to perform the weighted operation. The results are shown in Figure 3. 
The risk exposure from 2000–2015 in the study area formed a pattern approximately char-
acterized by high values in the northwest and low values in the southeast. The pattern after 
2005 featured low values in the middle and southern parts and high values in the northern. The 
area of high exposure risk first increased then decreased from 2000–2015 and is mainly con-
centrated in Shenmu County, Fugu County and Yuyang District, all of which have dense 
populations, developed industries, and high-intensity land development. The low exposure 
risk area is concentrated along the Great Wall (400–450 mm precipitation line) and the 
southern region. 

The high-intensity areas of soil erosion are concentrated in the eastern and southwestern 
regions in Yulin City, while the distribution pattern of drought decreases from the southeast 
to the northwest. Based on the spatial evolution pattern of the exposure risk in Yulin City 
over the 16 years (see Figure 3), it is known that the spatial distribution of exposure risk is 
roughly similar to those of drought and high-intensity human activity. Therefore, the drought 
and the disturbance due to human activities may be the main influencing factors for the re-
gional exposure risk. However, in recent years, with the implementation of soil conservation 
measures, such as returning farmland to forest (grass) and comprehensive management of 
small watersheds, the impact of soil erosion risk has begun to weaken, and the southern 
ecological condition has clearly gotten better. These trends show that the risk source of ex-
posure is uncertain and complex and includes a reduction in the self-adjustment ability (or 
sensitivity threshold) of the exposed units, which highlights the potential problems, and 
constant changes in the type and number of its exposure factors. On the whole, the role of 
regional topography, climate, hydrology, vegetation and other special natural geographical 
factors, as well as human activities in ecological system, together determine the spatial dis-
tribution characteristics of exposure risk in Yulin City. 

4.2  Spatial-temporal evolution of vulnerability of social-ecological system 

4.2.1  Spatial-temporal distribution characteristics of vulnerability 

On the basis of overlaying the index layers of the exposure, sensitivity and adaptive capacity 
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Figure 3  The spatial framework of exposure risk in Yulin City during 2000-2015 

(derived from the calculation results of the static vulnerability equations of SERV model and 
the natural breakpoint method), this study divides vulnerability into five categories that rep-
resent areas of low vulnerability, low-medium vulnerability, medium vulnerability, medi-
um-high vulnerability and high vulnerability. As shown in Figure 4, the overall vulnerability 
of the social-ecological system corresponds to the medium level during 2000–2015 in Yulin 
City. The spatial pattern of the vulnerability can be characterized as “high in northwest and 
southeast and low along the Great Wall”, and medium- and high-vulnerability areas show a 
decreasing trend. Meanwhile, there is a significant difference in the spatial-temporal distri-
bution of vulnerability. In 2000, the area of the high-vulnerability region is larger than those 
of 2005, 2010 and 2015. The high-vulnerability region of the study area has been mainly 
concentrated in the core area of the northern cities and energy bases for 16 years. The me-
dium-vulnerability area is mostly located near the northwest of the Mu Us Desert, while the 
low-vulnerability area is located along the Great Wall and the junction of the northern six 
counties and the southern six counties. 

In the time dimension, the overall vulnerability of social-ecological system shows a de-
creasing trend in the study area during 2000–2015. The proportion of the area with vulner-
ability levels above medium decreases from 66.587% to 57.103% (see Table 3). In 2000, the 
area of high vulnerability and medium-high vulnerability is 478.83 km2 and 7023.29 km2, 
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respectively, while the area of medium-high vulnerability region is only 245.344 km2 in 
2015. From the point of view of the regionally dominant vulnerability level, the proportions 
of the area of medium vulnerability are 49.37% and 57.83% in 2000 and 2005, which shows 
that half of Yulin City experiences some vulnerability. In 2011 and 2015, the dominant level 
of vulnerability is the low-medium level, accounting for 45.86% and 39.80% of the regional 
land area, respectively. This pattern indicates that the regional social-ecological system is 
developing towards a good situation. 

In the spatial dimension, the spatial variation of vulnerability in the study area shows a 
southward trend in terms of low vulnerability region over the 16 years. The distribution of 
the medium-vulnerability area has a relatively large fluctuation, and the northwest-southeast 
distribution pattern evolves into a primary concentration in the northwest. The high-vunear-
ility region gradually decreases, and it is mainly concentrated in the northern Shenmu-Fugu 
counties in 2000–2011 and is absent in 2015. Comparing the data of land use types in the 
study area during 2000–2011, it is found that there is a consistency between the 
high-vulnerability area and the spatial distribution of the mining area. Shenmu and Fugu 
counties are an important energy base in China. Mines are densely distributed in this area, 
resulting in unrecoverable damage to the ecological environment. Excessive exploitation of 
energy and extensive economic development further exacerbates the vulnerability of a so-
cial-ecological system. 

4.2.2  Analysis of the trend of vulnerability evolution 

According to the variation slope method and the results of the significance test (Figure 5), in 
the period of 2000–2015 in Yulin City, the slope of the overall vulnerability change is negative 
accounted for more than 96% of the pixels, and the area of reduced vulnerability is dominant, 
which further explains the gradual improvement in the regional social-ecological system 
over the past 16 years. 

From the left and right graphs in Figure 5, we can see that the pixels with significantly 
reduced vulnerability trends (p<0.05) are concentrated in areas of high and medium vulner- 
ability. These regions are sparsely populated areas in five counties in the northwest and 
south. The areas where the slope of the change is significantly higher than 0 are distributed 
along the low-vulnerability Great Wall region. The main reason is that the medium- and 
high-vulnerability areas are related to soil erosion, northwestern sandstorms and intensive 
energy development. Due to the effects of soil conservation, returning farmland to forest, 
shelter forest development and other policy measures, coupled with the decline of the tradi-
tional energy economy in recent years, the transformation of the economic structure (driven 
by the energy resource depletion crisis) has promoted the gradual restoration of the regional 
eco-environmental system. Thus, the degree of vulnerability in such areas has been reduced. 
However, this pattern does not show that the vulnerability of the social-ecological system in 
such areas is lower than other low-vulnerability areas; it only shows that the trend of 
changes has improved. According to the comparative analysis in Figures 4 and 5, the trend 
of vulnerability change in medium- and high-vulnerability areas fluctuates greatly but that a 
significant reduction occurred over the 16 years (Figure 5b). In essence, the high-risk areas 
of the social-ecological system are still concentrated in the northern (or northwestern) coun-
ties that are densely populated and exhibit good economic conditions. However, to a certain 
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extent, the evolution trend over 16 years shows that the previous high-vulnerability area of 
the social-ecological system in Yulin City has decreased and that the overall system at this 
stage has a good development trend. 

 
Figure 4  Spatial-temporal distribution of the vulnerability of social-ecological systems (SESs) in Yulin City 
during 2000-2015 

 

Figure 5  SES vulnerability variation trend (a) and F test (b) in Yulin City during 2000-2015 
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Table 3  Classification of social-ecological system vulnerability in the study area during 2000–2015 

Year / Type 
High vul-
nerability

Medium-high 
vulnerability

Medium 
vulnerability

Low-medium 
vulnerability

Low  
vulnerability 

Above medium 
vulnerability 

Proportion/% 1.098 16.116 49.373 21.459 11.951 66.587 
2000 

Area/km2 478.836 7023.390 21515.901 9351.638 5208.232 29018.127 

Proportion/% 1.791 2.679 57.833 25.471 12.224 62.303 
2005 

Area/km2 780.551 1167.519 25202.816 11099.949 5327.163 27150.886 

Proportion/% 1.460 5.644 44.871 45.863 2.160 51.975 
2011 

Area/km2 636.319 2459.650 19553.933 19986.428 941.6683 22649.902 

Proportion/% 0.0009 0.563 56.540 39.800 2.997 57.103 
2015 

Area/km2 0.414 245.344 24682.578 17344.043 1306.033 24928.336 

 

4.3  Spatial-temporal heterogeneity between the vulnerability and exposure risk 

There are spatial distribution differences between the areas with higher vulnerability and the 
areas with higher exposure risk, but this spatial heterogeneity is often overlooked in most 
studies. The evaluation of the SERV model advocates allocating limited resources to more 
vulnerable areas rather than just highly exposed areas, as less exposed but vulnerable areas 
are often more sensitive to disaster risks. Therefore, a comprehensive vulnerability assess-
ment should focus on the spatial heterogeneity between exposure risk and vulnerability. In 
this study, vectorization of the grid data of the exposure risk assessment and the results of 
the spatial-temporal vulnerability evolution and the intersection tool of the overlay analysis 
were used to obtain a spatial heterogeneity maps of exposure risk and vulnerability levels in 
2000, 2005, 2011 and 2015 (Figure 6). 

As shown in Figure 6, from 2000–2015, the low exposed-vulnerable areas in Yulin City  
are mainly distributed in the less developed areas in the south, and the area of spatial het- 
erogeneity gradually decreases over time but is concentrated in the hilly and gully areas of 
the southeastern part. Under the condition of low exposure risk, the situation of me-
dium-high vulnerability is bound to reflect the state of high sensitivity and low adaptive ca-
pacity in terms of risks. There are five counties to the south of the Great Wall, where the 
development of traditional agriculture is limited by natural terrain, water resources and lim-
ited arable land area, coupled with lagging infrastructure construction and the lack of energy 
resources. In recent years, the socio-economic development of these regions has lagged far 
behind that of the northern energy-rich counties, resulting in a low adaptive capacity in the 
system. Secondly, the regional population density of Yulin City is basically high in the 
southeast and low in the northwest. The southern counties contain large farmlands and con-
venient valley roads, resulting in a higher population density. Therefore, the social sensitiv-
ity of such areas in the event of a disaster is higher. 

Over the past ten years, the population of the southern counties of Yulin City has moved 
north or settled outside of rural settlements, resulting in the hollowing out of rural settle-
ments and the abandonment of cultivated land, thereby reducing the impact of human activi-
ties on the local areas. This phenomenon is beneficial to the restoration of the ecosystem and 
the reduction of the disaster exposure, but the development of social systems is unbalanced, 
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Figure 6  The spatial heterogeneity of SESs vulnerability and exposure risk in Yulin City during 2000–2015 

and the potential vulnerability increases. Therefore, to reduce the vulnerability in southern 
counties, it is important to increase the investment of resources in low exposure-vulnerabil-
ity areas, to promote the transformation to a modern agricultural economy, and to enhance 
the development of capacity with social infrastructure, such as education and technology, 
disaster prevention and mitigation.  

4.4  Vulnerability scenario simulation 

The principle of the OWA algorithm, based on the calculation of order weight and criterion 
weight, is used to obtain a comprehensive evaluation chart of the regional social-ecological 
system vulnerability by incorporating different factors affecting the vulnerability. Through 
the setting of different decision risk coefficients, the regional system vulnerability is simu-
lated, generating multiple scenes. The decision-making risk coefficient (a) reflects the opti-
mism of the decision maker on issues, the value of the coefficient a ranges from 0 to infinity, 
corresponding to a range from optimism to pessimism. When a=1, the attitude of the deci-
sion maker is neutral, and the order weights are equal. The OWA algorithm then overlays the 
traditional criterion weight layer, and the regional system vulnerability corresponds to the 
status quo. In the case of a>1, the decision maker is pessimistic about the vulnerability of 
the regional system and believes that there is a high exposure risk in the region and that the 
significantly increasing vulnerability is harmful to the sustainable development of regional 
social-ecological system. On the contrary, if a<1, the decision maker is optimistic and be-
lieves that the risk of regional vulnerability is manageable or in control and that it does not 
affect the stable development of the regional social-ecological system. 
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4.4.1  Scenario index formulation and analysis  

The design of the vulnerability scenario index is based on the existing evaluation index sys-
tem (Tables 1 and 2) and involves integrating and selecting the indexes of exposure risk, 
sensitivity and adaptive capacity and removing the factors that are complex and that have 
small loading coefficients. The exposure risk index layer remains unchanged, whereas the 
top 3 indexes are selected for the indicators of sensitivity and adaptive capacity based on the 
closeness of the relationship to each principal component. There are 11 scenarios in total, 
and the weight was determined based on the analytic hierarchy process. Sensitivity indexes 
include the layers of population, land, ecology and economy; adaptive capacity indexes in-
clude the layers of environment and technology, social resources, economic development, 
disaster prevention and mitigation resource.  

To obtain the final results, the order weight of the scene index layer was calculated ac-
cording to the formulas (4) and (5) (Table 4). The grid index layer was standardized and as-
signed in ArcGIS 10.0, and the criteria weight and order weight of different decision risk 
coefficients1 were input to calculate the OWA module of multi-criteria evaluation (MCE) in 
IDRISI 17.0 (Figure 7). 

According to the natural breakpoint method, the regional vulnerability grid layers of dif-
ferent decision risk assessments are divided into five categories, which represent low, 
low-medium, medium, medium-high and high vulnerability. As shown in Figure 7, when the 
decision maker is extremely optimistic to just optimistic (a=0.001 or 0.1), the whole area is 
basically in a low-vulnerability situation, but the decision-making risk is the highest and is 
not in line with the actual situation. When the decision maker is relatively optimistic (a=0.5), 
the majority of the area exhibits low vulnerability, and the northern part has a trend in which  

Table 4  Results of the ordered weight 

Decision risk coefficient 
Decision-maker's risk attitude 

a=0.0001
Extremely 
optimistic

a=0.1
Opti-
mistic 

a=0.5 
Relatively 
optimistic

a=1 
Unbiased 
represen-

tation 

a=2 
Relatively
pessimis-

tic 

a=10 
Pessimis-

tic 

a=1000 
Extremely 
pessimistic 

Environment and  
technology 

1.000 0.786 0.301 0.090 0.008 0.000 0.000 

Social resources 0.000 0.056 0.124 0.090 0.024 0.000 0.000 

Economic development 0.000 0.034 0.095 0.090 0.041 0.000 0.000 

Disaster prevention and

mitigation resources 

0.000 0.025 0.080 0.090 0.057 0.000 0.000 

Basic population 0.000 0.020 0.071 0.090 0.074 0.000 0.000 

Land and agriculture 0.000 0.017 0.064 0.090 0.090 0.002 0.000 

Ecosystem 0.000 0.014 0.059 0.090 0.107 0.008 0.000 

Economic resources 0.000 0.012 0.055 0.090 0.124 0.030 0.000 

Drought 0.000 0.011 0.051 0.090 0.140 0.093 0.000 

Soil erosion 0.000 0.010 0.048 0.090 0.157 0.251 0.000 

 

 

 

 

 

 

OWA 

Order 

weight 

Human activity 0.000 0.009 0.046 0.090 0.173 0.614 1.000 

                      
1 The decision risk coefficient is chosen according to the typical parameters in the OWA operator – a corresponds to 

0.001, 0.1, 0.5, 1, 2, 10, and 1000 – to express decision-making attitudes of decision makers from optimistic to pessimistic. 
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Figure 7  The simulation results of the vulnerability of social-ecological systems (SESs) in decision-making risk 

 

the vulnerability increases to a certain extent. When the decision maker is relatively pessi- 
mistic, the majority of the area exhibits a high degree of vulnerability, and some economi-
cally developed areas in the north exhibit high vulnerability. For the decision maker to de-
crease the risk, the influence of the order weight on the final evaluation result of the evalua-
tion unit increases, which leads an increase in the maximum vulnerability. Therefore, when 
the decision maker is pessimistic to extremely pessimistic (a=10 or 1000), the so-
cial-ecological system of the study area is in a highly vulnerable state, and the decision risk 
is minimal but is divorced from rational reality. The analysis of the results for different deci-
sion-making risk levels can dynamically show the spatial evolution process of the vulner-
ability level of the social-ecological system in the study area. Moreover, it can simulate the 
influences of risk-cognitive behaviors of decision makers on system vulnerability changes, 
which provides decision references for the scenario prediction of system vulnerability.  

4.4.2  System vulnerability scenario settings 

Based on the dynamic simulation of different decision-making risk levels and considering 
the rational reality, decision makers often need to assess scientific arguments and trade-offs 
for the regional development planning and policy formulation. The results of extreme deci-
sion-making are not in line with the actual situation. The economic development of the en-
ergy industry has been a “double-edged sword” in Yulin City since “the 10th Five-Year 
Plan” (2001–2005). There is a trade-off relationship between socio-economic development 
and ecological environment protection in the formulation of development policies. After 
“the 12th Five-Year Plan” (2011–2015), the energy industry faces the “resources trap”, and 
the focus of the policy set has turned to the transformation of the economic development 
structure and the implementation of sustainable development. Therefore, based on the inves-
tigation of the socio-economic development strategy and the present situation of Yulin City, 
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three types of possible policy behaviors2 are proposed: the status quo type, the economic 
priority type, and the sustainability-oriented type. The social-ecological system vulnerability 
under these three scenarios was simulated and evaluated.  

Considering the complexity of the influencing factors of vulnerability in the so-
cial-ecological system, the relationships among factors is uncertain, and the decision-making 
risk range (0.5<a<2) satisfying most index factors represents a more realistic scenario simu-
lation. Therefore, based on the range of the normal decision risk coefficient and the rational 
thinking of decision makers, a=1 corresponds to maintaining the status quo type, which 
represents the normal weighting operation results under the existing disaster risk, regional 
sensitivity and adaptive capacity. Similarly, the decision risk coefficient a= [0.5, 2] interval 
is further refined and simulated. Considering the small fluctuations in decision makers’ sub-
jective rational ranges and based on previous research results, the decision risk coefficients 
a=0.8 and a=1.2 are taken as the credible fluctuation interval nodes that are established un-
der the current risk decision coefficient. Among them, a=0.8 indicates that the exposure risk 
is controlled, and the system vulnerability is low, which is defined as an optimistic deci-
sion-making scenario of sustainable development orientation. The value a=1.2 means the 
disaster risk is difficult to control, which is a pessimistic decision-making scenario of eco-
nomic development priority. 

In Figure 8, it can be observed that the spatial distributions of the “the status quo type” 
scenario and the vulnerability of the social-ecological system of Yulin City in 2011 are 
similar, indicating that a=1 (i.e., the criterion weight superposition method) is a special case 
in the OWA algorithm. This finding also validates the scientific robustness of the scenario 
index selection. As this scenario type and the vulnerability of Yulin City in 2011 correspond 
to the status quo, we do not go into detail here. From the sustainability-oriented type to the 
economic priority type, the vulnerability of the social-ecological system in the three scenar-
ios increases, and the spatial distribution is regular. The medium-high and high vulnerability 
areas are still distributed in the economically developed areas in the north, and the spatial 
area of high vulnerability obviously expands outward. 

 
Figure 8  The SESs vulnerability spatial distribution of different scenarios simulation in Yulin city 

                      
2 Maintaining the status quo type means the regional development policy on the risk (disaster, eco-environmental 

problems, etc.) control is not strong, and the speed of socio-economic development remains normal. The economic prior-
ity type refers to the government’s regional development policy formulation, which is dominated by the speed of eco-
nomic development and reduces considerations of the eco-environmental problems and natural disaster risk to a certain 
extent. The sustainability-oriented type refers to regional policy development that emphasizes investment in 
eco-environment management, increasing disaster risk control, prioritizing sustainable development, reducing the de-
pendence on the energy economy, and changing the model of socio-economic development. 
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In the economic priority type policy scenario (a=1.2), shown in Figure 8, the me-
dium-vulnerability area is distributed in the sandstorm arid region in the northwest and in 
regions prone to soil erosion in the southwest. The high-vulnerability region extends from 
the intensive Shenmu-Fugu mining area outward, and the whole regional system of Yulin 
City is characterized by medium-high vulnerability. According to Table 4, the order weight 
of risk indicators in the a>1 scenario is large, and the weight of adaptive capacity factors is 
small, which indicates that economic development ignores environmental stress and lacks 
emphasis on adaptive capacity, which will lead to an increase in system vulnerability. 

In the sustainability-oriented type scenario (a=0.8), the southern counties and areas along 
the Great Wall in Yulin City are basically low-vulnerability areas, and the vulnerability de-
gree in the northern counties is significantly lower than in other scenarios. As shown in  
Table 4, the order weights of drought, soil erosion and other risk exposure factor are small in 
the a<1 scenario; that is, risk control and governance measures have been taken, and the 
emphasis is placed on the index unit with large order weight. This scenario focuses on the 
environment, technology, social resources, economic development, disaster prevention and 
mitigation resources as the main factors for building regional adaptive capacity. Therefore, 
the system vulnerability is significantly decreased, almost the whole region exhibits 
low-vulnerability, and the high-vulnerability region distribution is very small. 

In the above scenario simulations, we can see that different decision risk coefficients re-
sult in different vulnerability prediction results for policy-making. Using the multi-scene 
combination, the OWA algorithm identifies the uncertainty range of the threshold variation 
of the indexes and predicts the spatial distribution of vulnerability in the study area through 
the scenario policy, thereby weighing the relationship between “economic development” and 
“risk control”. In the practical policy formulation, the scenario analysis is not a single opti-
mization of the scheme but takes the floating range of vulnerability of the three scenarios as 
a reference, which can be adjusted according to the regional development strategy in differ-
ent stages. In particular, based on the assessment results of the system vulnerability in 
2000–2015, during this stage, the regional social-ecological system of Yulin City should 
carry out vulnerability level zoning. On the one hand, the high-vulnerability region should 
be strictly controlled to reduce the exposure risk stress of coal and other energy bases, and 
the landscape reconstruction should be carried out in the areas of high soil erosion and the 
sandstorm arid area in the northwest. On the other hand, attention should be paid to the high 
exposure risk source in low vulnerability counties. Guiding and supporting the modern ag-
riculture and industrial economy in southern counties are important to maintaining a re-
gional development balance and narrowing the north-south system vulnerability gap. For 
future policy formulation, the risk coefficient selection of the critical threshold of the system 
vulnerability depends on the decision makers' awareness of regional development. Based on 
the influence on the evaluation results of the criteria weight and order weight of scenario 
indexes, decision makers can identify the key scenario index of the critical point of the sys-
tem vulnerability to adapt decision-making ideas to the regional development and to achieve 
rational and scientific policy-making. 

5  Discussion 

In this study, county-level data and the VSD evaluation framework were used as practical 
guidance for the evaluation of vulnerability. However, our study found that there were limi-
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tations in the multi-scale vulnerability integration analysis, and it was easy to ignore the 
small-scale factors, such as the human vulnerability, during a comprehensive analysis. Thus, the 
VSD framework is not a general vulnerability assessment framework. Using the VSD inte-
grated analysis framework can provide specific steps for the vulnerability evaluation of a 
regional-scale system in this study. The purpose of this research is to realize the operability of the 
VSD analysis framework via the integration of the SERV model and the OWA algorithm to 
ensure the reliability and effectiveness of the research. Therefore, the comprehensive appli-
cation of different methods of vulnerability integration analysis can provide a realistic ref-
erence for future construction of a general vulnerability assessment framework (model). 

The SERV model not only provides a screening index system and the index selection of 
specific vulnerability factors at the county level but also advocates evaluation analysis fo-
cusing on resource input for disaster reduction in high-vulnerability areas instead of expo-
sure areas. This promotes the evolution of vulnerability evaluation thinking and avoids the 
defects of traditional vulnerability research. However, the operability of the specific imple-
mentation of this model remains to be optimized; for example, the SERV model is limited to 
a static vulnerability equation, which fails to consider the contribution differences of expo-
sure, sensitivity, and adaptive capacity to vulnerability. Secondly, the selection and construc-
tion of an index system by using the SERV model is still in the exploratory stage and needs 
to be further perfected and verified. In addition, we found that the improved model could 
determine the specific vulnerability impacts of indicators in specific locations, thus guiding 
the mitigation and adaptive strategies for specific locations. 

Scenario analysis, a common means of assessing geography-ecological processes, has two 
different ways of induction: one relies on choosing the optimal value in the assumed several 
scenarios as the final result, and the other relies on the mutual confirmation of several sce-
narios to achieve a comprehensive conclusion of the pros and cons (Liu et al., 2014). In this paper, 
for future vulnerability prediction, the OWA algorithm provides a flexible multi-scenario 
reference for decision makers and a policy-making method that can be adjusted according to 
the actual situation indicators (elements) of a given area. Simple system dynamics, artificial 
neural networks and artificial intelligence simulations provide a fixed optimal prediction 
scheme for the future but cannot simulate subjective uncertainty indicators and are difficult 
to use in actual policy-making by decision makers. Comparatively speaking, the flexibility 
of these methods is also weak. In the vulnerability evaluation with the OWA algorithm, the 
calculation and application of criterion weight and order weight of indexes is the key to its 
evaluation and are also the key to the existence of rationality and flexibility. 

6  Conclusions 

From the perspective of integration analysis of human-environment relationship, taking the 
semi-arid SESs in Yulin city as the object of vulnerability evaluation, this paper uses the 
VSD evaluation framework and integrates multiple methods and multi-index elements to 
achieve innovative vulnerability assessments and practice methods at the regional scale. This 
work expands the vulnerability assessment research from a single vulnerability index to a 
system integration research level that includes vulnerability assessment, evolution, and 
simulation. Through the index organization method of the SERV model and the VSD 
framework, the method of index selection and construction is improved, and the integration 
of multiple risks, the multi-factor natural environment and socio-economic indexes is de-
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scribed to better understand the spatial characteristics and evolution of the social-ecological 
system vulnerability. The OWA scenario simulation provides technical references for pol-
icy-making by decision makers.  

The main conclusions are as follows: (1) the social-ecological vulnerability of the study 
area during the period 2000–2015 shows the spatial pattern of “high in the northwest and the 
southeast and low along the Great Wall”; the medium-vulnerability level is dominant; the 
high-vulnerability region is concentrated in the northern energy economy-dependent coun-
ties and the compact mining area. Over the 16 years, the evolution of the social-ecological 
system vulnerability of Yulin City has gradually improved; the regional area of high and 
medium vulnerability has decreased, and the spatial distribution of the low-vulnerability 
region has shifted southward. (2) The spatial heterogeneity of system vulnerability and ex-
posure risk is significant. The system vulnerability of the northern counties dominated by 
high exposure-vulnerability is related to natural disaster disturbances and high-intensity hu-
man activities that are destroying ecosystems, while the low exposure-vulnerability of the 
southeastern counties, which have unbalanced development of the society system, is related 
to high social sensitivity and low economic adaptive capacity. (3) Based on the process 
simulation of the dynamic evolution of vulnerability via the OWA algorithm and the vul-
nerability spatial pattern prediction of the three scenarios, it can meet the decision-making 
needs of regional sustainable development under different policy goals. 
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