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Abstract: Currently, the historical archive images of Landsat family sensors are probably the 
most effective data products for tracking global longitudinal changes since the 1970s. How-
ever, the issue of the degree and extent of cloud coverage is always a challenge and varies 
distinctively worldwide. So far, acquisition probability (AP) analyses of cloud cover (CC) of 
Landsat observations have been conducted with different sensors at regional scale. To our 
knowledge, CC probability analysis for the newly-launched Landsat-8 Operational Land 
Imager (OLI) across China is not reported. In this paper, monthly, seasonal, and annual APs 
for Landsat OLI (44,228 in total) images over China acquired from April 2013 to October 2016 
with various CC thresholds were analyzed. The results showed that: first, the cumulative av-
erage APs of all OLI data over China at the CC thresholds ≤30% was about 49.6% which 
illustrated the availability of OLI imagery across China. Second, the spatial patterns of 10%, 
20%, and 30% CC thresholds of OLI observations, coincided well with the precipitation dis-
tributions separated by the respective 200 mm, 400 mm, and 800 mm isohyetal lines. Third, 
the APs of images with the 30% CC threshold are the highest in autumn and winter especially 
in October of 58.7%, while the corresponding lowest probability occurred in June of 41.0%. 
Finally, the spatial differences in APs of targeted images with ≤30% CC thresholds were 
quite significant. At regional scales, the arid and semi-arid areas, Inland River and Songliao 
River basins, and northwestern side of the Hu Huanyong population line had the larger 
probabilities of obtaining high-quality images. Our study suggested that OLI imagery satisfy 
the data requirements needed for land surface monitoring, although there existed obvious 
spatio-temporal differences in APs over China at the 30% CC threshold. 

Keywords: cloud cover (CC); spatio-temporal changes; Landsat-8 OLI; acquisition probability (AP); China 



430  Journal of Geographical Sciences 

 

1  Introduction 

China has experienced rapid land use/land cover changes (LUCC) in ecotones, fragile eco-
logical regions (Liu et al., 2016; Ren and Wang, 2017), and metropolitan areas (Liu et al., 
2014; Wu et al., 2016) in the past decades. Indeed, the vast territory, various climates and 
diverse topography in China, are conducive to a variety of LUCC. However, before detect-
ing LUCC, and its characteristics, rates, drivers, and impacts (Hao and Ren, 2009; Liu and 
Deng, 2010), the fundamental issue of the “observability” of remote sensing data needs to be 
evaluated (Foley et al., 2005), as well as understanding its applicability and limitations, es-
pecially historical Landsat data. 

Currently, remote sensing involving optical, microwave radar, and lidar satellites, or 
combinations thereof has become an effective tool to monitor land surface changes and 
ecosystem dynamics (Aplin, 2004; Jin et al., 2013b; Teillet et al., 2007). Of these, the freely 
available Landsat products have become an increasingly widespread imagery source for ag-
ricultural, ecological, and environmental monitoring (Jin et al., 2013b; Li et al., 2014; Qin et 
al., 2007), although they are usually impacted due to contamination of frequent cloud cover 
(CC) and cloud shadows (Dong et al., 2013; Hansen and Loveland, 2012; Li et al., 2012; 
Liu and Liu, 2013). Historical 30-m resolution data of Landsat-4/5 Thematic Mapper (TM, 
1982–2013), Landsat-7 Enhanced Thematic Mapper Plus (ETM+, 1999–), and Landsat-8 
Operational Land Imager (OLI, 2013–) are important and extensive data sources of Earth 
observation since the late 1980s, covering geo-information, natural vegetation, agricultural 
crops, and land cover types (Hansen and Loveland, 2012; Jin et al., 2013a; Steven et al., 
2003). However, the most obvious challenge for their application is CC and cloud shadows 
which are widely reported in Landsat-derived remote sensing analyses (Asner, 2001; Ju and 
Roy, 2008; Hansen and Loveland, 2012; Liu et al., 2016; Whitcraft et al., 2015), particularly 
in the subtropics and tropics (Asner, 2001; Li et al., 2016). Consequently, some studies have 
attempted to address the issue of CC, such as the use of cloud removal algorithms to exclude 
CC areas or replace them with other images (Ju and Roy, 2008; Zhu and Woodcock, 2012). 
Nevertheless, these methods tend to result in some errors due to the variability and complex-
ity in cloud types (Kovalskyy and Roy, 2015), and usually require time- and labor-intensive 
work. 

Recently, a few studies have indicated that Landsat images are vulnerable to CC and 
cloud shadows during the dry season in many regions of tropical, sub-tropical, and temper-
ate monsoon areas (Dong et al., 2013; Li et al., 2016). However, one awkward but unan-
swered question is what is the acquisition probability (AP) of usable images for the past 
nearly 40 years with CC less than 30% over China from the Landsat-like optical data, as 
China has undergone noticeable land use/cover dynamic changes since the 1980s (Liu et al., 
2014). Unfortunately, the problem of the ‘observability’ of Landsat family sensors (i.e., TM, 
ETM+, and OLI) still unaddressed globally (Goward et al., 2006; Sano et al., 2007). Thus, 
quantifying CC of Landsat images is a paramount prerequisite for monitoring land surface 
change at various regional scales (Asner, 2001; Li et al., 2017), especially in the monsoon 
regions (e.g., China). Currently, there are only a few published studies concerning the prob-
ability analysis of CC in different Landsat sensors throughout the Amazon Basin (Asner, 
2001; Sano et al., 2007), the availability of cloud-free images covering the conterminous 
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United States and globally (Ju and Roy, 2008; Kovalskyy and Roy, 2013; Kovalskyy and 
Roy, 2015), and the probability differences of CC in Mainland Southeast Asia (MSEA) 
(Laborde et al., 2017; Li et al., 2017). Unlike cloud avoidance strategy of Landsat-5/7 
Long-term Acquisition Plan (LTAP) which does not collect all images outside the US 
(Arvidson et al., 2001; Asner, 2001), Landsat-8 provides global coverage of observation 
since 2013. Currently, APs analysis of CC of Landsat-8 observation is not fully investigated 
worldwide (Laborde et al., 2017). 

To our knowledge, a comprehensive analysis of cloud coverage for the newly launched 
Landsat-8 OLI sensor (February 11, 2013) data over China has not been published to date. In 
this study, we used the CC information of all OLI historical metadata (a total of 44,228 
scenes) acquired over China from January 2013 to October 2016 to evaluate the monthly, 
seasonal, and annual APs, and the limitation and suitability for such as terrestrial surface 
studies. The objectives of this study are twofold: (1) to understand and evaluate the average 
APs of Landsat OLI with different CC thresholds in China; and (2) to analyze the spatial 
differences in CC of Landsat OLI images among major river basins or grain production 
regions, dry and wet regions, and the two regions divided by the Hu Huanyong population 
line (Hu Line) in China. This study contributes to providing necessary guidance in the aspect 
of Landsat-8 OLI data source for monitoring land surface changes. 

2  Materials and methods 

2.1  Study area 

China has a latitude span of 50 degrees from north to south and a longitude span of ap-
proximately 62 degrees from west to east (Figure 1) (Ge et al., 2016). Large spans of lati-
tude and longitude generally lead to significant differences in precipitation, resulting in dry 
and wet regions (Figure 1), respectively. China has many different types of climate, such as 
subtropical, temperate monsoon, and temperate continental climate. There are four distinct 
seasons, namely spring from March to May, summer from June to August, autumn from 
September to November, and winter from December to February of the following year. In 
winter, northerly winds from high-latitude regions are cold and dry, while southerly winds 
from coastal areas at lower latitudes are warm and moist in summer. Among them, the 
cold-dry season is characterized by low CC with less precipitation per month, which facili-
tates obtaining high-quality images, or cloud-free or little cloudy images. 

Landforms in China include large mountains and plateaus in the west and north, and low 
hills and alluvial plains in the southern and eastern areas. Northwestern China has very little 
precipitation because it is located deep inland far from the oceans. However, southwestern 
China has a distinction between the rainy season (from May to October) and the dry season 
(from November to April) due to the seasonal changes of Indian Ocean monsoon (Li et al., 
2017). Agriculture in northwestern China is greatly determined by the accessibility of irriga-
tion. China’s northern plateau region is dominated by grasslands. However, ranchers who 
seek for short-term profit have caused overgrazing of the grassland. China’s eastern and 
southern lowlands (i.e., low hills and alluvial plains) comprise the major agricultural zones 
and river basins (e.g., Yangtze River and Yellow River) (Jin et al., 2016). This region is also 
characterized by agriculture for major rice-producing area (Ding, 1961) with a larger popu-
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lation density. 
With rapid economic develop-

ment, LUCC is currently a very 
common phenomenon, especially in 
southern and eastern China (Liu et 
al., 2014). Several factors are driv-
ing this trend, including an en-
hancement of the impact of the 
long-standing Hu Line (Figure 1), 
which marks the striking difference 
in the distribution of China’s popu-
lation. The population and economy 
flow into the southeastern part of the 
Hu Line due to better biophysical 
and social conditions. Meanwhile, 
series of serious ecological prob-
lems have occurred in northern and 
northwestern China due to over-
grazing and other unsuitable farm-
ing practice in recent decades, 

which is a primary form of LUCC in this region. 

2.2  Landsat OLI CC data and pre-processing 

There are 576 path and row (PR) coverage frames (or footprints, e.g., 121/040) of Landsat-8 
OLI satellite over China according to the Worldwide References System (http://landsat. 
usgs.gov/tools_wrs-2_shapefile.php). In particular, all Landsat OLI footprints are required to 
cover China’s islands (Figure 1). The PR information and all Landsat-8 OLI metadata, in-
cluding cloud coverage (0–100%) and its levels (0–9), acquisition and processing date, and 
geographic location (e.g., scene center’s latitude and longitude) were collected from the 
USGS Landsat inventories provided by the Landsat Bulk Metadata Service (http://landsat. 
usgs.gov//consumer.php). With regard to the cloud coverage, we only used the CC percent-
age average value in the whole Landsat OLI scene in this study. The percentage of cloud 
coverage of Landsat 8 cloud cover assessment (CCA) uses multiple algorithms to detect 
clouds in scene data (USGS, 2016), including automatic CCA (ACCA), See-5 CCA, Cirrus 
CCA, and Artificial Thermal-A CCA. 

A total of 44,228 Landsat OLI scenes were acquired over China from April 2013 to Oc-
tober 2016. There were 8121, 12,671, 13,086, and 10,350 scenes in 2013, 2014, 2015, and 
2016, respectively (Table 1). It should be noted that the Landsat-8 OLI satellite has acquired 
all the images in China, including the Diaoyu island and other surrounding islands in South 
China Sea (Figure 1). The thresholds of cloud coverage range from 0 to 100% in these 
Landsat metadata files, which were divided into ten levels (0–9) at 10% intervals by location 
(PR) (Asner, 2001). Note that level 0 represents the CC of all scenes equal to 10% or less (or 

0% ≤ CC ≤ 10%), and level 1 represents the range from 10% to 20% (including 20%) (or 

10% < CC ≤ 20%). Following this categorization, the last level 9 represents greater than 

 

Figure 1  Map showing the location of the dry and wet areas, and 
the two sides divided by the Hu Line in China, and the 576 Land-
sat OLI footprints (path/row) over China 
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90%, but less than or equal to 100% (or 90% < CC ≤ 100%). CC thresholds are referred as 

0%, 10% to 100% or level 0, level 1 to level 9 in this study. In this study, the percentage in-
formation of CC in Landsat OLI sensor data was analyzed for all path and row combinations 
for April 2013 to October 2016 over China. 

Table 1  Annual Landsat OLI scenes acquisition statistics in China including cloud cover (CC) levels (0–9) in 
each footprint (path/row) 

Number of CC level 
Year 

Number of 
scenes 

Proportion 
(%) 0 1 2 3 4 5 6 7 8 9 

2013 8121 18.4 2546 948 705 634 602 631 608 654 571 222 

2014 12671 28.6 3712 1561 1185 957 868 884 915 988 1023 578 

2015 13086 29.6 3655 1570 1168 962 951 906 1016 1153 1152 553 

2016 10350 23.4 2712 1228 945 808 816 774 843 952 878 394 
 

2.3  AP calculation of different CC thresholds 

The monthly, seasonal and annual APs of CC thresholds ranging from level 0 (or 0% ≤ CC 

≤ 10%) to level 9 (or 90% < CC ≤ 100%) were computed over China at the spatial scale of 
each Landsat footprint (Path/Row, 576 in total) (Figure 1). Firstly, cumulative probabilities 
of different CC thresholds were calculated to show the appropriate CC threshold. Secondly, 
the seasonal cumulative probabilities of increasing CC (i.e., 10%, 20% and 30%) were cal-
culated to display the regional and intermonth variations. Then, we further delineated 
monthly average probability of CC for Landsat sensors with ≤ 30%. Lastly, the average 
APs of regional were calculated based on the above results. The probability of CC for a 
successful acquisition was calculated using formula (1) with the Microsoft Visual Basic ap-
plication (Asner, 2001; Li et al., 2017). The metadata archive of cloud coverage from the 
44,228 Landsat OLI images and statistical results were spatially displayed along the path 
and row (e.g., 120/040) using the ArcGIS platform (version 10.1). 

 
1

( ) 100%m m
t t

y
AP S S

N
   (1) 

where S represents the probability of a certain acquisition of different CC for each year for 
each scene, m and y denotes each month (m = January, …) and year (i.e., between 2013 and 
2016), t represents the different CC thresholds (t = 0, 10%, …, 100% or level, level 1,…, 
level 9, as described above), and N denotes the total number of observation scenes in month 
(m) in the entire Landsat archive. 

3  Results and analysis 

3.1  Appropriate CC threshold determination for AP analysis 

In order to understand the effects of increasing CC thresholds (i.e., from 0, 10% to 100%), 
the average probability of all Landsat OLI observation was first evaluated. Figure 2 shows 
that the patterns of the average APs at the monthly (Figure 2a), seasonal, and annual scales 
(Figure 2b) with increasing CC thresholds for all Landsat OLI images. The results indicated 
that the curves of average AP with increasing CC thresholds show a “crescent” shape, which 
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suggests that the APs do not increase significantly over a whole year. There was a clear and 
rapid increase beyond level 0 CC threshold. Overall, in autumn and winter, Landsat OLI 
data acquisition over China had higher probabilities, while the corresponding APs remained 
comparatively low in spring and summer. The highest AP during the autumn and winter pe-
riods occurred in October, followed by December, January, February, November, and Sep-

tember, especially at the 30% CC threshold (0% ≤ CC ≤ 30%). Similarly, in spring and 

summer, June had the lowest probability, followed by any other month, August, July, May, 
April, and March. It should be noted that the values of average AP in March and September 
play a transition role for CC in response to the transformation between southeast and north-
west monsoons. 

 

Figure 2  The cumulative average acquisition probabilities (APs) of increasing CC thresholds range from 
0–100% for all OLI footprints in China: monthly (a) and annual and seasonal (b) 

In general, a lower CC threshold makes an image more suitable for monitoring land sur-
face changes. Some studies have found that the CC threshold is consistently less than or 
equal to 30% (Asner, 2001; Goward et al., 2006; Li et al., 2017). This CC threshold (i.e., 
less than or equal to 30%) represents the greatest extent possible value for land surface 

monitoring. Thus, the ≤ 30% CC threshold was also selected in this study. The correspond-

ing cumulative annual AP averages of CC for Landsat OLI images were 28.6%, 42.5%, and 

49.6% for level 0, level 1 and level 2, respectively. The annual AP results with the ≤ 30% 

CC in China are much larger than those of MSEA (41%) (Li et al., 2017) and global esti-
mates (37%) (Goward et al., 2006). This also demonstrates that the CC level 2 (i.e., less than 
or equal to 30%) is more appropriate for analysis of usable Landsat images (Ju and Roy, 
2008; Asner, 2001), especially in China. 

Next, the monthly average APs were computed for all Landsat OLI and are presented in 

Figure 2a, where the ≤ 30% CC threshold is shown with a solid vertical line. It showed evi-

dent variability in the monthly average APs at the 30% CC threshold. The APs of CC at the 
30% were greater than 50% over China for over six months from October to March next 
year. Figure 2a also shows that Landsat OLI had a relatively higher probability of success-
fully obtaining high-quality images from October to March during 2013–2016, with an av-
erage CC of 55.1%. Among them, the related AP reached a peak value (58.7%) in October, 
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followed by 56.8% in December, 55.0% in January, 54.1% in February, 53.1% in November, 
and 52.9% in March. It can be explained that the weakening subtropical high pressure and 
the beginning of cold air from Siberia in October usually leads to dry weather (“crisp au-
tumn day”) in China. This allows the acquisition of cloudless or little-cloud images in this 
month. On the contrary, the average monthly probability value was 45.3% between April and 
September. Particularly, the smallest probability for OLI acquiring targeted images occurred 
in June, merely 41.0%. The average monthly APs of other months are listed as follows, Au-
gust (42.5%), July (44.2%), May (46.0%), April (49.3%) and September (48.9%). It can also 
be explained that the major river (e.g. Yangtze river and Yellow river) basins generally enter 
into flood season because of concentrated rainfall in this month (June), or earlier in April 
and May and end in September. The rainy weather hinders the observation of high-quality 
images. 

Then, an analogous statistical analysis of seasonal AP showed that the seasonal variance 

with CC thresholds of ≤ 30% was distinct for the periods of autumn to winter and spring to 

summer. The average seasonal probability of acquiring a successful Landsat OLI image in 
winter was 55.3%, followed by 53.4% in autumn, 49.1% in spring, and 42.6% in summer 
(Figure 2b). In summary, analyses of the amount of useful Landsat OLI images at the CC 

thresholds ≤ 30% have great importance for monitoring land surface changes in China. 

3.2  Spatio-temporal patterns of AP at the 30% CC threshold 

3.2.1  Spatial comparison analysis of AP at the 10%, 20%, and 30% CC thresholds 

Three thresholds of annual CC (i.e., 10%, 20% and 30%) were further selected to show the 
spatial differences in AP of OLI images for the period of 2013–2016 (Figure 3). Compara-
tive results indicated that the distributions of OLI scene AP with the three CC thresholds are 
closely correlated with the isohyetal lines in China (Figure 3).  

Specifically, the spatial patterns of AP for the three CC thresholds coincided with the 200 
mm (Figure 3a), 400 mm (Figure 3b), and 800 mm (Figure 3c) isohyetal lines, respectively. 
Particularly, the spatial pattern of AP at 30% CC threshold coincides with the spatial distri-
bution of the northwest and southeast, typically divided by the Qinling Mountains-Huaihe 
River Line (or the 800 mm isohyetal line), an important natural boundary between southern 
and northern China, which indicates transitions in geography, climate, and ecology. This 
correlation provides important insight in the influence of clouds and precipitation on optical 
satellite acquisition in the monsoon region. Figure 3 also indicates that the proportions of 
high-quality images data on the northwestern side of the line were much larger than those of 
the southeastern. In the following sections, the selection of the 30% CC threshold in this 
study was applied to further confirm the differences of AP at varied spatial and temporal 
scales. It should be pointed out that our analysis derived from the scene-based metadata 
were only for the whole Landsat OLI footprints, but did not take the overlay parts of any two 
adjacent footprints (or path/row) into consideration. 

3.2.2  Temporal comparison analysis with the 30% CC threshold 

China is situated in the transitional zone between the ocean and continent in longitude, cov-
ering the temperate, subtropical, and tropical zones. Therefore, regional differences in cli-
mate types or vegetation types are distinct. Explicit analysis of AP at the 30% CC threshold 
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Figure 3  Annual AP with ≤ 30% CC for Landsat OLI sensor images (44,228 scenes) between 2013 and 2016 
in China. (a), (b) and (c) represent the annual CC thresholds of 10%, 20%, and 30%, respectively. 

for the OLI archive products can contribute to evaluating the usefulness and applicability of 
OLI imagery at both spatial and temporal scales. Regional features for the 2013–2016 period 
have a unique spatial distribution and change in clouds as indicated by the Landsat OLI data 
at this threshold (Figure 4). On the whole, the probabilities of usable OLI image acquisition 
in autumn and winter were larger than those of the spring and summer seasons. 

The monthly AP results of the historical OLI scenes showed clear regional differences 
(Figure 4). Among these differences, those between the northwest and the southeast regions 
were distinct, especially from October to March. Historical Landsat OLI observations with a 
threshold of AP at the 30% CC have higher chances of obtaining cloudless or little-cloud 
images, in most parts of northern China. This also suggests that the highest AP is in October 
of each year in China, while the corresponding lowest probability occurred in June. For ex-
ample, in the middle reach of the Yangtze River, the observation probability remains highest 
in October, at the beginning of the winter season and the ending of the autumn season (Fig-
ure 4). Overall, northern and western China had AP values >90% even during the wetter 
spell of the year. The maximum variation in CC occurred in the northeast (especially the 
Sanjiang Plain), the Tibetan Plateau, and Hengduan Mountains. Among these areas, the en-
tire Tibetan Plateau had 90%–100% chance of successful imaging from October to March. 
In addition, seasonal variance comparisons showed that tropical region of China (e.g., 
Hainan Island) had the larger APs for cloudless or little-cloud OLI images in spring and 
summer and lower APs in autumn and winter (Figure 4), while this relationship was slightly 
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Figure 4  Monthly and seasonal AP for historical Landsat OLI scenes (42,229 scenes) with ≤ 30% CC in China 
for 2013–2016 

different in MSEA (Li et al., 2017). The temporal changes of monsoonal wind systems may 
well explain the differences between them. These results confirmed the validity of the 
monthly result at the 30% CC threshold. In total, there is a relatively high probability of ac-
quiring cloudless or little-cloud OLI images in autumn and winter, including the transition 
periods in March and September (Figure 4). These results also provide useful information 
for the selection of high-quality Landsat OLI imagery within proper critical window for re-
mote sensing monitoring. 

3.3  Area and distribution of AP in China based on the 30% CC threshold 

The spatial distribution of probability in obtaining OLI scenes at CC level 2 (or ≤ 30% CC) 

provides a chance for extracting useful surface feature information; for instance, combining 
image quality in different months for remote sensing monitoring. The relationships between 
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the AP of cloudless or little-cloud images and major geographical regions in China were 
further analyzed. AP values were calculated for all Landsat OLI images at the regional scale, 
and categorized into dry and wet regions (climate, Figure 5), river basins or grain production 
regions (water or land, Figure 6), and two sides of the Hu Line (population, Figure 7). 

 

Figure 5  Regional differences in annual and seasonal (a) and monthly (b) average AP at 30% or less CC for all 
Landsat data. The four arid and humid areas in China are typically separated by the 200 mm, 400 mm, and 800 
mm isohyetal lines. 

3.3.1  Spatial differences of AP in dry and wet regions 

China has the arid and semi-arid, semi-arid and sub-humid, sub-humid and humid areas, 
respectively (Cui et al., 2016). Because of rainfall differences in China, the arid area (62.7%) 
and semi-arid (58.8%) areas had larger annual average AP, compared to those of sub-humid 
(44.8%) and humid areas (34.7%). 

Seasonal variance comparisons (Figure 5a) again showed that the arid area had an AP of 
about 70% in the autumn season, and 63.0%, 60.4%, and 59.2% for winter, spring, and 
summer seasons, respectively. In the semi-arid area, the AP was 72.2% in the winter season, 
followed by 63.3% in autumn, 57.1% in spring, and 46.8% in summer. The average prob-
ability of obtaining high-quality images in the sub-humid area in spring was 45.2%, the re-
lated probability declined in summer (33.7%), and increased in autumn (46.9%) and winter 
(56.9%). Only 31.7% of the images had a relatively high AP of a successful observation in 
summer in the humid area, as well as 36.4% in autumn, 34.5% in winter, and 36.8% in au-
tumn. The variations in seasonal probability for the arid and humid areas were generally 
slight (less than 15%) in the whole year. However, there were large differences (greater than 
50%) in the semi-arid and sub-humid areas between autumn to winter season and spring to 
summer season. Thus, the AP variations for the semi-arid and sub-humid areas were larger 
than those for the arid and humid areas. In addition, the chance for successful Landsat ob-
servations of arid area was about twice than that of the humid area, equal to the sub-humid 
area in autumn and winter, and 1.5 times than that of the sub-humid area in spring and 
summer. The relationship between the semi-arid area and (sub-) humid area was similar. 
Furthermore, in all (semi-) arid and (semi-) humid areas, the autumn and winter seasons 
were superior to the spring and summer seasons in obtaining cloudless or little-cloud im-
ages. 

Finally, regional variations in Figure 5b demonstrate the “best” month in acquiring 
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high-quality images was October for the arid (75.5%) and humid (45.7%) areas. Likewise, 
the semi-arid (76.9%) and sub-humid areas (58.2%) had higher probabilities of acquiring 
Landsat OLI cloudless or little-cloud images in December. As a result, Landsat OLI imagery 
has proven to be more applicable for monitoring land surface changes in the arid (especially 
in October), semi-arid areas (particularly in December) than the sub-humid (particularly in 
December), and humid areas (especially in October). The results also demonstrated that CC 
changed due to the shift between southeast and southwest monsoonal wind systems. This 
distinct monthly variance of AP values will facilitate studying land surface changes com-
prehensively and systematically. 

3.3.2  Spatial differences of AP in major river basins (or grain production regions) 

At present, Landsat imagery is important and successful for evaluating and discriminating 
the quality of soil and water (Liu et al., 2016). In China, the spatial distribution of grain 
production region is closely related to nine major river basins: the Songliao River (SLR), 
Inland River (InR), Luanhai River (LHR), Yellow River (YeR), Pearl River (PR), Yangtze 
River (YtR), Southwest Rivers (SWRs), Huaihe River (HR), and Southeast Rivers (SERs) 
basins (Jin et al., 2016; Liu et al., 2007). Spatially, regional differences in the nine river ba-
sins varied dramatically in the AP of cloudless or little-cloud OLI images (Figure 6). Among 
the nine major river basins, the SLR, InR, LHR, and YeR basins had annual AP greater than 
50% for obtaining high-quality images, compared with the AP values for the PR (23.4%), 
YtR (28.7%), SWRs (32.9%), HR (36.6%), and SERs (45.8%) basins. Comparative analyses 
indicated that there were similar regional differences in CC over the seasonal and monthly 
variance. Figure 6 summarizes the average seasonal (left panel, Figure 6a) and monthly 
(right column, Figure 6b) AP values of obtaining cloudless or little-cloud images within a 
given year in the nine major river basins. 

 

Figure 6  River basin differences in annual and seasonal (a) and monthly (b) average AP at ≤ 30% CC for all 
Landsat data in China. YtR: Yangtze River; YeR: Yellow River; HR: Huaihe River; LHR: Luanhai River; SLR: 
Songliao River; PR: Pearl River; SERs: Southeast Rivers; SWRs: Southwest Rivers; InR: Inland River 

As shown in Figure 6a, of the nine major river basins, the largest difference of AP hap-
pens in the spring season (4.6 times). The LHR basins had the largest probabilities in the 
spring season (62.9%) whle the corresponding lowest probabilities occurred in the PR basins 
(13.6%). The ratio of APs between the SERs and PR basins was about 3.1. The SERs basins 
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had the largest probabilities in winter (up to 69.0%) and the corresponding lowest probabili-
ties in the PR basins (22.0%). The difference of statistical results was 2.1 in summer, with 
54.8% in InR basins and 25.5% in SERs basins. A similar ratio occurred in the autumn sea-
son, the larger probabilities (63.5%) in the InR basins and the corresponding lower prob-
abilities (13.6%). Next, the monthly average APs of Landsat OLI images showed distinct 
characteristics (Figure 6b). Monthly variance comparisons at a regional scale showed that 
the SLR basin had the highest AP in January (70.3%, Table 2), and lowest monthly average 
48.7% in June. Similar analyses were applied to other basins for the highest and lowest AP 
values in Table 2. These results also demonstrated that Landsat OLI has higher probabilities 
of acquiring high-quality iamges in the autumn and winter seasons. 

Table 2  Differences in monthly average AP at ≤30% CC threshold for OLI data in the nine major river basins 

of China 

AP (%) 
Major River Basin 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Yangtze River (YtR) 34.3 28.8 24.6 26.6 25.6 20.4 31.1 27.8 19.6 40.5 31.0 38.0 

Yellow River (YR) 57.4 46.5 52.2 61.4 47.5 42.2 45.5 46.5 46.5 53.2 56.2 66.3 

Huaihe River (HR) 26.1 29.6 42.5 41.4 42.9 25.9 32.4 36.4 37.5 53.6 31.1 38.9 

Luanhai River (LHR) 53.4 49.5 61.7 60.8 65.6 35.3 46.6 55.2 54.7 54.9 59.6 55.7 

Songliao River (SLR) 70.3 67.9 64.2 59.1 53.1 48.7 52.1 50.3 59.2 61.2 56.5 68.7 

Pearl River (PR) 25.4 16.0 10.0 15.3 14.9 26.9 28.1 24.7 31.2 41.7 17.2 24.0 

Southeast Rivers (SERs) 60.9 64.1 52.0 41.8 40.3 27.9 24.4 24.4 37.0 58.1 73.5 70.5 

Southwest Rivers (SWRs) 31.0 21.8 25.0 25.6 22.1 29.4 45.1 41.2 37.1 42.2 26.0 42.7 

Inland River (InR) 59.5 61.2 58.5 52.9 51.5 52.6 58.5 53.1 61.3 69.6 59.5 62.1 

3.3.3  Spatial differences of AP on the two sides of the Hu Line 

The Hu Line is considered as one of the most important geographical discoveries in China 
(Qi et al., 2016). The spatial patterns of CC distribution in the two sides of the Hu Line were 
obviously different according to the average AP evaluation. Statistical results indicated that 
the northwestern side of the Hu Line (NWHL) had 56.5% annual AP for obtaining a cloud-
less or little-cloud Landsat 8 OLI imagery, while the southeastern side of the Hu Line 
(SEHL) had a lower AP of 39.9%. Generally, CC in the SEHL was much higher than that of 
the NWHL in any given month or season. This can be explained that SEHL has plenty of 
rain with humid weather, which easily leads to high CC during the revisit of Landsat sensors. 
However, the phenomenon was just the opposite in the NWHL. Figure 7 presents the spatial 
patterns of the AP of cloudless or little-cloud OLI images on both parts of the Hu Line. The 
results showed that the average monthly or seasonal probabilities of high-quality Landsat 
OLI images acquisition in the NWHL were larger than those of the SEHL throughout the 
year.  

Seasonally, there were larger APs for cloudless or little-cloud OLI images in winter 
(65.4%) and autumn (61.5%) seasons in the NWHL, and the corresponding average values 
declined in the spring (54.7%) and summer (47.4%) seasons. The SEHL showed similar 
variations in the seasonal average probabilities at the threshold of level 2, with 42.5% and 
41.3% in the winter and autumn seasons, respectively, and 42.4% in the spring season and  



XIAO Chiwei et al.: Spatio-temporal differences in cloud cover of Landsat-8 OLI observations across China 441 

 

 

 

 

Figure 7  Regional differences in annual, seasonal and monthly average AP at ≤ 30% CC for Landsat OLI data 
in China on both sides of the Hu Line 

34.6% in the summer season. Monthly variances showed that the largest AP was 67.8% in 
December for the NWHL and 47.8% in October for the SEHL, with the difference approxi-
mately 20%. In general, the NWHL had higher (over 45%) monthly average AP (including 
65.8% in October, 65.0% in November, 64.7% in January, 63.6% in February, 60.3% in 
March, 55.3% in September, 54.2% in April, 50.7% in May, 49.7% in July, 46.4% in August, 
and 45.9 in June), when compared to those of the SEHL (about 47.8%, 38.1%, 42.9%, 
41.7%, 43.6%, 38.0%, 44.3%, 39.8%, 35.3%, 36.3%, and 32.0% in the corresponding 
month). Our CC analysis confirmed that the Hu Line acts as a geographical boundary be-
tween oceanic climate and continental climate. Therefore, differences in AP are useful for 
monitoring human settlements with Landsat data on both sides of the Hu Line. 

4  Conclusions and discussion 

4.1  Conclusions 

Recently, freely available historical Landsat products have been widely used in land surface 
monitoring from regional to global level. Cloud cover (CC) analysis of historical Landsat 
data is a prerequisite for remote sensing monitoring. The acquisition probability (AP) analy-
sis of CC helps to understand the temporal and spatial practicality of obtaining a usable OLI 
image. In this study, we explicitly investigated the spatio-temporal differences in AP for 
varied CC thresholds using 44,228 Landsat OLI images over China from April 2013 to Oc-
tober 2016. We then analyzed the differences in AP at the 30% or less CC threshold in the 
dry and wet regions, river basins or grain production regions, and two sides of the Hu Line 
(Hu Huanyong population line). Some main conclusions were drawn as follows: 

(1) Cumulative frequency showed larger probabilities at lower CC thresholds, in contrast, 
smaller percentage at higher CC thresholds. The cumulative average AP of all OLI data over 

China at the CC thresholds ≤ 30% was about 49.6%. This higher AP illustrated the avail-

ability of OLI imagery for monitoring land surface changes across China, in spite of obvious 
national differences in APs. 
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(2) The spatial patterns of the AP of Landsat OLI at varied CC thresholds and the major 
isohyetal lines of China coincided well. The spatial patterns of lower-threshold CC of OLI 
observations, namely 10%, 20%, and 30%, coincided well with the precipitation distribu-
tions of China divided by the isohyetal lines of 200 mm, 400 mm, and 800 mm, respectively. 

(3) Temporal differences in AP for obtaining cloudless or little-cloud images were clear. 
China has higher probabilities of acquiring high-quality OLI images in autumn and winter 
especially in October of 58.7%, while the corresponding lowest probability in June merely 
41.0%. 

(4) Similarly, the spatial differences in APs of targeted images with ≤ 30% CC thresholds 

were quite significant. At regional scales, the arid and semi-arid areas, Inland River and 
Songliao River basins, and northwestern side of the Hu Line had the larger probabilities of 
obtaining high-quality images for monitoring single locations. 

4.2  Discussion 

In this study, we delineated the statistical features of CC of Landsat OLI imagery in China 
and explored the relationships between high-quality imagery and the spatial differences in 
water, land, and climate. The distinct monthly or seasonal AP variations in different regions 
at the 30% CC threshold in OLI imagery will contribute to facilitating land surface survey-
ing. This is consistent with the observation from the Asner’s study (Asner, 2001; Li et al., 
2017). Our study suggested that the newly launched Landsat 8 OLI imagery satisfy the data 
requirements needed for land surface monitoring, although there existed the distinct spa-
tio-temporal variances. To our knowledge, this study may be the first systematic analysis of 
CC in OLI imagery over China. The results and conclusions are of practical guidance for 
selecting cloudless or little-cloud Landsat OLI data for land surface changes and ecosystem 
dynamics research. Furthermore, the study provides useful information for future research 
on the availability and analysis of CC in Landsat images for a specific region, although our 
study mainly focused on the average value of CC percentage in the whole Landsat OLI 
footprints. Thus, the area of the Landsat OLI adjacent path/rows in WRS would influence 
the spatial analysis results in each intra-scenes scale to some extent. Following this, we will 
continue to analyze the CC percentage differences at the pixel level over China-Southeast 
Asia in the near future, especially with Landsat family sensors (TM, ETM+ and OLI). 

As noted, the results show that the OLI sensor has the generally higher AP for 
high-quality images in China compared to reported some estimates in other studies (Goward 
et al., 2006; Li et al., 2017). The scene-based metadata analysis of spatio-temporal 
differences of AP is a prerequisite for regional remote sensing monitoring, especially for 
crop mapping such as paddy rice (Li et al., 2016) and wheat (Feng et al., 2014). It is worth-
while to mention that our study focused only on the OLI data CC, which is a global archive. 
Further analysis of other Landsat data (i.e., TM and ETM+) would help to comprehensively 
understand suitability and limitation of the historical Landsat data for land surface studies in 
the future. 
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