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Abstract: Accurate estimation of evapotranspiration (ET), especially at the regional scale, is 
an extensively investigated topic in the field of water science. The ability to obtain a con-
tinuous time series of highly precise ET values is necessary for improving our knowledge of 
fundamental hydrological processes and for addressing various problems regarding the use 
of water. This objective can be achieved by means of ET data assimilation based on hydro-
logical modeling. In this paper, a comprehensive review of ET data assimilation based on 
hydrological modeling is provided. The difficulties and bottlenecks of using ET, being a 
non-state variable, to construct data assimilation relationships are elaborated upon, with a 
discussion and analysis of the feasibility of assimilating ET into various hydrological models. 
Based on this, a new easy-to-operate ET assimilation scheme that includes a water circula-
tion physical mechanism is proposed. The scheme was developed with an improved data 
assimilation system that uses a distributed time-variant gain model (DTVGM), and the ET-soil 
humidity nonlinear time response relationship of this model. Moreover, the ET mechanism in 
the DTVGM was improved to perfect the ET data assimilation system. The new scheme may 
provide the best spatial and temporal characteristics for hydrological states, and may be ref-
erenced for accurate estimation of regional evapotranspiration.  

Keywords: evapotranspiration; data assimilation; hydrological model; non-state variable 

1  Introduction 

Evapotranspiration (ET) is the main process controlling the water cycle and energy transport 
between the atmosphere, hydrosphere, and biosphere (Priestley and Taylor, 1972), and is an 
important subject of research on global and regional water and energy budgets (Rosenberg, 
1983; Kustas and Norman, 1996; Vinukollu et al., 2011). Remote sensing and hydrological 
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modeling are two key approaches to estimate evapotranspiration (Liu et al., 2007). Hydro-
logical modeling is prone to errors due to uncertainties in input and output information, the 
model structure, initial conditions and model parameters, which affect the accuracy of the 
simulation (Renard et al., 2010). Using remote sensing to estimate ET has obvious advan-
tages in accuracy and spatial resolution (Li et al., 2009), but cannot provide temporally con-
tinuous values and thus cannot meet the requirements of hydrological models (Liang et al., 
2013). One possible approach to overcome these drawbacks involves applying multiple 
means or multi-source data to estimate ET, which is becoming the choice method for ob-
taining a continuous time series of ET with high precision (Conradt et al., 2013).  

Data assimilation, as an advantageous technique for combining multi-source data, has 
been at the frontier of research on land surface hydrology and the water cycle (Song et al., 
2011; Tang and Li, 2014) and has provided a new way of obtaining a highly accurate con-
tinuous time series of regional ET values. Pan et al. (2008) and Qin et al. (2008) applied the 
data assimilation technique and hydrological modeling to assimilate observed data, and this 
process improved the efficiency of the ET simulation, however, the assimilation effect was 
seriously affected by ET not being a state variable. Xie and Zhang (2010) assimilated flow 
into the Soil and Water Assessment Tool (SWAT) hydrological model, which did not sig-
nificantly improve the accuracy of ET. The application of data assimilation based on hydro-
logical models has made some progress (Xu et al., 2014) when the assimilated objects are 
primarily state variables; data assimilation for non-state variables, such as ET, is still being 
attempted (Spies et al., 2014). The potential of data assimilation in hydrological models 
should be further investigated. Therefore, we need to carry out studies of ET data assimila-
tion based on hydrological models, and overcome the bottleneck for the use of the non-state 
variable ET when constructing data assimilation relationships, so as to obtain a highly pre-
cise continuous time series of ET values at the regional scale.  

In this paper, a comprehensive review of evapotranspiration data assimilation based on 
hydrological modeling is provided. The difficulties and bottlenecks of using ET, being a 
non-state variable, to construct data assimilation relationships are elaborated upon, with a 
discussion and analysis of the feasibility of assimilating ET into various hydrological models. 
Based on this, a new easy-to-operate ET assimilation scheme that includes a water circula-
tion physical mechanism is proposed. The scheme was developed with an improved data 
assimilation system that uses a distributed time-variant gain model (DTVGM), and the 
ET-soil humidity nonlinear time response relationship of this model. This scheme may pro-
vide a reference for an accurate simulation of regional evapotranspiration. 

2  Evapotranspiration data assimilation 

Data assimilation techniques, while only gradually being applied to hydrological simulations, 
have nevertheless recently become a hot research topic in the water cycle field. Data assimi-
lation methods and their application to land surface and hydrological modeling have made 
several achievements in various systems, including the North American/Global Land Data 
Assimilation System (NLDAS/GLDAS) and European Land Data Assimilation System 
(ELDAS), as well as the assimilation systems in China, Canada and South Korea (Li et al., 
2007). However, current research is mainly focused on state variables, such as soil moisture, 
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leaf area index, etc., and relatively little on the non-state variable ET. Moreover, there has 
been little research on the emerging field of applying data assimilation in hydrology simula-
tions for small-scale watersheds, and the potential of such data assimilation has not been 
fully realized (Moradkhani, 2008), especially for ET data assimilation based on hydrological 
models (Chen et al., 2013). 

The amount of research dedicated to ET data assimilation began to ten years ago. Several 
papers have described attempts to use data assimilation techniques combined with various 
other models to estimate regional ET. Schuurmans et al. (2003) used ET estimates derived 
from remote sensing and the Surface Energy Balance Algorithm for Land (SEBAL) to im-
prove distributed hydrological model (SIMGRO) simulations using a constant gain Kalman 
filter data assimilation algorithm, which calculated the state variable soil moisture using an 
empirical method after updating the ET value. In this study, the model was interpolated with 
ET observations relying on the calibration of empirical parameters, and hence was not statis-
tically optimal. Pipunic et al. (2008) developed a data assimilation scheme with the ensem-
ble Kalman filter (EnKF) to estimate latent heat flux and sensible heat flux based on a 
one-dimensional land surface model (LSM), which improved the simulation accuracy. 
However, assumptions in the LSM model have limited the popularity of this method. Qin et 
al. (2008) applied the extended Kalman filter to assimilate remote-sensing-derived ET esti-
mates into a distributed hydrological model for improving the predictions of spatial water 
distribution over a large river basin, but the assimilation effect could not provide feedback 
into the model since ET is a non-state variable. The hydrological series had not been opti-
mized as a whole, and was just equivalent to an interpolation. Irmak and Kamble (2009) 
proposed an assimilation methodology for the soil, water, atmosphere, and plant (SWAP) 
simulation model with remote sensing data from the SEBAL using genetic algorithm (GA) 
data assimilation. For this, uncertainty in the SEBAL model, due to its one evaporation 
mechanism, reduced the reliability of the methodology; besides, the assimilation method 
was virtually the further optimization of SWAP through genetic algorithm, no calibration 
between parameters within the SWAP model. Xie and Zhang (2010) tested a data assimila-
tion system using streamflow to assimilate SWAT; this assimilation improved estimates of 
runoff and soil moisture, but not of ET. Dumedah and Coulibaly (2013) assimilated stream-
flow into the distributed hydrologic model (SWAT) using in-situ soil moisture data, and 
demonstrated some improvement in accuracy. However, the ET results were not effectively 
improved since the errors generated from the simulation were not completely corrected. Lei 
et al. (2014) assimilated synthetic surface soil moisture data into the SWAT model to evalu-
ate their impact on other hydrological variables via the ensemble Kalman smoother (EnKS). 
The results showed that the assimilation of surface soil moisture can moderately improve 
estimates of deep layer soil moisture, surface runoff and lateral flow, while ET was still un-
derestimated. Trudel et al. (2014) applied an ensemble Kalman filter into the distributed 
physically based hydrological model CATHY (CATchment HYdrology) to assimilate 
streamflow observations at different locations, as well as soil moisture at two different 
depths (15 and 45 cm). Assimilation of streamflow observations systematically increased the 
simulated soil moisture values, but no improvement in the accuracy of the ET sequence. 

These studies have been useful for estimating evapotranspiration, but bottlenecks remain, 
and an ET assimilation system based on a hydrological model has not yet been established in 



DONG Qingqing et al.: A review on evapotranspiration data assimilation based on hydrological models 233 

 

 

practice. Effectively combining and integrating observations and simulations is necessary. 
That is, by using “true values” and minimizing errors to constrain model simulations, and by 
effectively merging information obtained from different sources with different spatial and 
temporal resolutions, higher resolution as well as spatially and temporally continuous data 
can then be obtained, which can yield a multi-scale representation of the water and energy 
cycle (Li et al., 2007).  

3  Evapotranspiration data assimilation based on hydrological modeling  

Hydrological modeling now pays more attention to the simulation of the generalized water 
cycle variables than previous, especially ET (Immerzeel and Droogers, 2008). A hydrologi-
cal model that takes the water cycle system of a closed drainage basin as its study object can 
continuously simulate ET for every hydrologic unit (or space grid), and the temporal and 
spatial resolutions are flexible (Xu and Cheng, 2010). Moreover, it is physically based and 
easily applicable. If we can find a suitable hydrological model as the dynamic model of as-
similation, continuous regional ET estimates may be achieved by assimilating this hydro-
logical model. Methods used to estimate ET differ in different hydrological models, so con-
structing an ET assimilation system based on hydrological modeling is premised on taking 
full account of the relationship between ET (diagnostic variable) and other state variables, 
and then analyzing the feasibility of assimilating ET.  

There are two groups of ET estimation methods in hydrological models: gathering meth-
ods and converting methods (Zhao et al., 2013). In both methods, ET is correlated with soil 
moisture, which is a state variable. Physically based hydrological models usually use gath-
ering methods such as VIC and SHE to estimate ET; others commonly apply the converting 
methods, for which there are different ways to estimate potential ET and different soil mois-
ture extraction functions. These functions are constructed based on soil moisture, and de-
scribe the relationship between ET and the state variables. A comparison of the feasibilities 
of the different hydrological models for ET assimilation is shown in Table 1. 

ET, a non-state variable, is calculated for most of the hydrological models by using soil 
moisture. In addition to taking this state variable as an observation to influence the simula-
tion of ET, data assimilation for hydrological modeling based on ET observations can be 
carried out in two ways. First, the observation operator AW=H (ET) associating soil mois-
ture and ET can be constructed, which converts the observed ET into a state variable, so as 
to realize the direct assimilation. This approach can be used for various types of hydrologi-
cal models, but requires extensive calculations. Moreover, rank-deficient problem may ap-
pear because the correlation between soil moisture and ET is not clear when calculating the 
covariance matrix. Second, we can construct a unit matrix operator ET = H (ET), assimilat-
ing the “observed” and simulated ET, and then calculate the state variable after updating ET. 
This method is easy to compute and rank-deficient problem does not appear. But it requires 
explicit relationships to be made between ET and state variables in the model, which is 
mainly applied to the model based on converting methods. Besides, the derivation of state 
variables is also worthy of attention. For example, in SWAT, soil moisture (which as men-
tioned above is a state variable) is the combined result of the entire duration of the simula-
tion, so a sequential assimilation system of ET based on SWAT is difficult to construct. In 
other hydrological models based on converting methods, soil moisture evolves over time and 
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Table 1  The comparison of the feasibilities of different hydrological models for evapotranspiration assimilation 

Hydrological 
model 

Method used to  
calculate ETa 

Feasibility of assimilating ETa References 

SWAT 

Converting method 
including canopy in-
terception, soil mois-
ture evaporation and 
plant transpiration 

ETa = ETwater+ f(sd, wc) + f(ETP, LAI). ETa consists of 
water surface evaporation, soil evaporation and vege-
tation transpiration. With no time-recursive condi-
tions, it is not suitable for constructing explicit as-
similation relations. 

Arnold et al., 
1998; Xu et al., 
2009 

VIC 

Gathering method 
including canopy in-
terception, vegetation 
transpiration and bare 
soil evaporation 

ETa = Ec+ ETveg + ETsoil. ETa is determined by differ-
ent vegetation types, and calculated by leaf area index, 
vegetation impedance and proportion of vegetation 
roots in the soil. With no time-recursive conditions, it 
is not suitable for constructing explicit assimilation 
relations. 

Liang et al., 
1994; Yu et al., 
2014 

SHE 
Gathering method 
using Pen-
man-Monteith formula 

a n= 1e c

a a

c r
E R

r r
 

 
  

      
  

 

ETa is determined by the climatic conditions, canopy 
water content, soil moisture, etc. With no 
time-recursive conditions, it is not suitable for con-
structing explicit assimilation relations. 

Xu et al., 2009; 
Freeze et al., 
1969 

VIP 

Gathering method 
using a dual-source 
energy balance model 
for canopy and surface- 
based Penman- Mon-
teith equation 

ETa = Ec+Es. ETa is calculated by the canopy transpi-
ration and surface evaporation, determined by net 
radiation, canopy resistance, vapor pressure, etc. With 
no time-recursive conditions, it is not suitable for 
constructing explicit assimilation relations. 

Wang et al., 
2008; Mo and 
Liu, 2001; Wang 
et al., 2010 

MIKE SHE 

Gathering method 
using Penman- Mon-
teith equation and 
Kristensen-Jensen 
model 

ETa = Ec+Esoil + Ewater + Eveg. ETa is calculated by 
interception, evaporation from soil and water surfaces, 
and plant transpiration. With no time-recursive condi-
tions, it is not suitable for constructing explicit as-
similation relations. 

Xu et al., 2009; 
Refshaard et al., 
1995; Vázquez, 
2003; Huang et 
al., 2010 

TOPMODEL 

Converting method 
using calculation based 
on the evaporation 
capacity EP 

,
,

m a x ,

1 r z i
a i p

i

S
E E

S

 
   

 

 

ETa is related to the water shortage and maximum 
storage capacity of vegetation root zone, and evapora-
tion capacity. With no time-recursive conditions, it is 
not suitable for constructing explicit assimilation 
relations. 

Xu et al., 2009; 
Beven and 
Kirkby, 1979; Li 
et al., 2006; 
Beven et al., 
1984 

IHDM 
Converting method 
using the EVAP rou-
tine 

 a , .p w sE E f    ETa is related to the capillary 

potential at the wilting point and anaerobiosis point, 
temperature, solar radiation, etc. With no 
time-recursive conditions, it is not suitable for con-
structing explicit assimilation relations. 

Beven et al., 
1987; Feddes et 
al., 1976; Feddes 
et al., 1976 

Xinanjiang 

Converting method 
using calculation by 
three layers of 
evapotranspiration 

 
  a

,

,

E U K E M E L K E M E U W L L M

E D C K E M E U E T E U E L E D

     

      

 

ETa is primarily related to climate and underlying 
conditions, the upper and lower water storage capaci-
ties, coverage area of deep-rooted plants, etc. With no 
time-recursive conditions, it is not suitable for con-
structing explicit assimilation relations. 

Hao et al., 2010; 
Cao et al., 2005 

HIMS 

Converting method 
using a conceptual 
model, and related to 
soil water storage and 
potential evaporation 
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a p 1 1 s

sm

W t
ET t ET t

W

  
     
   

 

ETa is calculated by soil water storage, solar radiation, 
latent heat of vaporization, and temperature. With no 
time-recursive conditions, it is not suitable for con-
structing explicit assimilation relations. 

Liu et al., 2006;  
Wu et al., 2012 

DTVGM 

Converting method 
using improved Bagrov 
model that considers 
soil moisture 

1

1
1 1 1 min

1

1 1 1 1 min

1 1
2 2

( )

( ) ( )

r r
t t t t t

t
t t t

t

t t t t

K K
AW P RS ETa AW

AW
ETp P AW W

ETa WM
P AW KAW P AW W




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

   

                  
  
    

 

A relationship between ETa and precipitation, soil 
moisture and potential evapotranspiration is estab-
lished. The explicit assimilation relation can be con-
structed through soil moisture. 

Xia et al., 2003 
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can provide feedback of ET assimilation results, so we can first assimilate evapotrans-
piration, and then adjust soil moisture to calibrate the hydrological model. But it is hard to 
construct the sequential assimilation system without explicit relationships between ET and 
state variables. In addition, it is most convenient to directly assimilate simulated ET with 
observed ET under the conditions of few observations, since the assimilation efficiency is 
high when using a unit matrix. 

To apply the assimilation procedures described above into hydrological models and de-
termine ET levels with high precision, we should consider the requirements of the assimila-
tion algorithm itself for hydrological models: first, the simulation variables must be state 
variables that can describe the time-domain behavior of a dynamic system; second, the 
simulation variable must evolve over time. In addition, ET is a prognostic variable to con-
struct a data assimilation system, so we need to construct the time response relationship be-
tween ET and state variables by assimilating feedback and then optimizing the simulation, 
so as to obtain accurate estimates of ET. Thus, the key to construct an ET assimilation sys-
tem is to select the hydrological model that meets the requirements of the assimilation algo-
rithm, which means developing the time response relationship between ET and the state 
variable being used. By effectively transforming ET into a state variable, the hydrological 
model was modified by the assimilation conditions, and could be combined with sequential 
assimilation to establish a feasible ET data assimilation system. 

4  A new evapotranspiration assimilation scheme based on hydrological 
modeling 

To construct the data assimilation system based on evapotranspiration (ET), which is a 
non-state variable, we need to choose the hydrological model with a time response relation-
ship between ET and the state variable, as the model operator of the assimilation system 
(Table 1). Based on the nonlinear theory of rain-derived flooding, and considering the pre-
ceding precipitation, Xia et al. put forward the distributed time-variant gain model (DTVGM) 
for watershed hydrological simulation (Xia et al., 1997; Xia, 2002; Xia et al., 2004). The 
model established the time response relationship between ET and soil moisture, and could be 
used to construct the data assimilation system based on ET. This section of the paper will use 
the DTVGM as an example to elaborate the new ET assimilation scheme. 

4.1  Distributed time-variant gain model (DTVGM) 

Xia et al. (2003) proposed the distributed time variant gain model (DTVGM) with a combi-
nation of a hydrological nonlinear system approach and distributed hydrological simulation 
technology, constructing the model structure from the perspective of feasibility and practi-
cability. The DTVGM can simulate the nonlinear relationship between rainfall, runoff and 
other hydrological variables under the influence of human activities (Li et al., 2010), with 
the ability, using a small amount of computation, to provide a real-time response of under-
lying surfaces, especially in arid and semi-arid basins such as the Heihe and Yellow rivers 
(Xia et al., 2005). In this model, the soil moisture at a given point in time is calculated by 
the precipitation, surface runoff, soil moisture and actual ET at a previous point in time us-
ing the water balance equation, combined with a simple nonlinear relationship between ac-
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tual ET and soil moisture, to effectively transform ET into a state variable. That is, the time 
response relationship of ET and soil moisture is constructed (Eqs. 1 and 2), and this con-
struction is suitable for ET data assimilation. 

 
1 1 1

2 2
r r

t t t t t

K K
AW P RS ETa AW

                    
(1) 

  

1
1 1 1 min

1

1 1 1 1 min

( )

( ) ( )

t
t t t

t

t t t t

AW
ETp P AW W

ETa WM
P AW KAW P AW W


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

   

   
       

(2) 

where ETat is the actual evapotranspiration at time t; ETat+1 is the actual evapotranspiration 
at time t+1; Kr is soil water discharge coefficient; AWt is the soil moisture at time t; AWt+1 is 
the soil moisture at time t + 1; Wmin is the minimum soil moisture; ETpt+1 is the potential 
evapotranspiration at time t+1; WM is the saturated soil moisture; Pt is the precipitation at 
time t; RSt is the surface runoff at time t; and KAW is the coefficient of evapotranspiration 
conversion. 

4.2  Improvement of DTVGM evapotranspiration estimation 

The integrated converting method was used to calculate the actual ET in the DTVGM, and 
Zhao Lingling (2013) improved the ET formula by constructing a nonlinear soil water 
availability function based on the logistic distribution. A good estimation of actual ET was 
obtained based on the logistic function, not only in the winter and spring, when there is an 
adequate water supply, but also in summer, when the water content is low. The results indi-
cate that the conversion model based on the logistic function has a wide range of applica-
tions, and can simulate the actual ET under various water supply conditions. The soil water 
availability function based on the logistic function is used to improve the ET formula in the 
DTVGM; then the improved time response relationship between ET and soil moisture can be 
described as: 

 

1

11
1( 0.5( 0.5))

1 1
2 2

1
1  

r r
t t t t t

tt
tAW

K K
AW P RS ETa AW

ETa ETp
e



 
 

                    



   

(3) 

where the meanings of the parameters are as described above. Eq. (3) completes the transi-
tion from ET to the state variable, i.e., soil moisture, yielding a forecast of soil moisture and 
updates of actual ET.  

In order to improve the DTVGM, the time response relationship between ET and soil 
moisture will be further improved by considering the impact of vegetation (Zhao et al., 
2014). Andersen believes that actual ET is related to potential ET, soil moisture, leaf area 
index and root depth (Andersen et al., 2002). Therefore, we use the leaf area index (or root 
depth) to improve the relationship between actual and potential ET in the DTVGM, thereby 
affecting the time response relationship of ET and soil moisture (Eq. (4)). Improving this 
relationship perfects the empirical ET formula and improves simulation accuracy, with better 
feedback and updates of the assimilation performance. 

1
1+e
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
  

(4) 

where f(LAI) is the leaf area index function, and f(RD) is the root depth function. 

4.3  A new evapotranspiration assimilation scheme based on DTVGM 

The new evapotranspiration assimilation scheme based on the DTVGM consists of three 
components: a dynamic model (model operator), a set of observations (observation operator) 
and assimilation algorithm. The improved DTVGM model can be used as a model operator, 
and the daily values of ET derived from remote sensing can be used as observed data. The 
implicit relationship between observed data and the state variable is contained in the assimi-
lation process, and the ensemble Kalman filter algorithm can be chosen as the assimilation 
algorithm. 

Using the ensemble Kalman filter (EnKF) algorithm, the ET data assimilation scheme 
takes ET values from remote sensing as observations, to correct the state variables and im-
prove the performance of the DTVGM, which is the driving model. The specific processes 
of this assimilation scheme are as follows: 1) addition of perturbation model errors to gener-
ate the initial background field, and drive model simulation combined with the basic input 
data; 2) addition of perturbation errors to, when available, the observed data of the day, i.e., 
ET values derived from daily remote sensing, and then assembly of these data to obtain the 
observation field; 3) at the same time, assembly of the ET values from the model running in 
parallel to obtain the forecast field, and then assimilation of the forecast field and observa-
tion field by the ensemble Kalman filter algorithm to obtain the analysis field; 4) feedback 
provided by the assimilation effect to the model operator to replace and update the back-
ground field. Then the simulation of next day is driven, and the assimilation cycle begins 
again when there are observations in the next day (Figure 1). 

The ensemble Kalman filter (EnKF) can be used for the assimilation algorithm in this 
scheme. The main calculation steps are as follows:  

(1) Forecast. The background field is initialized with N Gaussian random variables Xi 
(i=1, …, N), namely watershed actual ET, and the forecast 

, 1
f

i kX  is calculated for each ran-

dom variable at time k+1 as follows: 

 
 , 1 , 1 , ,

f a
i k k k i k i kX M X w    , 0,i k kw N Q  

(5) 

where ,
a
i kX is the analysis of the ith ensemble member at time k, namely the ETa of the 

DTVGM simulation at time k; , 1
f

i kX  is the forecast of the ith ensemble member at time k+1, 

which uses the transition from ET to the soil moisture to obtain the ETa of the DTVGM 
simulation at time k+1; Mk,k+1 is the change of the state (which is generally a nonlinear 
model operator) from time k to k+1, and this change is the DTVGM in this scheme is the 
change of the relationship of state from time k to k+1, generally nonlinear model operator, 
and it is the DTVGM in this scheme; wi,k is the model error, drawn from normal distribution  

1

1+e
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Figure 1  The flow chart of ET assimilation based on distributed time-variant gain model 
 

with zero mean and covariance matrix R. 
(2) Update. The obtained state forecast is updated by the observations at time k+1 when 

available, and the updated state analysis and its error covariance are obtained. The process 
used to update ET can be expressed by Eq. (6). 

 
   , 1 , 1 1 1 , 1 , 1

a f f
i k i k k k i k i kX X K y v H x     

       , 1 ~ 0,i k kv N R  
(6) 

where
, 1
f

i kX 
is the forecast of the ith ensemble member at time k+1, namely the ETa of the 

DTVGM simulation at time k+1; , 1
a
i kX  is the analysis of the ith ensemble member at time 

k+1, that is, the assimilated ET after the update that combines the model forecast and obser-
vations; Kk+1 is the Kalman gain matrix at time k+1 (Evensen, 2003), which weights the 
relative uncertainty of the simulated estimation and observation; yk+1 is the observations at 
time k+1, namely the ET measured by remote sensing; H(·) is the observation operator, be-
ing the unit matrix in the scheme; vi,k+1 is white Gaussian noise with zero mean and specified 
covariance Rk; and Rk is the observation error covariance matrix. 

(3) Update background field. Initialize the model using the state estimation at time k+1. 
That is, update the background field by calculating the soil moisture according to assimi-
lated ET, with the assimilating feedback to the model operator. When observations are 
available, the assimilation at the next point in time is executed, and the above steps are re-
peated until the forecast and update of the entire ET process is completed. 
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In summary, a new easy-to-operate evapotranspiration assimilation scheme with a water 
circulation physical mechanism has been proposed in this paper. Using ensemble Kalman 
filter, a data assimilation system that combined a remote sensing ET model and a hydro-
logical model was constructed in the scheme depending on the time response relationship 
between ET and soil moisture in the DTVGM. This scheme can be expected to yield a con-
tinuous time series of regional ET estimates with high accuracy. 

5  Discussion and prospect 

In this paper, a new scheme to estimate evapotranspiration on a regional scale has been pro-
posed. However, since the applications of this scheme are still at the experimental stage (Yin 
et al., 2014), more tests of these applications should be carried out at the regional level to 
validate the scheme. Research in ET data assimilation is still in the exploratory stage, and 
there are many bottlenecks that need to be overcome in this work, in contrast to assimilation 
research of other variables (e.g., land surface temperature, soil temperature, etc.). The big-
gest challenge in the assimilation of regional ET, a non-state variable in hydrological models, 
is how to improve the ET mechanism in the models as well as establish a rational isomor-
phic relationship of ET assimilation. Moreover, it is necessary to carry out further research 
on several aspects of this work, including on the accuracy of observational models, the sta-
bility of model operators, the capacity of data assimilation, the validation of regional ET 
processes, the optimization of the data assimilation method, the mechanism of the ET proc-
ess and so on.  

Accuracy of observational models. At present, most observational models adopt remote 
sensing (RS) ET models, which involve a number of parameters that describe the physical 
characteristics of the land surface. Due to external factors such as clouds, the atmosphere, 
the solar angle and observation angle, the accuracy of remote sensing data is limited to some 
extent. Besides, the cumulative effect of errors from retrieval of land surface parameters also 
affects the accuracy of observational models (Zhang et al., 2012). Therefore, it would be 
important to further explore the relationships between land surface physical characteristics 
and remote sensing information, so that we can reveal the basic laws underlying these rela-
tionships, and then realize cooperative retrieval of input data for the ET model using 
multi-source remote sensing information. This would improve the accuracy and spa-
tio-temporal continuity of land surface parameters, so as to improve the accuracy of ET es-
timation at the regional scale. 

Stability of model operators. The stability of model operators in data assimilation system, 
usually hydrological models, is of vital importance for obtaining accurate ET simulation 
results. Hydrological models synthetically consider the interactions between precipitation- 
runoff and landform, physiognomy, climate, and human activities. Since these models pro-
vide reliable mechanistic explanations for the hydrological cycle and use many parameters, 
uncertainties in these models have a great effect on ET simulation. Due to the high spa-
tio-temporal heterogeneity of land surface variables, it is difficult to avoid large deviations 
between the hydrological model simulation and the observed data. Development of more 
mature, simple and effective model operators is necessary to achieve a reliable assimilation 
system. Therefore, further research is needed on the optimization and improvement of the 
hydrological model, as well as research on assessing the universality of the model. The con-
vergence, rate of convergence and stability of the assimilation algorithm should also be 
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comprehensively assessed. 
Capacity of data assimilation. The capacity of data assimilation is closely related to the 

input frequency of “observations,” which means that an increase in the number of observed 
samples leads to better assimilation of ET, which promotes the influence of hydrological 
model calibration. When high-quality remote sensing data are lacking, it can be helpful to 
consider other sources of data, such as obtaining an observation field via spatial interpola-
tion based on highly accurate flux data from regionally representative observational stations, 
moving/ fixed-point observations by radar remote sensing techniques, or calculation of en-
ergy flux by eliminating cloud interference for remote sensing data with large cloud cover-
age. These approaches will be the focus of future research. 

Validation of the regional ET process. Direct comparison between assimilated ET and 
observed ET is the most efficient validation approach. Of these approaches, large-aperture 
scintillometry (LAS) is the most effective at a regional level, but a large-scale use of this 
method is often impeded by the high price of the equipment. The validation of actual ET still 
depends on the simulation data from a third party; thus, research focusing on finding an ef-
fective means of validating ET at the regional level is being carried out. 

Development of data assimilation techniques. To further improve estimation of ET using 
hydrological models, it can be helpful in future research to use data fusion methods, such as 
the wavelet transform, to extract contact information between the grids of observational 
products and fuse them into the assimilation. Meanwhile, to enhance the accuracy of the 
estimation of hydrological variables and at the same time ensure high calculation efficiency, 
a more appropriate assimilation mechanism should be established. Research should be fo-
cused on the following: development of techniques to combine multiple and complementary 
remote sensing sources for hydrologic modeling (Xu et al., 2014); joint assimilation of 
multi-scale, multi-sensor products; and development of new techniques such as integration 
of new potential sensor products with hydrological models. 
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