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Abstract: DMSP/OLS nighttime light (NTL) image is a widely used data source for urbaniza-
tion studies. Although OLS NTL data are able to map nighttime luminosity, the identification 
accuracy of distribution of urban areas (UAD) is limited by the overestimation of the lit areas 
resulting from the coarse spatial resolution. In view of geographical condition, we integrate 
NTL with Biophysical Composition Index (BCI) and propose a new spectral index, the BCI 
Assisted NTL Index (BANI) to capture UAD. Comparisons between BANI approach and 
NDVI-assisted SVM classification are carried out using UAD extracted from Landsat 
TM/ETM+ data as reference. Results show that BANI is capable of improving the accuracy of 
UAD extraction using NTL data. The average overall accuracy (OA) and Kappa coefficient of 
sample cities increased from 88.53% to 95.10% and from 0.56 to 0.84, respectively. Moreover, 
with regard to cities with more mixed land covers, the accuracy of extraction results is high 
and the improvement is obvious. For other cities, the accuracy also increased to varying de-
grees. Hence, BANI approach could achieve better UAD extraction results compared with 
NDVI-assisted SVM method, suggesting that the proposed method is a reliable alternative 
method for a large-scale urbanization study in China’s mainland. 
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1  Introduction 

Human activities are predominantly concentrated in the urban areas. Accurate understanding 
of the spatiotemporal distribution of urban areas (UAD) is an effective way to unveil the 
mechanisms of interaction between land-use systems and terrestrial ecosystems. It also 
serves the basic needs for urban–rural planning, urban resource management, environmental 
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assessment, and global change research (Weng, 2012). Remote sensing technique can cap-
ture land use and land cover conveniently, objectively, and continuously. It is an effective 
approach for current UAD extraction when combined with urban administrative unit statis-
tical data (Schneider, 2012; Schneider et al., 2010; Weng, 2012). Nighttime light (NTL) re-
mote sensing data has become a new approach for large-scale urbanization study and has 
attracted widespread attention because of its macroscopic perspective (Doll, 2008; Elvidge 
et al., 2007; Lu et al., 2014; Ma et al., 2012; Potere et al., 2009).  

NTL signal is captured by Operational Linescan System (OLS) sensor on Defense Mete-
orological Satellite Program (DMSP). It is found that the night lighted areas on Earth are 
coincident with the distribution of population and energy consumption. Thus, NTL informa-
tion provides an accurate, economic, and direct way to describe the global distribution and 
development of urban areas, making it a powerful tool for human activity study (Forbes, 
2013; He et al., 2013; Small and Elvidge, 2013; Wu et al., 2013). The method for large-scale 
UAD extraction using DMSP/OLS data can be categorized as: 1) NTL data thresholding, 
and 2) combining multi-sensor remote sensing data and auxiliary products. The threshold 
method mainly includes empirical threshold (Elvidge et al., 1997a; Elvidge et al., 1997b), 
abruptly changing detection (Imhoff et al., 1997), high resolution data comparison 
(Henderson et al., 2003), and statistical data comparison (He et al., 2006) methods. 
DMSP/OLS data are recorded as 6-bit digital numbers (DNs) that are often saturated in the 
core of the cities. This is why DNs detected from sensors are consistently less than the exact 
values (Zhang et al., 2013). Meanwhile, distribution of light areas in urban fringe areas, 
small towns as well as connected regions between cities detected by the OLS is consistently 
larger compared to the spatial distribution of the associated settlements. This is due to the 
coarse spatial resolution of the OLS sensor and the disturbance in the signal. Since urban 
expansions of different economic levels and different periods in China are significantly dis-
similar, the determination of threshold tends to be empirical, regional, and temporal. It re-
mains difficulty to extract the UAD accurately for large-scale researches (Small et al., 2011; 
Small et al., 2005). A cluster-based threshold method was developed to delineate the urban 
extent, which the optimal threshold for each potential urban cluster is evaluated relying on 
urban cluster size and overall NTL magnitude (Zhou et al., 2014). 

The core of multi-sensor remote sensing assisted method is to provide the underlying sur-
face properties of urban landscape, which could subsequently correct or eliminate the satu-
ration of NTL data. Previous research shows that vegetation and impervious surfaces have a 
strong negative linear relationship (Weng, 2012). Thus, some researchers tried to use NTL 
data combined with Normalized Difference Vegetation Index (NDVI) data to carry out ur-
banization studies, including urban land cover pattern intensification (Zhang et al., 2013), 
urban energy consumption evaluation (He et al., 2013), urban population estimation (Zhuo 
et al., 2009) and urban spatial distribution extraction (Cao et al., 2009; Lu et al., 2008; 
Pandey et al., 2013). He et al. (2014) estimated natural habitat loss caused by urban sprawl 
in China over the period 1992–2012, integrating NTL data, NDVI and land surface tem-
perature (LST). Although the NDVI data is a favorable choice to provide supporting infor-
mation for extracting the UAD, there are still a few drawbacks: 1) NDVI cannot differentiate 
impervious surface and bare soil effectively. It is difficult to describe the underlying surface 
of low vegetated areas; 2) it is not suitable for the identification of fast-growing cities. In 
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most developed countries, the cities have been well planned and some of them even have a 
history of hundreds of years. The distributions of green land, residential areas and commer-
cial zones would not change frequently. However, in developing countries, due to the rapid 
expansion and its resulting demolition and retrofitting, the distribution of vegetation tend to 
be irregular, (e.g., the bare soil and impervious surface are often mixed with vegetation). As 
a developing country with a vast territory, large population, and rapid economic growth 
(Wang et al., 2012), China has been experiencing a swift process of urbanization. The rapid 
urbanization of China has led to many complex problems, such as environmental problems 
and resource shortages. Most existing methods of urbanization study are applicable to de-
veloped countries, which would not suit the conditions of developing countries. Conse-
quently, it is necessary to search a more suitable UAD extraction method to carry out a 
large-scale NTL study of developing countries like China. 

Biophysical Composition Index (BCI), firstly proposed by Deng and Wu (2012), is a sim-
ple and convenient spectral enhancement technique, which is designed to successfully dis-
criminate three urban land cover compositions, vegetation, impervious surfaces, and soil 
(Scott et al., 2014).It follows Ridd’s V-I-S conceptual model (Zhang et al., 2014) and was 
employed to quantitatively represent urban land cover principal materials for urban envi-
ronment and landscape (Wu et al., 2014). Without extra shortwave infrared or thermal infra-
red information, BCI can be applied to images of multiple spectral resolution and spatial 
resolution. BCI shows a strong positive correlation with urban impervious surface and a high 
negative correlation with vegetation. Moreover, BCI is capable of differentiating between 
bare soil and impervious surface to compensate for the insufficiency of NDVI data. NTL 
data combined with BCI will improve the reliability of UAD extraction results, because of 
the ability of V-I-S enhancement and the detection of human activities. Hence, we propose 
the BCI Assisted NTL Index (BANI) combining BCI with NTL. This study maps China’s 
UAD by combining nighttime light and BCI through BANI index. We also perform accuracy 
assessments to quantify the efficiency of this method using the results of NDVI-assisted 
SVM classifier and Landsat TM/ETM+ data. 

2  Study area and data 

In this study, we mainly focus on the UAD extraction over China’s mainland. According to 
China Urban Statistical Yearbook 2013 complied by the National Bureau of Statistics of 
China at the end of 2012, the sum of provincial level administrative units of China’s main-
land was 31, including 23 provinces, 4 municipalities, and 5 autonomous regions. The total 
number of cities was 657, including 15 sub-province cities, 270 prefecture-level cities, and 
368 county-level cities. Land area under prefecture-level cities was 4.76 million square ki-
lometers and the total population was 1.26 billion.  

2.1  DMSP/OLS stable nighttime light data 

Version 4 DMSP/OLS NTL Time Series datasets were taken from the website of the Na-
tional Geophysical Data Center at National Oceanic and Atmospheric Administration 
(http://ngdc.noaa.gov/eog/download.html), which have a swath width of 3000 km and are 
aggregated and composited to 30 arc second grids. This data was the average of digital 
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number values from annual VNIR channel stable nighttime light data, ranging from 0 to 63, 
which filters light pixels generated by accidental factors, such as gas flares and fires. Liu 
(2012) analyzed DMSP/OLS NTL statistical data from 1992 to 2010 in China and pointed 
out that DMSP/OLS NTL data in 2007 from satellite F16 could be used as the reference 
dataset, because it had the highest accumulated DN value. Therefore, the data employed in 
the research were DMSP/OLS stable NTL data from 2007, which were resampled with a 1 
km spatial resolution and projected to Lambert Azimuthal Equal Area, and then clipped in 
accordance with the scale of China Vector Data. 

2.2  MODIS data 

The MODIS/Terra Surface Reflectance 8-Day L3 Global 500-m SIN Grid version 4 
(MOD09A1) products were the primary source for the composition of BCI. The data were 
acquired from the Goddard Space Flight Center of National Aeronautics and Space Admini-
stration (NASA) LAADS Web (http://ladsweb.nascom.nasa.gov/data/search.html), which 
had been processed by radiometric calibration, atmospheric and aerosol correction, and edge 
distortion correction. To be consistent with DMSP/OLS NTL data, we selected 18 
MOD09A1 datasets of good quality in September (the growing season) 2007 as the data 
source. MOD09A1 products contained quality assessment (QA) band. This band marked 
cloud state and water state, with which labeled data could be extracted through QA decoding 
for cloud mask and water mask. Besides that, re-projection and resampling were also con-
ducted to correspond with DMSP/OLS NTL data. 

2.3  Landsat TM/ETM+ data 

Landsat TM/ETM+ images with a spatial resolution of 30 m were used for accuracy assess-
ment. The data set was provided by the International Scientific & Technical Data Mirror Site, 
Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud. 
cn), on which radiometric and geometric corrections were processed. ETM+ data gap-fill 
process was accomplished by multi-images local adaptive regression analysis model (Liu et 
al., 2010). 

2.4  Auxiliary data 

Data collection included a map of 1:4,000,000 scale offered by the National Geomatics 
Center of China and the China Urban Statistical Yearbook 2007 complied by the National 
Bureau of Statistics of China. 

3  Methodology 

3.1  Division of study area 

In the study of large-scale remote sensing classification and information extraction, if there 
were great differences of entropy between land information, classifying the study area on the 
basis of some strategies will contribute to the improvement of accuracy (Schneider et al., 
2010). China’s mainland is so extensive that there were appreciable differences in popula-
tion size and economic development level at different regions. It is necessary to divide the 
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study area into sub-regions according to provincial characteristics. Yang et al. (2013) carried 
out a study of China’s mainland UAD extraction based on division using NTL data, with an 
average Kappa coefficient of 0.69. The definition of “city” in this paper is by virtue of pop-
ulation and economy. Thus, according to the differences of population and economy, China 
can be divided into eight economic zones according to the Strategy and Policy of Regional 
Coordinated Development Report by the Development Research Center (Liu et al., 2002). 
The economic zones are Northeast China (NEC), Northern Coastal China (NCC), Eastern 
Coastal China (ECC), Southern Coastal China (SCC), Middle Reaches of the Yellow River 
(MRYLR), Middle Reaches of the Yangtze River (MRYTR), Southwest China (SWC), and 
Northwest China (NWC). Moreover, one sample city from each urban development level 
was chosen from each economic zone for accuracy assessment. The eight selected cities are 
Beijing, Chengdu, Harbin, Huainan, Quanzhou, Urumqi, Wuxi, and Xi’an, as illustrated in 
Figure 1. Table 1 reports the total population and GDP of each economic zone and sample 
city.  

 

Figure 1  Division of economic zones and location of sample cities 
 
 

 

Table 1  Socio-economic statistics of each economic zone in 2007 

Economic zones/ 
Sample cities 

Average GDP 
(billion RMB) 

GDP per capita 
(RMB) 

Population 
(million) 

NEC / Harbin 779.11 / 175.67 21,197 / 37,052 108.52 / 4.75 

NCC / Beijing 1351.98 / 920.76 38,003 / 60,045 190.58 / 11.42 

ECC / Wuxi 1890.35 / 216.29 45,902 / 92,385 145.43 / 2.36 

SCC / Quanzhou 1385.23 / 48.80 24,538 / 37,556 138.75 / 1.02 

MRYLR / Xi’an 807.57 / 132.95 18,239 / 20,818 189.06 / 5.49 

MRYTR / Huainan 782.38 / 24.77 13,844 / 15,851 225.40 / 1.66 

SWC / Chengdu 5613.33 / 209.19 11,513 / 32,722 239.87 / 5.03 

NWC / Urumqi 1648.11 / 80.97 13,672 / 31,806 61.58 / 2.22 
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3.2  Biophysical Composition Index (BCI) and NDVI calculations 

(1) Processing of BCI 
Two steps were performed in the pre-processing stage of the BCI calculation using 

MODIS surface reflectance data. Firstly, water pixels were masked out using QA of 
MOD09A1 products. Secondly, Tasseled Cap (TC) transformation was conducted. Trans-
formation parameters proposed by Zhang et al. (2002) were adopted in the TC transforma-
tion of MOD09A1 data.  

 i ij jTC C * Band  (1) 

where TCi (i=1, 2, 3) are the first three TC components, namely brightness (TC1), greenness 
(TC2), and wetness (TC3); Cij are the specific parameters of TC transformation listed in  
Table 2; Bandj are the band numbers of MOD09A1 data.  
 

Table 2  Tasseled Cap coefficients for MODIS 

 
Band 1 
(Red) 

Band 2 
(Near-IR)

Band 3 
(Blue) 

Band 4 
(Green) 

Band 5 
(M-IR) 

Band 6 
(M-IR) 

Band 7 
(M-IR) 

TC1 0.3956 0.4718 0.3354 0.3834 0.3946 0.3434 0.2964 

TC2 –0.3399 0.5952 –0.2129 –0.2222 0.4617 –0.1037 –0.4600 

TC3 0.1084 0.0912 0.5065 0.4040 –0.2410 –0.4658 –0.5306 

 

After the TC transformation, each derived TC component was linearly normalized within 
the range 0 to 1. Following the algorithm developed by Deng (2012), BCI was derived using 
Eq. (2) after pre-processing. 

 
( )/2

( )/2

H L V
BCI

H L V

 


 
 (2) 

where H is “high albedo”, the normalized TC1; V is “vegetation”, the normalized TC2; and 
L is “low albedo”, the normalized TC3. These three components can be given by the fol-
lowing formula: 
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where TCmax and TCmin are the maximum and minimum values of the ith TC component, 
respectively. 

Figure 2 compares the distribution of NTL and BCI at each economic zone in 2007. Urban 
areas, indicated by a white tone, have the highest BCI values (positive). Soil and mixed land 
cover have a BCI value close to zero, and are displayed with a tone of medium gray. Vegeta-
tion has the lowest BCI value (negative). Note that the west of MRYLR and the northwest of 
NWC are desert areas, which also have high BCI values and displayed with a tone of white. 

For further analysis, the statistical characteristics of BCI in each economic zone are nec-

essary. Arithmetic mean BCIX  and standard deviation SBCI of MODIS BCI data in each 
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economic zone were calculated for the preparation of training samples selection for the next 
step. Statistical results of MODIS BCI data in 2007 are shown in Table 3. 

 

Figure 2  Contrast between NTL and BCI of the eight economic zones in 2007 
 

Table 3  Discrepancies of MODIS BCI among eight economic zones in 2007 

Economic zones BCIX  SBCI BCIX + SBCI 

NEC –0.1264 0.1002 –0.0262 

NCC –0.0572 0.1273 0.0701 

ECC –0.2808 0.1233 –0.1575 

SCC –0.2342 0.1521 –0.0821 

MRYLR 0.0681 0.1968 0.2649 

MRYTR –0.3279 0.1041 –0.2238 

SWC –0.5054 0.0400 –0.4654 

NWC –0.4083 0.0979 –0.3104 
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(2) Processing of NDVI 
To evaluate the performance of BCI-assisted classification for delineating UAD from 

NTL data, we employed NDVI-assisted classification for comparisons. NDVI data were 
calculated according to Eq. (6) using MOD09A1 datasets. Figure 3 shows the calculated 
NDVI data in China.  

 
NIR RED

NDVI
NIR RED





 (6) 

 

Figure 3  NDVI data calculated through MOD09A1 datasets of China in September 2007 and NDVI values 
show only light areas identified in DMSP/OLS NTL data 

3.3  BANI: The BCI-Assisted NTL Index 

We propose the BCI Assisted NTL Urban Index (BANI), which is based on the correlations 
between BCI, NTL, and urban surfaces. As illustrated in DMSP/OLS NTL data, urban areas 
are presented as light patches. Furthermore, closer towards the urban patch center, the pixels 
get brighter, as those areas are more developed. These areas are often the location with the 
higher density of impervious surfaces and the BCI values are between 0 and 1. BCI values 
of the rural surroundings with low presence of impervious surfaces are between –1 and 0. 
The BANI is to develop a robust index, which uses an urban impervious surface signal to 
increase inter-urban variability with NTL. The relationship between BCI and NTL is posi-
tive. While NTL values gradually increase towards the urban core, BCI values also get high-
er.We define BANI as: 

 2* (1 )BANI NTL BCI   (7) 

where BCI is derived from MODIS, with the range between –1 and 1. The BANI calculation 
results in highlight values of urban core areas. To make BANI values in different economic 
zones consistent, we normalize NTL values to the range of 0 to 1. Figure 4 shows the calcu-
lated BANI data through NTL data and BCI data of China. A BANI value of 0 means the 
pixel cover with a corresponding NTL value of 0 (dark area). A higher BANI value indicates 
this area is closer to urban core. 

After BANI calculation, in terms of BANI value and BCI value, we set thresholds ac-
cording to Tables 3 and 4. Then label pixels with values less than the threshold as non-urban 
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pixels. 

Table 4  Discrepancies of BANI among eight economic zones in 2007 

Economic zones BANIX  SBANI BANIX  SBANI 

NEC 0.0336 0.1094 0.1430 

NCC 0.1430 0.2500 0.3930 

ECC 0.1194 0.1886 0.3080 

SCC 0.0712 0.1877 0.2589 

MRYLR 0.0271 0.0995 0.1266 

MRYTR 0.0230 0.0680 0.0910 

SWC 0.0061 0.0220 0.0281 

NWC 0.0013 0.0143 0.0156 

 

 
 

Figure 4  BANI data calculated through NTL data and BCI data of China in September 2007 and BANI values 
show only light areas identified in DMSP/OLS NTL data 

3.4  NDVI-assisted SVM classification 

The NDVI and DMSP/OLS NTL data were taken as the inputs of an iterative classification 
to classify urban and non-urban pixels, after initial training sets were built. Pixels with an 
OLS value of more than 30 were selected as potential pixels indicating an urbanized locality. 
Pixels with OLS values less than 30 and NDVI greater than 0.4 were set as non-urban sam-
ples. Then we perform SVM classification based on region-growing iterative method here. 
Post-classification procedure eliminated pseudo-urban pixels with NDVI values greater than 
0.4 (Cao et al., 2009). 

4  Results and Accuracy Assessment  

Landsat TM/ETM+ images were most commonly available for detecting urban areas and 
mapping their changes (Forsythe, 2004; Mundia and Aniya, 2005; Zhou et al., 2008). The 
classification results using Landsat TM/ETM+ data were accurate enough to be used as ref-
erence maps for accuracy assessment since the fine spatial resolution (30 m) and spectrum 



334  Journal of Geographical Sciences 

 

information (Henderson et al., 2003; Small et al., 2005). In this study, the UAD results ex-
tracted from TM/ETM+ multi-spectral data were captured based on SVM classification and 
the selection of training samples were through visual interpretation. Selection of training 
samples is a decisive factor for classification results, thus it would affect the accuracy of 
comparisons. The selection of these cities took a full consideration of the scale of the city 
and the level of development, so that they could reflect the applicability of this method 
comprehensively. We used Landsat TM/ETM+ data of eight sample cities for qualitative and 
quantitative UAD extraction results after comparing BANI approach and NDVI-assisted 
classification. In addition, these results were resampled to 1 km spatial resolution.  

First, qualitative analysis of UAD extraction results was carried out (Figures 5c, 5d, and 
5e). Compared to the urban land information extracted from Landsat TM/ETM+ data, both 
NDVI-assisted and BANI method were capable of acquiring urban information effectively. 
However, for Chengdu, Huainan, Wuxi, Urumqi, and Xi'an, the latter worked better than 
NDVI-assisted SVM algorithm in subtle features. The results were closer to that of reference 
data and the outline was more detailed. 

 
 

Figure 5  Landsat TM/ETM+ images (a); DMSP/OLS NTL images (b); Urban extent from Landsat TM/ETM+ 
classification (1 km) (c); Results of NDVI-assisted SVM method (d); Results of BANI approach (e) 

 

We further analyzed UAD extraction results quantitatively. Accuracy assessments of UAD 
extraction results were performed (Table 5). The standards of these assessments include the 
number of urban pixels and two accuracy assessment indices of overall accuracy (OA) and 
Kappa coefficient. The OA and Kappa coefficients were calculated based on the error matrix 
from DMSP/OLS and Landsat TM/ETM+ results of each city. The OA of BANI algorithm 
ranged from 93.77% to 96.51%, and Kappa coefficient of that ranged from 0.79 to 0.88; 
while the OA and Kappa coefficient of NDVI-assisted SVM algorithm ranged from 86.11% 
to 92.18% and 0.47 to 0.63, respectively. The average OA and Kappa coefficient of BANI 
approach improved from 88.53% to 95.10% and from 0.56 to 0.84, respectively. It is possi-
ble to conclude that the accuracy of the former was better and that it had better coherency 
with TM/ETM+.  
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Table 5  Accuracy assessment of urban areas characteristic 

BANI algorithm NDVI-assisted SVM Comparisons 
Sample cities 

OA (%) Kappa OA (%) Kappa OA (%) Kappa 

Beijing 94.18 0.88 90.27 0.57 3.91 0.31 

Chengdu 96.51 0.87 86.74 0.47 9.77 0.40 

Harbin 93.77 0.79 87.10 0.60 6.67 0.19 

Huainan 96.33 0.87 92.18 0.48 4.15 0.39 

Quanzhou 94.16 0.81 86.76 0.57 7.40 0.24 

Wuxi 95.81 0.85 88.83 0.55 6.98 0.30 

Urumqi 94.42 0.82 85.11 0.59 9.31 0.23 

Xi’an 95.61 0.83 91.25 0.63 4.36 0.20 

Average 95.10 0.84 88.53 0.56 6.57 0.28 

 
Different cities present various land covers. Vegetation fraction is key to score the vegeta-

tion coverage of the land surface. Based on NDVI index, we adopted dimidiate pixel model 
to estimate the vegetation fraction of eight selected cities using Landsat TM/ETM data. Di-
midiate pixel model assumed that spectral information observed by sensors consists of two 
parts, information contributed by the vegetation and the soil. Vegetation fraction is proposed 
by Eq. (8), in which NDVI is set as the input (Li et al., 2004).  

 soil
c

veg soil

NDVI NDVI
f

NDVI NDVI





 (8) 

where NDVIsoil is NDVI value of no vegetation pixel, NDVIveg is NDVI value of pure vege-
tation pixel. We did statistical analysis of NDVI values including accumulative percent of 
each economic zone. Accumulative percent means the percentage of the total NDVI value 
which is less than or equal to a certain value. Based on the NDVI accumulative percent of 
each zone (Li et al., 2004), the corresponding values of 5% confidence intervals were cho-
sen as NDVIsoil . According to the results, we divided them into five levels, 0–0.2, 0.2–0.4, 
0.4–0.6, 0.6–0.8 and 0.8–1.0 (Table 6). The degree of mixing of the impervious surface, bare 
soil and vegetation was great when the cumulative values were between 0.2 and 0.8. During 
this interval, land cover is made from a mix of impervious surfaces, vegetation, and soil, 
which is called hybrid interval. The accuracy of results for cities, particularly, with hybrid 
interval values above 56%, such as Chengdu, Wuxi and Huainan had a high accuracy and 
improved considerably. OA improved from 86.74%, 88.83% and 92.18% to 96.51%, 95.81% 
and 96.33%, respectively. And Kappa coefficient improved from 0.48, 0.55 and 0.48 to 0.87, 
0.85 and 0.87, respectively. The accuracies of results for cities with hybrid interval values 
between 50% and 56% (Urumqi in NWC, Beijing in NCC and Xi’an in SWC) also reached a 
high accuracy and showed significant improvements. OA improved from 85.11%, 90.27% 
and 91.25% to 94.42%, 94.18% and 95.61%, respectively. Kappa coefficient improved from 
0.59, 0.57 and 0.63 to 0.82, 0.88 and 0.83, respectively.  

Overall, UAD as well as area statistics of the extraction results of the BANI approach 
were consistent with that of finer spatial resolution. The accuracy was better than that of 
NDVI-assisted SVM classification. Thus, the results of BANI method are capable of re-
flecting the exact urban land-use information in China’s mainland and are highly reliable. 
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Table 6  The vegetation fraction percentage of each division in eight selected cities in 2007 (%) 

Vegetation fraction 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 

Beijing 29.72 19.78 15.78 16.80 17.92 

Chengdu 18.16 17.69 22.52 22.78 18.86 

Harbin 20.33 13.15 14.17 18.52 33.84 

Huainan 17.31 12.52 20.63 23.15 26.39 

Quanzhou 25.93 12.71 13.31 19.95 28.09 

Wuxi 24.02 20.61 20.10 18.03 17.25 

Urumqi 38.45 29.14 15.13 7.98 9.30 

Xi’an 16.81 13.42 15.90 22.81 31.06 

 

Figure 6 presents the urban land 
map of China in 2007 using BANI 
procedures. In 2007, there were 
51,617 km2 of total urban land in 
China’s mainland. Among them, the 
area of urban land situated in the 
coastal areas of China, such as NCC 
(11,427 km2), ECC (7015 km2), and 
SCC (7391 km2) were much larger 
than those in land- locked regions 
of China, such as NWC (3331 km2) 
and SWC (4973 km2). The areas of 
urban land in central regions such 
as MRYLR, MRYTR and NEC 
were 6285 km2, 5179 km2 and 5998 
km2. 

5  Discussion and conclusion 

This study proposed an index BANI, which combined with DMSP/OLS NTL data and BCI 
to map the urban areas of China’s mainland. This method effectively captured UAD and the 
average values of OA and Kappa coefficient reached 95.10% and 0.84, respectively.  

We made a comparison of BANI approach and NDVI-assisted SVM algorithm through 
Landsat TM/ETM+ classification results of eight selected cities with different development 
level. From a qualitative point of view, the results of BANI approach showed a better result 
and a more detailed outline, similar to that of the reference data. Area statistical data of ex-
traction results using BANI method were closer to the reference data. The accuracy of cities 
with hybrid interval values above 56% improved drastically. Hence, BANI algorithm is a 
reliable alternative method for extracting urban land data.  

BCI has an advantage of enhancing vegetation, impervious surface, and soil to reflect the 
cover attributes of urban underlying surface. Combined with DMSP/OLS NTL data, BCI can 
improve UAD extraction accuracy of middle and small cities or developing cities. However, 
in terms of quantitative analysis and application, further investigations are required in the 
following aspects: 

 

Figure 6  China’s mainland urban land classified by BANI ap-
proach in 2007 
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(1) Spatial visualization of the development level. Urbanization level index acquired 
based on NTL data, socio-economic statistic data, land use data and population grid data are 
combined to establish the relevant model to achieve spatialization of macro-scale economic 
development index (such as GDP, population, energy consumption, carbon emissions and 
primary productivity). Thus, spatialized socio-economic information is available for ma-
cro-economic and overall regional policy development. 

(2) Application of new NTL data. The new NTL remote sensing data can detect nighttime 
light with finer spatial resolution and has a radiation-detecting performance, such as 
NPP/VIIRS data, EROS-B data, etc. Combining BCI information obtained from high spatial 
resolution data with these data, it is capable of improving NTL data details and deepening 
application fields. 
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