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Abstract: Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in 
complex irrigated basins provides complete profile for better water resource management and 
planning. Using remote sensing data, this study provides detailed land use maps of the Lower 
Chenab Canal irrigated region of Pakistan from 2005 to 2012 for LULC change detection. 
Major crop types are demarcated by identifying temporal profiles of NDVI using MODIS 250 m 
 250 m spatial resolution data. Wheat and rice are found to be major crops in rabi and kharif 
seasons, respectively. Accuracy assessment of prepared maps is performed using three 
different techniques: error matrix approach, comparison with ancillary data and with previous 
study. Producer and user accuracies for each class are calculated along with kappa 
coefficients (K). The average overall accuracies for rabi and kharif are 82.83% and 78.21%, 
respectively. Producer and user accuracies for individual class range respectively between 
72.5% to 77% and 70.1% to 84.3% for rabi and 76.6% to 90.2% and 72% to 84.7% for kharif. 
The K values range between 0.66 to 0.77 for rabi with average of 0.73, and from 0.69 to 0.74 
with average of 0.71 for kharif. LULC change detection indicates that wheat and rice have less 
volatility of change in comparison with both rabi and kharif fodders. Transformation between 
cotton and rice is less common due to their completely different cropping conditions. Results 
of spatial and temporal LULC distributions and their seasonal variations provide useful insights 
for establishing realistic LULC scenarios for hydrological studies.
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1  Introduction
Land cover is the most important property of earth’s surface defining its physical condition 
and biotic component; whereas land use is the modification of land cover as per human needs 
and actions (Prakasam, 2010). Similarly, identifying these modifications in Land Use/Land 
Cover (LULC) over times and not over times is known as its change detection (Anderson, 
1977). Rapid changes in LULC are observed throughout the world especially in developing 
countries due to their heavy reliance on agricultural production and increasing population. 
These changes necessitate the availability of improved and updated LULC datasets (Wardlow 
et al., 2007) for effective planning and production management, thus facilitating both farmers 
and policy makers (Liang et al., 2013). 

Use of LULC data is highly acknowledged for water resources management (Schilling et 
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al., 2008), through their extensive applicability for hydrological modeling studies. Water 
accounting is essential input in hydrological modeling and its accurate assessment is only 
possible with precise LULC mapping (Dappen et al., 2008; Molden, 1997). Moreover, 
information on areal extent of crops (especially irrigated crops), their types, and locations is 
very critical for estimating crop consumptive water use having varying crop water demand 
(Zheng and Baetz, 1999). In addition, as the parameters of lumped hydrological models 
cannot explicitly account for the variability within individual sub-basins in watershed due to 
missing spatial input data, this issue can be handled through the use of distributed models. In 
this case, impacts of LULC change represent the overall change as well as its spatial 
distribution (Kimaro et al., 2005).

Conventionally, LULC data in many developing countries including the current study 
region is available without much detail on their spatial distribution. The use of these data does 
not yield realistic LULC scenarios, thus leading to fussy inferences regarding management of 
total available water resources in different regions. This increasing demand for LULC 
information due to its ability in capturing spatial distribution at higher resolutions cannot be 
fulfilled through intensive ground surveys. Two facts are noteworthy in this regard. Firstly, 
the spatio-temporal changes of LULC are extremely quick particularly for irrigated areas 
which are beyond the scope of ground surveys. Secondly, the ground surveys are 
comparatively expensive, as well. This situation demands development of modern 
methodologies for collection and estimation of different LULC data from larger areas within 
short time durations (Osborne et al., 2001).

The deficiency in LULC data is overcome by the introduction of modern remote sensing 
data for agriculture use. Use of satellite remote sensing data is in practice since the 1970s in 
monitoring LULC changes at coarser spatial scales (Shao et al., 2001). Nevertheless, its use in 
irrigated agriculture has gained much popularity in recent years. For example, extensive 
research work has been done to map rice cultivated areas worldwide in the late 1980s and 
early 1990s for its use in climatic and trace gas emission studies. These datasets were 
available at coarser spatial resolution (0.5º to 5º) (Matthews et al., 1983; Oslon, 1994). 
Mapping of global rice area at a spatial scale of 5 arc minutes (Leff et al., 2004) and rice 
mapping for south Asian countries using MODIS data are the new additions in recent past in 
this field (Xiao et al., 2006). Apart from rice mapping, several land cover databases have also 
been developed. These databases classify target areas into a number of classes of interest. The 
most recent development in this regard is the preparation of global land cover map by Gong et 
al. (2013) using 30 m  30 m Landsat Thematic Mapper (TM) and Enhanced Thematic 
Mapper Plus (ETM+) data. Table 1 presents a brief overview of some prominent 
local/regional land cover datasets developed over time.
Table 1  Summary of selected regional to country level Land Use/Land Cover datasets

Sr. No Name of the 
dataset Data description Source Coverage/

Spatial scale

1 FAOSTAT Agricultural lands http://faostat3.fao.org/home/E Country level

2 FORIS Inland waters, forest and woodland http://www.fao.org/forestry/sit
e/fra/en

Country level 

3 GLCC Built-up areas, water resources, barren 
or sparsely vegetated areas, 
grasslands, open shrub lands, forests

http://edc2.usgs.gov/glcc/glcc.p
hp

1 km  I km
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4 GLCC-2000 Forests, cultivated and managed areas, 
bare areas, water bodies, urban and 
built-up areas

http://forobs.jrc.ec.europa.eu/ 1 km  1 km

5 MOD12Q1 Land 
Cover and Land 
Cover Dynamics 
products 

Land cover change vectors http://modis.gsfc.nasa.gov/abo
ut/

500 m  500 m

6 GISS Forests, cultivated land and grasslands http://data.giss.nasa.gov/landu
se/

1o (≈ 111 km)

7 GLCF Land tree cover, forest cover change, 
Geo cover

http://glcfapp.glcf.umd.edu:80
80/esdi/index.jsp

500 m  500 m

8 PELCOM Coniferous, deciduous and mixed 
forests, grassland, 
rainfed and irrigated arable land, 
perennial crops, shrub, barren land, 
ice and snow cover, wetlands, inland 
waters, sea and urban area

www.geo-
informatie.nl/projects/pelcom/
public/index.htm

1 km  1 km
(Covers only 
European 
countries)

9 Global land 
cover map

Cultivated areas, built-up lands, forests, 
barren lands, etc.

Yu et al. (2013); Gong et al. 
(2013) 30 m  30 m

The major limitations of using many of these datasets are their coarser spatial resolution 
and missing details on LULC at local or sub-basin level (Portmann et al., 2010) being only 
suitable at regional or global level. Moreover, some crop-specific land use maps do not cover 
the current study region including rice maps developed by Xiao et al. (2006) and Shao et al. 
(2001). In addition, regional LULC mapping done in the 1970s and 1980s (Wilson and 
Henderson-Sellers, 1985) is very old and based on diverse data sources. The relatively newer 
mapping of different LULC in Indus Basin has been carried out for the year 2007 by Cheema 
and Bastiaanssen (2010) at a spatial resolution of 1 km  1 km using Satellite Probatoire 
d’Observation delaTerre (SPOT) vegetation data. At this spatial resolution, problems may 
arise for complex cropping which may not be well-represented even at a spatial resolution of 
1 km  1 km. Under these circumstances, there is a felt need to develop detailed local LULC 
data at higher spatial scales for accommodating crop heterogeneity of complex cropping 
systems prevailing in the Rechna Doab.

To date, a number of earth observation satellites have been launched with varying degrees 
of resolution, i.e. Advanced Very High Resolution Radiometer (AVHRR) bearing coarse 
spatial resolution by National Oceanic and Atmospheric Administration (NOAA) while 
MODIS, Land Satellite (Landsat), and Advanced Space-borne Thermal Emission 
and Reflection Radiometer bear fine resolutions (ASTER) (Lu et al., 2013; Xiao et al., 2006). 
Some pros and cons are associated with each type of program. Only few images are available 
from Landsat per year, while ASTER charges fee for retrieving data. Many studies on LULC 
mapping have been carried out using a single-date imagery acquired from medium-to-higher 
resolution optical sensors such as ASTER, Landsat Thematic Mapper (TM), and SPOT (Niu 
et al., 2012; Fisher, 2010; Mitrakis et al., 2011). However, the temporal coverage of detailed 
LULC classes is still unexplored and is accomplishable by using images from MODIS that 
provides cost-free data including NDVI data after each 8 to 16 days at a higher spatial 
resolution of 250 m  250 m. This resolution is high enough in capturing almost all major 
crop classes in the current study region for precise measurement of crop water requirements 
and subsequent water allocation planning for various parts of irrigated agricultural regions 
(Douglas et al., 2013; Jeong et al., 2011; Peng et al., 2011). The LULC mapping results by 
Cheema and Bastiaanssen (2010) exhibit an overlap of NDVI trends within different classes at 
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certain crop stages thus making classification process tedious due to the use of single day data. 
This issue complicates further in case of multi-cropping system with varying crop scheduling 
(Gumma et al., 2011). Thus multi-temporal NDVI data not only facilitate classification 
process but also help in identifying various dates of crop stages within a growing season 
(Julien and Sobrino, 2009). With this background, this particular study presents a 
methodology for the classification of major LULC classes within complex cropping system of 
Lower Chenab Canal (LCC), Punjab, Pakistan’s irrigated areas by combining satellite-derived 
NDVI time series data with 250 m  250 m spatial resolution as well as the ground 
information and agronomist opinion on phenology of the crops. The information is applied to 
identify different cropping patterns for each cropping season from year 2005 to 2012. This 
information is further used for assessing real patterns of water use along with exploring 
different LULC change scenarios for major crops by evaluating maximum flexibility of 
change within the study period. The specific objectives of this study are:

(1) Classification of major LULC and their accuracy assessment in complex irrigated lands 
of LCC at a higher spatial resolution.

(2) Study of relationship of orography and climatic factors with NDVI and estimation of 
areal extents of different LULC classes for individual cropping seasons. 

(3) Detection of spatial and temporal LULC changes for exploring maximum flexibility of 
change for major classes. (or: in case of major crops).

The remainder of the manuscript is divided into three main sections. The first section 
describes the study area, Lower Chenab Canal (LCC), Punjab, Pakistan. The next section 
presents details on different input data types and methodology for LULC classification. The 
last section deals with the discussion on classification results, its accuracy assessment and 
other details including areal coverage and change detection for major LULC classes and its 
utilization for LULC scenarios generation. 

2  Materials and methods

2.1  Study area

The LCC irrigation system was designed in 1892–1898 in the Punjab Province, Pakistan. Its 
command area is about 1.24 million ha (Mha) situated in Rechna Doab, a land between rivers 
Ravi and Chenab. This area lies between 30°36'–32°09'N and 72°14'–77°44'E. The whole 
LCC area is divided into two parts, i.e., LCC East and LCC West. This study focuses on LCC 
East mainly comprising of Faisalabad (FSD) and Toba Tek Singh (TTS) districts. 
Administratively, the area is further divided into subunits called irrigation subdivisions 
(Figure 1) supervised by a sub-engineer. Ten irrigation subdivisions are studied in the study 
area for this research. A canal network supplies irrigation water to each subdivision separately. 
As water allocation to each irrigation subdivision varies within LCC, there is tremendous 
variability of groundwater and surface water use.
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Figure 1  Map of LCC (East), Rechna Doab, Punjab, Pakistan and ground truthing points

The climate of the area is characterized by large seasonal fluctuations in temperature and 
rainfall. The summer is hot lasting from April through October with temperatures between 
21–50℃, whereas winter (October-April) temperature ranges between 15–27℃. The area is 
sub-tropical in nature with mean annual precipitation varying from 290 mm in the South to 
1046 mm in the North. The highest rainfall occurs during the monsoon season in July-August 
accounting for about 60% of the total average annual rainfall.

2.2  Cropping calendar in LCC

LCC has two distinct growing seasons, i.e., rabi and kharif respectively falling in winter and 
summer. Wheat and rabi fodder (mainly barseem and oat) are grown in rabi, whereas rice, 
cotton and kharif fodder (mainly sorghum, maize and millet) are grown in kharif season. 
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Sugarcane is the annual crop which is mainly cultivated in September and in February as well. 
Figure 2 depicts the crop calendar of major crops grown in LCC.

Figure 2  Crop calendar adopted in LCC

2.3  Classification, accuracy assessment and change detection of LULC

Vegetation indices provide possibility to estimate vegetation cover based on large differences 
of reflectance between the near infrared (NIR) and the red (R) bands (Tucker, 1979). These 
indices include NDVI and Enhanced Vegetation Index (EVI). NDVI is more sensitive to 
chlorophyll activity, whereas EVI is linked with vegetation structural variation and hence 
useful in mapping of tropical forests (Gao et al., 2000). The present work employs NDVI data 
for the estimation of green biomass of different irrigated crops in the study area. Although 
NDVI does not directly classify different LULC rather time series NDVI patterns help in the 
demarcation of different classes based on their unique behavior in terms of peak trends and 
duration of phenological stages within a specific agro-ecosystem (Shi et al., 2013; Julien and 
Sobrino, 2009). According to Peng et al. (2011) and Morton et al. (2006), land cover changes 
and their patterns could be successfully mapped with a 250 m  250 m spatial resolution 
although the extraction of these parameters at this spatial resolution is somewhat unexplored 
(Barraza et al., 2013). Therefore, geometrically- and radiometrically-corrected NDVI images 
were retrieved from http://glovis.usgs.gov/ at a spatial resolution of 250 m  250 m. This 
portal provides cost-free and duly corrected images from board-Terra and Aqua satellites after 
each 16 days but with a difference of 8 days. Thus, NDVI data for the whole study area for 
the period October, 2005 to March, 2012 were retrieved successfully.

The retrieved data were preprocessed including image-sub-setting and image-enhancement. 
Once the product was ready for further processing and analysis, a hierarchical crop 
classification approach was utilized. As a first step in this approach, Iterative Self Organizing 
Data Analysis Technique (ISODATA) of unsupervised classification (Tou and Gonzalez, 
1974) was employed to reduce the spectral confusion among different LULC classes. This 
technique disintegrates the whole image into clusters and each pixel in the image is assigned 
to a particular cluster based on its arbitrary mean vector value. This algorithm also permits 
clusters to change from one iteration to the next, by merging, splitting and deleting. Finally, 
all pixels are re-classified into the revised set of clusters, and the process continues till there is 
no significant change in the cluster statistics or maximum number of iteration is reached 
(Campbell, 2002). For this study, LULC classification was performed with 99% convergence 
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threshold and 100 iterations. Following ISODATA algorithm, further refining of results was 
facilitated by seeking agronomists’ opinion considering different cropping patterns in the 
study area. NDVI temporal profiles were utilized to merge some classes and also to identify 
crop growth stages e.g., sowing and harvesting. Significant increase in NDVI represented 
initial crop growth stage while decrease in NDVI was identified as the end of growing season. 
Separate LULC classes were generated for both cropping seasons to cater for various crops 
grown during these seasons and to facilitate LULC change detection from one cropping 
season to the other. The details of the classification methodology are portrayed in Figure 3. 

Figure 3  Flow diagram showing methodological and analytical steps

To explore the accuracy of the classification results, classical confusion matrix approach 
was employed along with comparison of results with ancillary dataset and previous empirical 
work in the study area. As confusion matrix approach uses reference data and precise 
information about the ground situation (Latifovic and Olthof, 2004), therefore, ground 
truthing points and polygons of different crops were ascertained with the help from water 
management officials within each district. GPS positioning of each field and crop-related 
information were recorded using a pre-designed questionnaire in a face-to-face discussion 
with farmers and experts (Figure 4).
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Figure 4  Highlights of the field visit in the study area
Similarly, for getting ancillary data on cropping area within the study area was gathered 

from relevant section of the provincial agriculture department. This department maintains 
complete record of cropped area under different crops at sub-district level (Tehsil). The 
reliability of estimates was corroborated by comparing area fractions of various crops at tehsil 
level with remote sensing data and statistically checked by coefficient of determination (R2). 
Another accuracy assessment was performed by comparing the classification results with the 
findings of relevant work in the study area.

To evaluate the effects of physical conditions (e.g. soil type, elevation, slope, temperature 
and precipitation) on major LULC classes, soil-type maps were obtained from the local office 
of International Water Management Institute (IWMI). The overlay analysis was performed 
between classified maps and soil maps using ArcGIS. Similarly, the effect of elevation and 
slope on LULC was accomplished using digital elevation model (DEM) with a resolution of 
90 m acquired from http://glcf.umiacs.umd.edu/data/srtm/. Data regarding rainfall and 
temperature were collected for a number of climatic stations from Pakistan Meteorological 
Department (PMD). Average values of elevation, slope, temperature and rainfall were 
extracted for individual major LULC class to examine the spatial variability of these 
parameters in the study area.

Finally, areal distribution of each LULC class was calculated for both cropping seasons 
over the whole study period. Detection of spatial and temporal LULC changes was carried out 
for various crops to explore maximum range in change. Temporal changes were explored on 
the basis of overall difference of areas for various LULC between two particular cropping 
years, while spatial changes were explored on pixel-by-pixel scale to evaluate intra-class 
changes during these cropping years.

3  Results and discussion
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3.1  Classification of major LULC

About 15 crop classes were identified by visualizing the trends of NDVI temporal profiles at 
first which reduced to nine by merging classes with similar NDVI trends keeping in view the 
crop calendar and expert’s opinion. These classes are treated separately for both rabi and 
kharif cropping seasons. For rabi, wheat is the dominant crop cultivated on a vast area along 
with fodder (mainly berseem and mustard) while other crops are sugarcane, sparsely-
cultivated orchards and vegetables. Demarcation of rabi fodders could not be attained due to 
their overlapping growth period with dominating wheat crop and hence NDVI exhibited 
higher overall values and similar trends for fodders and wheat. Furthermore, cultivated area 
for individual fodder is not available from any source to ensure maximum accuracy of 
classification. Resultantly, all fodders are merged to one class and hence four classes are 
demarcated for rabi seasons comprising of residence/fallow/barren, wheat, sugarcane and rabi 
fodder. Water is hardly distinguishable into a separate class due to its presence in relatively 
narrow irrigation channels under a spatial resolution of 250 m  250 m. Employing 
ISODATA clustering algorithm at the 250 m  250 m spatial resolution, five LULC classes 
were demarcated for kharif season including rice, cotton, sugarcane, kharif fodder and 
residence/fallow/barren. A three period moving average filtering technique suggested by Reed 
et al. (1994) is used for smoothening of NDVI trends for each LULC class (Figure 5).

Two peaks and two depressions in one cropping year are observed in Figure 5. The first 
peak corresponds to the maximum growth period of wheat during February to March. The 
second peak corresponds to rice at its maximum growth in the mid of August. The two 
depressions appear at the end of April (at wheat harvesting) and before the start of November 
(before wheat sowing). The individual crops’ starting time and crop-cycle length can be 
visualized easily from NDVI trends as well. Wheat sowing starts after the second week of 
November in the study area while NDVI becomes maximum around mid of February (Wajid 
et al., 2007). Berseem (rabi fodder) is cultivated in late November or in the beginning of 
December and its growth remains suppressed initially and then attains maximum height in 
late February and early March due to relatively increased temperature and rainfall. Sugarcane 
is mostly cultivated in September and sometimes also in February. Its trend remains static and 
low during the rabi season and attains higher values in kharif season due to increased 
vegetative growth. The ‘Residence/Fallow/Barren’ class has the least NDVI values 
throughout the year owing to low reflectance, which is in accordance with the previous 
findings by Pettorelli (2013). He found very low positive values of NDVI (0.1 or less) for 
barren areas of rock, sand or snow; and 0.1–0.2 for soils. Most vegetation has moderate NDVI 
values (~0.2–0.5) while dense forests show high NDVI values (~0.6–0.9). The class ‘rice’ in 
kharif season has a very unique trend. The initial part is a bit slack and lengthy because of rice 
nursery growth from end of May to mid of June; whereas the later part attains maximum 
height due to rapid rice growth by the end of August.

Sugarcane and cotton are difficult to demarcate due to very similar NDVI trends seemingly 
because of September-sown sugarcane’s height and rapid vegetative growth of cotton during 
mid and later stages of growing season (Wajid et al., 2010). Nevertheless, difference in 
sowing time of cotton from late May to mid-June facilitated the classification process and 
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Figure 5  Mean NDVI temporal trends for major crops: rabi 2005-06 to rabi 2011-12
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its demarcation from sugarcane.
Results show that during different cropping years, a number of cropping patterns are 

adopted by the farmers in LCC, which include ‘Wheat-Rice-Wheat’, ‘Wheat-Cotton-Wheat’, 
‘Wheat-Sugarcane-Wheat’, ‘Wheat-Kharif Fodder-Wheat’, and ‘Rice-Kharif Fodder-Rice’. 
This scheme of cropping pattern is comparable with the actually prevailing system within the 
study area as explored during field visits.

3.2  Assessing classification accuracy

Accuracy assessment is an important component of LULC classification studies. The 
classification process is only considered to be reliable after meeting some accuracy checks as 
LULC maps derived from satellite images may contain some errors due to number of factors 
ranging from techniques in classification to satellite-data retrieval methods. We have 
employed a number of methods to ensure accuracy including error matrix, ancillary dataset 
and comparison with previous localized study.

3.2.1  Error matrix

Error matrix (also known as confusion matrix, correlation matrix or covariance matrix) is the 
most common and popular means to present accuracy results (Lu et al., 2013; Shi et al., 2013; 
Campbell, 2002). Many statistical measures of thematic accuracy can be drawn from the error 
matrix including overall accuracy, percentage of commission and omission error and the 
kappa coefficient (K) which address the error caused by chance (Congalton and Green, 1999). 
Commission error (i.e. user’s accuracy) and omission error (i.e. producer’s accuracy) take into 
account the probability of a particular cell value being similar with actual ground information 
and generated classified information, and vice versa, respectively. The overall classification 
accuracy summarizes the overall agreement or disagreement between classified and reference 
ground information about land use (Jensen, 1996) and is derived by using the following 
relationship: 

(1)
Error matrices are constructed for the classified and actual ground information for different 

LULC classes. These error matrices reveal that overall accuracy for rabi seasons varies from 
79.52% (minimum value) to 87.39% (maximum value) while for kharif seasons, it varies from 
76.19% to 80.08%. The overall average accuracy levels for rabi and kharif are 82.83% and 
78.21%, respectively. This range of accuracy is in accordance with the findings of Thi et al. 
(2012) and Wardlow et al. (2007). Moreover, Bastiannssen (1998a) has noted that overall 
accuracy ranges from 49% to 96% depending on the spatial coverage of satellite information 
and the size of the field under consideration. The average accuracies for producer and user are 
78.62% and 77.87% for rabi and 79.95% and 76.70% for kharif, respectively. User’s accuracy 
values affirm that 77.87% and 76.70% of all classes identified on the classified map for rabi 
and kharif, respectively, match with the ground information. On the other hand, the 
producer’s accuracy values indicate that 78.62% and 79.95% of the actual LULC information 
matches with the classified results for LULC for rabi and kharif seasons, respectively. 

The lowest and highest producer’s accuracy values observed for ‘sugarcane’ are 70.83 % 
(rabi 2005-06) and 86.15 % (rabi 2010-11). For ‘rabi fodder’ these values are 69.57% (rabi 



1490 Journal of Geographical Sciences

2006-07) and 78.18% (rabi 2007-08). Lower values of producer’s accuracies in different 
seasons for ‘sugarcane’ and ‘rabi fodder’ are possibly due to smaller plot sizes given 250 m  
250 m of spatial resolution and mixed cropping pattern. In contrast, wheat is cultivated on 
large areas and hence has higher accuracy value. For kharif seasons, average producer’s 
accuracies range between 76.59% for ‘rice’ and 90.24% for ‘residence/fallow/barren’ whereas 
the values for cotton, sugarcane and kharif fodder are 77.16%, 78.96% and 76.76%, 
respectively. The lower accuracy values for kharif season also stems due to small plot sizes 
and blending of pixels due to mixed cropping pattern (Cheema and Bastiaanssen, 2010). The 
detail of producer’s and user’s accuracies for different LULC classes for each cropping year is 
presented in Table 2.

Table 2  Summary of producer’s and user’s accuracies for different classes of rabi and kharif seasons

Season & Class

Producer’s accuracy (%) User’s accuracy (%)Year &
Accuracy

2005-
06

2006-
07

2007-
08

2008-
09

2009-
10

2010-
11

2011-
12

Avg
.

200
5-06

200
6-07

200
7-08

200
8-09

200
9-10

201
0-11

201
1-12

Avg
.

1 75 83.3 77.8 71.4 81.8 75 75 77.0 64.3 62.5 77.8 62.5 81.8 66.7 75.0 70.1

2 81.3 86.4 85.8 90.5 90.4 91.3 89.5 87.9 77.4 82.1 83.7 83.5 91.2 84.1 88.0 84.3

3 70.8 71.1 81.3 82.5 71.7 76.0 86.2 77.1 75.6 76.2 77.6 81.3 73.3 80.9 82.4 78.2
Rabi

4 71.4 70.8 73.1 72.0 78.2 69.6 72.3 72.5 76.4 78.0 80.3 84.4 75.4 80.0 78.3 79.0

5 88.0 94.7 90.0 86.4 88.2 94.1 90.2 68.8 66.7 69.2 76.0 71.4 80.0 72.0

6 75.6 93.0 74.5 74.5 71.4 74.0 77.2 70.8 72.7 74.5 76.1 83.3 72.5 75.0

7 72.2 72.7 83.3 84.9 84.8 75.7 79.0 76.5 78.4 74.1 71.4 77.8 77.9 76.0

8 76.7 74.5 75.2 73.1 75.0 86.0 76.8 81.2 90.5 86.4 82.9 80.5 87.1 84.7

Kharif

9 73.7 78.1 77.8 73.0 81.3 75.8 76.6 77.8 73.5 75.7 75.0 74.3 78.1 75.7

*Numbers in this column represent as follows: 1&5=Residential/Fallow/Barren; 2=Wheat; 3&7=Sugarcane; 4&8= 
Fodder; 6=Cotton; 9=Rice

The overall classification efficiency provides a crude measure of accuracy (Giri et al., 2005) 
while accuracy assessment through error matrix depends on sampling points. Fewer sampling 
points may lead to misspecification of classes (Foody, 2002) which we can diagnose by 
estimating the kappa coefficient (K) (Congalton, 1996). The value of K incorporates the off-
diagonal elements of the error matrices and exhibits agreement after removing the agreement 
by chance. The value of K for each season is calculated as under and shown in Table 3.

 (2)
Comparison of estimated average values of K (shown in Table 3) for present study with 

earlier studies (shown in Table 4) reveals a close match between the two.
Table 3  Summary of seasonal accuracies and K (Kappa coefficient)

Rabi Season Kharif Season

Sr. 
No. Year

Avg. 
Prod. 

Accur.

Avg. 
User 

Accur.

Overall 
accuracy K

Avg. 
Prod. 

Accur.

Avg. 
User 

Accur.

Overall 
accuracy K

1 2005-06 74.7 73.4 87.4 0.77

2 2006-07 77.9 74.7 79.5 0.66 77.2 75.0 76.2 0.69
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3 2007-08 80.6 80.4 83.6 0.74 82.6 76.4 79.3 0.73

4 2008-09 78.0 77.9 81.9 0.71 80.2 76.0 78.1 0.71

5 2009-10 79.5 79.9 81.2 0.71 78.4 76.3 77.0 0.70

6 2010-11 80.8 80.9 83.8 0.75 80.2 77.5 78.6 0.72

7 2011-12 79.0 77.9 82.5 0.74 81.1 79.1 80.1 0.74

Average 78.6 77.9 82.8 0.73 79.9 76.7 78.2 0.71

3.2.2  Ancillary data

Estimated and reported crop area fractions for major crops are measured with the help of 
remote sensing and ancillary data collected from provincial agriculture department. The 
estimated area fraction is calculated by dividing the remotely-sensed area for a particular crop 

in a tehsil by the geographical area of that tehsil. Similarly, reported crop area fractions are 
measured by dividing each crop’s area in tehsils to their total geographical area. The relation-
ship of reported and estimated crop area fractions for major crops is presented in Figure 6. The 
distribution of data points shows wheat to be the major crop in rabi occupying major area in 
all tehsils. A higher value for the coefficient of determination (R2=0.85) shows a higher 
reliability of this estimation (Figure 6). Other crops in the area include rabi fodder and 
sugarcane during rabi season. As the cultivation of sugarcane in various tehsils is not so high, 
most points fall around 0.20. Moreover, as the sugarcane lasts during both seasons, its crop 
area fraction is calculated for both seasons together having a coefficient of determination 
equal to 0.75. This relatively small value stems from mixing with other crops due to large 
pixel size relative to field size along with ancillary data having low standard accuracy.
Table 4  Comparison of accuracy values and K from earlier studies with present study

Sr. No. Classification
accuracy K Type of data Reference

1 91.5 0.89 RADARSAT Shao et al., 2001

2 77.2 0.736 MODIS Giri et al., 2005

3 84.4–87.1 82.3–83.6 Landsat MSS. ETM+ Reis, 2008

4 77 0.73 SPOT Cheema et al., 2010

5 94 0.93 SPOT Thi et al., 2012

6 78–99 – Landsat Ding et al., 2013

7 84–93 0.78–0.92 Landsat Lu et al., 2013

8 78.2–82.8 0.71–0.73 MODIS Present study

For kharif seasons, the relationship is observed for both cotton and rice. The coefficients of 
determination for cotton and rice are found to be 0.78 and 0.83, respectively. Almost identical 
planting dates for various crops during this season make it difficult to discriminate these crops 
along with mixing of pixels and ancillary data quality. Nevertheless, values of R2 for different 
crops depict reliable and encouraging results given the complex cropping patterns prevailing 
in LCC. 

3.2.3  Comparison with localized study

The third accuracy assessment technique used is the comparison of classification results with 
a previous localized study. Cheema and Bastiaanssen (2010) conducted a study to classify the 
whole Indus Basin into different LULC classes for the cropping year 2007. A map of LULC 
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for LCC, being part of Indus Basin, was obtained from the quoted authors. This map is 
available at 1 km  1 km spatial resolution with non-separable classes for rabi and kharif 
seasons (Figure 7). This Figure shows the dominance of arable agriculture in the area. Rice 
and wheat are dominating crops in the upper parts of the study area during kharif and rabi 
seasons, respectively. Cotton is dominant in the downstream area along with sugarcane and 
fodder. The spatial details of areas under different major classes by Cheema and Bastiaanssen 
(2010) and the current study can be seen in Figure 7.

Figure 6  Relationship between reported cropped-area fraction and remotely-sensed cropped-areas fraction for 
wheat, cotton, sugarcane and rice crops (1:1 Plot)

3.2.4  Orographic and climate effects on LULC

Soil and orography have a great effect on adaptability of LULC in different parts of the world. 
Similarly, climate change influences the terrestrial biosphere closely linked with hydrological, 
carbon and energy cycles thus affecting vegetation indices to a great extent (Kim, 2013). 
Many studies depict this influence in many parts of the world including USA, India, 
China, Turkey and Indus Basin (Kim, 2013; Fang et al., 2005; Reis, 2008; Cheema and 
Bastiaanssen, 2010). For the present study, overlay analysis of soil map with LULC 
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distribution revealed increased adaptability of wheat and sugarcane cultivation on moderately-
fine to moderately-coarse soils, while rice and cotton have more suitability with moderately-
fine and moderately-coarse soils, respectively (Table 5). Rabi and kharif fodders are mostly 
cultivated on moderately-coarse soils. Slope data from Table 5 indicate that the area is 
relatively flat with slopes ranging from 1.14% to 2.4%. Rice is dominant at relatively higher 
slope and cotton at lower slope. The slope decreases from north-east to south-west of LCC. 
Rice and wheat are cultivated at relatively higher elevations, i.e., 192 m and 187 m, 
respectively. As a matter of fact, wheat cultivation is common throughout the study area 
having much concentration in the northern parts. Sugarcane is found to be cultivated at the 
lowest elevation (169 m) mostly along the areas near river Ravi. There is no significant 
difference in mean elevation for cultivation of other crops. 

Figure 7  Comparison of crop area estimates with Cheema and Bastiannssen (2010)
Among different climatic factors, rainfall and temperature are more linked with NDVI 

(Adam Black and Haroon Stephen, 2014; Kim, 2013). Present study investigated the effect of 
precipitation and temperature on NDVI for major crops in LCC. Temporal information for 
rainfall and temperature concerning each crop is extracted using zonal statistics function. As 
given by Figure 8, wheat is sown in the mid of November onward. Relatively higher tem- 
perature is observed for wheat in the initial stages with little rainfall. Later on, temperature 
decreases and rainfall increases between the months of February and March, thus causing 
increase in NDVI values in the middle of wheat growth. Temperature continues to increase 
towards the end of wheat growth and NDVI values continue to decrease till its harvest in the 
mid–April onward. These conditions best suit wheat production in the study area as revealed 
by the local crop experts, who opined that low temperatures at germination would suppress 
crop growth while high temperatures at mid stages (especially milking stage) would cause 
crop shriveling. The trends of temperature for cotton and rice crops during kharif are not 
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very different and exhibit less fluctuation throughout the growing period but the major 
difference is observed in case of rainfall. In the cotton growing areas, less rainfall is observed 
at germination stages and then smoothly increases resulting into increase in NDVI trends. 
Completely contrasting situation prevails in rice-growing areas where rainfall is higher at the 
initial stages of crop growth, lasting till the end of monsoon season. Completely different 
cropping conditions of rice and cotton in respective areas partially explain variation in growth 
stages and allied benefits or disadvantages. Plenty of moisture is beneficial for rice cultivation, 
whereas rainfall at initial stages of cotton would form soil crust which hampers its 
germination. Similarly, local experts believe that higher temperature with lower precipitation 
has a detrimental effect on rice growth especially in its early stage while cooler nights towards 
the crop maturity help improve grain quality. The NDVI trend for sugarcane is very clear and 
indicates increasing NDVI values with increase in rainfall and vice versa. This NDVI trend is 
relatively static during winter months mainly due to lower temperature coupled with a smaller 
amount of rainfall during this time which suppresses sugarcane vegetative activity. 
Table 5  Summary of soil texture, elevation and slope for each LULC

Class Name Texture Class Texture Elevation (m) Slope (%)

Wheat Moderately fine/ 
Moderately-coarse

Sandy-clay-loam, clay-loam, 
silty-clay-loam/sandy-loam, 
fine sandy-loam

187 1.98

Rice Moderately-fine Sandy-clay-loam, clay-loam, 
silty-clay-loam

192 2.40

Cotton Moderately-coarse Sandy-loam, fine sandy-loam 176 1.14

Sugarcane Moderately 
fine/Moderately-coarse

Sandy-clay-loam, clay-loam, 
silty-clay-loam/sandy-loam, 
fine sandy-loam

169 2.00

Rabi fodder Moderately-coarse Sandy-loam, fine sandy-loam 175 1.41

Kharif fodder Moderately-coarse Sandy-loam, fine sandy-loam 179 1.91
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Figure 8  Relationship of NDVI to temperature and precipitation for wheat, cotton, sugarcane and rice

3.2.5  Areal distribution of major crop classes

Estimation of areal distribution for various crops forms one of the key informations for 
hydrological modeling especially in irrigated agriculture. Tables 6 and 7 show this areal dis- 
tribution under different classes for both rabi and kharif seasons. During all rabi seasons, 
wheat is the major class in LCC with an overall cropped area of more than 50% with values 
ranging between 497,214 ha (53.7%) in 2007-08 to 598,172 ha (64.6%) in 2009-10. Rest of 
the area is occupied by rabi fodder and sugarcane with values ranging between 299,717 
ha(32.3%) to 128,328 ha (13.8%) for sugarcane, and 214,061 ha (23.1%) to 78,453 ha (8.5%) 
for rice considering all study years.

Table 6  Areal distribution of LULC classes during rabi seasons in LCC

Year Class* Area (ha)

2005-06

1
2
3
4

227300
128328
548403
22042

2006-07

1
2
3
4

230410
124671
550848
20144

Area (%)  
 
Fodder 

  

Sugarcane   Wheat  
 

Fallow
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2007-08

1
2
3
4

281345
126883
497214
20631

2008-09

1
2
3
4

289249
105769
512261
18794

2009-10

1
2
3
4

214061
98032

598172
15808

2010-11

1
2
3
4

299717
78453

534307
13596

2011-12

1
2
3
4

248657
113668
544990
18758

Total area 926073

     

*Numbers in this column represent as follows: 1=Fodder; 2=Sugarcane; 3=Wheat; 4=Residential/Fallow/Barren

For kharif seasons, a distinctive pattern in crop cultivated area is observed at various 
intervals during the study period. The cultivation of rice has the least relative fluctuation in 
area with values in the range of 251,435 ha (27.2%) and 361,944 ha (39.1%). Maximum and 
minimum values for area of sugarcane are 198,419 ha (21.4%) and 87,297 ha (9.4%), 
respectively. The cultivated area under kharif fodder decreases from previous to current years 
while it is vice versa for cotton. Minimum and maximum values for kharif fodder are 169,562 
ha (18.3%) and 414,699 ha (44.8%), respectively while for cotton, they are 76,740 ha (8.3%) 
and 259,964 ha (28%), respectively.
Table 7  Areal distribution of LULC classes during kharif seasons in LCC

Year Class* Area (ha)

2006

1
2
3
4
5

336686
319260
99804

136262
34061

2007

1
2
3
4
5

252756
375766
198419
76740
22392

2008

1
2
3
4
5

251435
414699
106311
131255
22373

2009

1
2
3
4
5

361944
323286
87297

117159
36387

Area (%) 
 
Rice 

 
Fodder 

 

Sugarcane  
 
Cotton  

 

Fallow
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2010

1
2
3
4
5

348843
231065
137761
179269
29135

2011

1
2
3
4
5

341801
169562
138028
259964
16718

Total area 926073

* Numbers in this column represent as follows: 1=Rice; 2=Fodder; 3=Sugarcane; 4=Cotton; 
5=Residential/Fallow/Barren

3.2.6  LULC change detection

Most studies on LULC change detection consider two well-separated years for this process 
(Lu et al., 2013; Ding et al., 2013). In this study, however, the cropping seasons with 
maximum and minimum cropped areas under a particular LULC are selected as upper and 
lower baselines to identify the maximum relative change during the study period. Positive 
values indicate an increase in cropped area for specific crop year having minimum cultivated 
area under particular crop and vice versa. Results indicate minimum change in wheat 
cultivated area for the study period with values ranging from –16.9% to +20.3%. This is 
mainly driven by its being main staple food in the country, relatively cheaper inputs and 
reduced chance of crop failure. In contrast, sugarcane has the maximum flexibility in change, 
i.e., –38.8% to 63.5%, while the change for rabi fodder is between –28.6% to 40%.

For kharif seasons, rice exhibits minimum variation in cropped area ranging from –30.55% 
and 43.9%. Cotton has a very high volatility in percentage change from –70.4% to 238.1%. 
This extremely large variation is due to recent increase in cotton cultivation during the last 
cropping season of the study period. The second highest positive change for cotton is 133.4% 
during 2010. Results indicate an increasing trend of cotton cultivation in recent years as 
evinced by Agricultural Outlook Forum (2012) who observed up to 14% increase in cropped 
area under cotton in Pakistan compared with that of 2011. It is possibly driven by increased 
Bt-Cotton cultivation while a shallow change in rice cultivation stems from its excessive 
water requirements given depleting water resources in the study area. Kharif fodder also 
shows a clear decreasing trend with positive change in recent years while sugarcane exhibits a 
change of about ± 60%, except 127.2% in 2007.

The LULC change detection discussed so far regarding various crops focused only on 
quantitative changes in cropped areas for whole LCC. It is also important to explore spatial 
changes in cultivated area for a particular crop during specific cropping season, thus helping 
to know the allocation of cropped area over time along with potential of a particular crop to 
replace another one. This end is achieved by performing analysis for change detection 
considering two different cropping seasons. For this purpose, a number of techniques are 
helpful such as post-classification comparison, image ratio, image regression and manual on-
screen digitization of change. For this study, post classification comparison approach is used, 
which provides detailed ‘From–To’ change trajectories at per-pixel level (Lu et al., 2013; Reis, 
2008) for each LULC class. Same baseline cropping years as discussed above are used to 
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make these comparisons. Area matrices for different crops are constructed and are presented 
in Tables 8 and 9. 

From the results, the changes in area for major crops can be identified and presented in 
colored maps. For example, out of total wheat area of 598,403 ha, 120,855 ha are shifted from 
rabi fodder between years 2007-08 and 2009-10 while the sugarcane area shifted to wheat is 
32,161 ha. However, 444,865 ha of land remained under wheat cultivation in both years. This 
greater value of shared land for wheat between two cropping years shows the preference to 
wheat cultivation among farmers. The amount of fallow land shifted to wheat remained 476 
ha, indicating a prior occupation of most cultivated area by wheat (Table 8). As sugarcane 
area was higher in 2005-06 as compared to 2010-11 (Table 6), the shared area between the 
two seasons is 45,465 ha, whereas, the shift from wheat to sugarcane is 4752 ha and 12,150 
ha for years 2010-11 and 2005-06, respectively. Similarly, the area shifted from rabi fodder to 
sugarcane is 19,852 ha and 69,015 ha for years 2010-11 and 2005-06, respectively. As the 
area under rabi fodder increased in 2010-11 compared to the previous year, the shared area 
under this crop is 136,430 ha while an area of 46,500 ha is shifted from sugarcane to rabi 
fodder. The transfer of wheat area to rabi fodder is maximum, i.e., 116,472 ha (Table 8).

Table 8  Pixel-by-pixel LULC change detection between maximum and minimum cropped areas for rabi seasons

Crop 
class Change matrix for area (ha) Spatial change detection

2007-08

Fallow* Wheat S. cane R. 
fodder Total

Fallow* 14511 24 1368 12

Wheat 476 444865 32161 120855 598403

S. cane 5751 3943 63460 24745

R. fodder 0 48676 29628 135526

Wheat 2009-
10

Total 497546

2010-11

Fallow Wheat S. cane R. 
fodder

Fallow 11959 476 8361 1362

Wheat 83 446441 4752 97317

S. cane 1618 12150 45465 69015 128257

R. fodder 24 75366 19851 131762

Sugarcan
e 2005-

06

Total 78435

2009-10

Fallow Wheat S. cane R. 
fodder Total

Fallow 12001 178 1505 0

Wheat 0 474773 1629 58031

S. cane 3860 6934 48266 19369

R. fodder 54 116472 46500 136430 299478

Rabi 
fodder 2010-

11

Total 213847

*Fallow/Residential/Barren
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To sum-up, change from fodder to wheat is the highest in LCC and vice versa, as well. 
Similarly, shift from sugarcane to wheat is conspicuous but is less pronounced in case of 
wheat to sugarcane. The reason is the annual nature of sugarcane crop with relatively higher 
water requirements compared with wheat. Farmers find it easy to allocate area from sugarcane 
to wheat which is otherwise less-attractive. The shifting of area from sugarcane to rabi fodder 
is the urge on farmers’ part to provide a biophysical relief to the soil.

Results of area transformation between crops for kharif seasons are presented in Table 9. It 
is evident that rice is the major crop occupying a common area of 224,125 ha. This shows a 
decreased volatility of rice area to shift. The rank-wise contribution of kharif fodder, 
sugarcane and cotton area to rice area is 88,378 ha, 35,831 ha and 13,726 ha, respectively 
during 2009. Cotton area also shows increasing trend during recent years. Major contribution 
to cotton area during 2011 comes from kharif fodder (143,959 ha) and sugarcane (81,034 ha). 
The area converted from rice to cotton amounts to 25,881 ha. Kharif fodder area has a greater 
flexibility to be allocated to other crops during the season. Similarly, conversion of cotton 
area to sugarcane cultivation and vice versa is also observable, whereas change from rice area 
to cotton and vice versa is less conspicuous.
Table 9  Pixel-by-pixel LULC change detection between maximum and minimum cropped areas for kharif seasons

Crop 
class Change matrix for area (ha) Spatial change detection

2008

Fallo
w* Cotton S. cane K. 

fodder Rice Total

Fallow* 18388 0 0 16913 1118

Cotton 0 75533 8266 32982 184

S. cane 0 23966 61450 928 821

K. fodder 3937 17799 672 275465 25388

Rice 131 13726 35831 88378 224125 362218

Rice
2009

Total 251654

2007

Fallo
w Cotton S. cane K. 

fodder Rice Total

Fallow 12566 0 0 4395 190

Cotton 12 8623 81034 143959 25881 259529

S. cane 0 23407 102895 7993 3485

K. fodder 8480 59 1701 154152 5156

Rice 1392 44662 12435 65239 218285

Cotton
2011

Total 76758

2011

Fallo
w Cotton S. cane K. 

fodder Rice Total

Fallow 14088 0 0 7826 541

Cotton 0 83704 40660 1290 4775

S. cane 0 13006 81129 36 12049

Kharif 
fodder 2008

K. fodder 2866 154378 10104 152249 95069 414699
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Rice 196 8421 5888 7553 229578

Total 169562

* Fallow/Residential/Barren 
3.2.7  LULC change scenarios for hydrological studies

The LULC are amongst important environmental factors which are affected heavily by 
anthropogenic activities and therefore impact the hydrological cycle (Lorencov´a et al., 2013). 
Evapotranspiration is the single term that links land surface energy balance and surface water 
balances (Zhao et al., 2013). This forms a key process of hydrological cycle and regarded 
valuable in water balance modeling especially in irrigated areas (Usman et al., 2015a). 
Evapotranspiration is generally not considered directly in hydrological studies but as a 
recharge which varies spatially due to differences in water use for various land uses 
(Wegehenkel, 2009). As the water balance approach is not perfect without its consideration 
for evapotranspiration in any agro-climatic region (Usman et al., 2015b), it is estimated by 
using Surface Energy Balance Algorithm (SEBAL) devised by Bastiannssen et al. (1998b) for 
its significance in recharge estimation and its application in hydrological studies. 

The detailed methodology and application of SEBAL is omitted to save space but it is 
accessible from Usman et al. (2014). The results of different LULC areal coverage and its 
change detection as discussed above are correlated with spatially distributed 
evapotranspiration for establishing patterns of water use within these LULC and to identify 
potential areas of change for different LULC in all subdivisions of LCC. For this, zonal 
statistics approach is used to estimate seasonal average water use by different crops in 
different irrigation subdivisions of LCC as given in Table 10.

Table 10  Irrigation-subdivision wise seasonal average evapotranspiration (mm) and percent of total cultivated 
area for each LULC class in the study area

LULC Sagar Chuharkana Paccadala Mohlan Buchiana Tandla Tarkhani Kanya Bhagat Sultanpur

Evapotranspiration 563.4 537.9 550.9 557.4 579.3 545.1 525.0 520.6 518.4 539.8
Cotton

% area 1.1 2.9 5.8 11.8 15.4 21.9 13.7 14.1 9.6 3.6

Evapotranspiration 602.1 578.4 576.1 587.5 595.0 595.1 571.9 560.8 583.5 595.3
Sugarcane

% area 0.03 0.10 0.61 7.35 7.44 19.17 19.26 16.40 8.16 21.48

Evapotranspiration 529.3 525.6 513.1 534.3 544.7 516.5 482.9 505.1 460.7 530.5Kharif 
fodder % area 4.1 4.6 16.7 9.9 16.6 10.2 11.7 6.9 17.8 1.6

Evapotranspiration 589.9 581.4 576.9 604.4 619.4 604.6 555.6 553.1 565.6 600.1
Rice

% area 30.5 24.4 9.6 16.2 0.6 2.0 2.0 1.9 7.5 5.4

The results of different LULC areal coverage presented in section 3.2.5 represent overall 
information at LCC scale. In reality, the cultivated area under a particular LULC class is not 
uniform throughout LCC but specific classes are dominant in particular irrigation 
subdivisions of LCC. Similarly, LULC change is also not uniform throughout LCC but it is 
highly dependent on overall areal coverage of a particular class in specific sub-region. Due to 
this fact and hence to consider spatial variability of any LULC change, total area under any 
LULC class is segregated at irrigation subdivision level (Table 10). These estimated 
proportions take into consideration the overall suggested change in any LULC at LCC scale. 
The potential change from any LULC class to another class is suggested based on the findings 
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that appear in Tables 8 and 9.
Subsequently, different LULC scenarios are generated in order to feed their results for 

future hydrological modeling and to explore their impacts on possible changes in groundwater 
levels in the study area. To achieve this end, the following two conditions are followed while 
devising these scenarios: 

(1) Ensuring the realistic limits of the area of each LULC class while introducing changes 
in the area of a particular LULC class based on estimated results (Type I).

(2) Maintaining the area of a particular LULC class within its realistic change limits with 
no consideration to cropped areas of other classes (Type II).

Along with meeting the above-stated conditions, the following points are considered to 
ensure maximum suitability of LULC scenarios to the study area:

(a) Change in any LULC class is based on its spatial coverage in any particular sub-region 
of LCC.

(b) Increase/decrease in LULC area of any particular class is based on its current status in 
LCC (i.e. year 2011, the latest study year).

(c) LULC change scenarios are based only on classes in kharif cropping seasons as options 
for change are limited during rabi seasons and the difference in consumptive water use is also 
less among rabi crops (Usman et al., 2015a; Usman et al., 2014). 
Table 11  LULC change scenarios and water utilization (ha-m)

Sr. No. Scenario Type Sagar Chuharkana Paccadala Mohlan Buchiana Tandla Tarkhani Kanya Bhagat Sultanpur CWU*

100% Rice to K.fodder 50% Rice each to K.fodder & S.cane1 25% decrease in Rice area by 
replacing it with K.fodder & 
S.cane 1579.6 1163.8 524.3

50% each to 
K.fodder & 

S.cane 
(600.7)

100% Rice 
to K.fodder 

(37.5)

100% Rice 
to S.cane

(15.9) 47.1 32.7 280.2 170.5

4452.4

100% Rice to K.fodder 100% Rice to K.fodder2 25% decrease in Rice area by its 
major conversion to K.fodder

1579.6 1163.8 524.3 484.2 37.5

100% to 
S.cane
(15.9) 60.7 39.1 337.8 159.7

4402.7

100% Rice to K.fodder 100% Rice to S.cane3 25% decrease in Rice area by 
replacing it with S.cane 1579.6 1163.8 524.3

100% to 
S.cane
(116.4)

100% to 
K.fodder

(37.5)

100% to 
S.cane
(15.9)

–13.6 –6.4 –57.6 10.8
3370.8

100% Cotton to S.cane 50% Cotton each to K.fodder and S.cane4 50% decrease in Cotton area by 
its conversion to S.cane & 
K.fodder

Type-I

–56.4 –151.7 47.9 –53.8 189.0 –305.1 –43.5 –225.9

100% to 
K.fodder
(722.8)

100% to S.cane
(–263.0)

–139.7

100% Cotton to S.cane5 50% decrease in Cotton area by 
its major conversion to S.cane Type II –56.4 –151.7 –94.9 –230.9 –157.6 –711.6 –418.2 –368.3

100% to 
K.fodder
(722.8)

100% to S.cane
(–263.0)

–1729.7

100% to S.cane 100% Cotton to K.fodder6 50% decrease in Cotton area by 
its major conversion to K.fodder –56.4 –151.7 142.8 177.1 346.6 406.4 374.7 142.4 722.8

100% to S.cane
(–263.0)

1841.8

100% K.fodder from Rice 50% K.fodder each from S.cane and Cotton7 50% increase in K.fodder by 
replacing Rice, Cotton and 
S.cane 208.3 217.5

50% each 
from Rice 
and Cotton

(718.3)

320.6 595.1 462.1 650.5 209.2

50% each 
from Cotton 

& Rice
(1225.7)

50% K.fodder 
each from 

Cotton and Rice
55.2

4662.4

100% K.fodder from Rice 100% K.fodder from S.cane 100% from K. fodder Cotton8 50% increase in K.fodder by 
major replacement of S.cane & 
Cotton

208.3 217.5 450.9 223.6 352.7 338.9 441.7 163.6 435.0 6.5
2838.6

100% K.fodder from Rice 100% K.fodder from Cotton9 50% increase in K.fodder area 
by major replacement of Cotton 
& Rice

Type-I

208.3 217.5 267.4 97.0 242.4 123.2 208.7 45.6

100% from 
Rice

(790.7)

100% from Rice
(48.6)

2249.6
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(to be continued on the next page) 
The details of different LULC change scenarios and possible water saving or more water 

utilization against each scenario relative to current water usage are presented in Table 11. The 
results also provide details of variation for water saving or its more utilization for each 
irrigation subdivisions under each LULC class along with explaining spatial variability of 
change. Out of many possible scenarios, 15 scenarios are presented here. These scenarios 
portray changes in water demand for different LULC changes, thus providing valuable clues 
regarding their ultimate effect on groundwater table and surface water provision. The last 
column of Table 11 indicates change in consumptive water use at LCC scale. The negative 
values depict increased water demand and vice versa under changed land use scenario. Very 
few scenarios show similar changes in consumptive water use at LCC scale however, the 
variation of change for each irrigation subdivision is significant and leads to spatial variability 
of water table. This effect is easily detectable by incorporating these results to hydrological 
modeling.
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Figure12

4  Conclusions
Land use/land cover (LULC) change is a global phenomenon and it is accurate and updated 
information has major significance compulsory for detailed eco-system studies using 
hydrological modeling. It becomes extremely important in regions dominated by agricultural 
lands owing to their complexity of use and rapid changes from season to season. In 
recognition to the role of irrigated agriculture, many global, regional, and country level 
studies have been conducted varying in space and time scales covering different aspects of 
crop-water interactions. The present study was conducted in LCC, Pakistan and shows that 
MODIS 250 m  250 m spatial resolution data prove quite useful to discriminate different 
major LULC. Time series NDVI profiles were constructed and areas under different LULC 
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were measured based on this information. This process was repeated for each cropping season 
separately from year 2005 to year 2012 while considering rabi and kharif as distinct cropping 
seasons. Different classification accuracy assessment techniques were employed including 
error matrix, comparison of LULC maps to ancillary data and with previous studies focusing 
on the study area. 

The error matrix analysis shows overall accuracy varying from 79.52% to 87.39% for rabi 
and 76.19% to 80.08% for kharif. Kappa coefficients indicate good agreement between actual 
crop information and classified map information. Kappa values change from 0.66 to 0.77 for 
individual rabi seasons with an average of 0.73 while range between 0.69 and 0.74 with an 
average of 0.71 for kharif. The maximum value for coefficient of determination is observed 
for wheat (0.85) followed by rice (0.83), cotton (0.78) and sugarcane (0.75); showing a 
potential for replacement of manual data (by government agencies) with remote sensing 
techniques at spatial resolution of 250 m  250 m.

Orographic and climatic conditions have specific effects for different crops. For example, 
the growth conditions for rice and cotton crops are completely different from completely 
distinct growing areas for both of these crops. Soil with more drainage ability and climates 
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with fewer rainfalls are suitable for cotton which is other way round for rice crop. Wheat is 
cultivated on all types of soils but its cultivation generally starts in relatively warmer months 
followed by growth stages favoring cooler months. Sowing of sugarcane is mostly adopted in 
lowsloping areas especially alongside river Ravi.

Based on areal crop coverage data, wheat and rice are ranked first in rabi and kharif 
cropping seasons, respectively. Overall LULC change detection for individual crops from 
with respect to maximum and minimum cropped areas indicates wheat as least volatile crop in 
terms of in cropped area (–16.9% to 20.3%) during rabi and rice (–30.55% to 43.9%) in kharif. 
Cotton exhibits maximum positive change while kharif fodder maximum negative change in 
recent years. Sugarcane shows a change between ± 60%. Spatial LULC change detection at 
pixel scale indicates that fodder crop has maximum volatility in change compared with all 
other crops during kharif and rabi seasons. Transformation of cotton area to rice cultivation is 
less conspicuous but it is remarkably high for sugarcane fodder crops. Change from cotton to 
rice is less popular but it is more pronounced from sugarcane and fodder to rice.

A number of LULC change scenarios can be proposed based on the classification results 
for different cropping seasons. These scenarios along with spatio-temporal evapotranspiration 
explore different options of consumptive water use change. 
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