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Abstract: The Conversion of Land Use and its Effects at Small regional extent (CLUE-S) 
model is a widely used method to simulate land use change. An ordinary logistic regression 
model was integrated into the CLUE-S model to identify explanatory variables without con-
sidering the spatial autocorrelation effect. Using image-derived maps of the Changsha- 
Zhuzhou-Xiangtan urban agglomeration, the CLUE-S model was integrated with the ordinary 
logistic regression and autologistic regression models in this paper to simulate land use 
change in 2000, 2005 and 2009 based on an observation map from 1995. Significant positive 
spatial autocorrelation was detected in residuals of ordinary logistic models. Some variables 
that were much more significant than they should be were selected. Autologistic regression 
models, which used autocovariate incorporation, were better able to identify driving factors. 
The Receiver Operating Characteristic Curve (ROC) values of autologistic regression models 
were larger than 0.8 and the pseudo R2 values were improved, compared with results of lo-
gistic regression model. By overlapping the observation maps, the Kappa values of the ordi-
nary logistic regression model (OL)-CLUE-S and autologistic regression model (AL)-CLUE-S 
models were larger than 0.75. The results showed that the simulation results were indeed 
accurate. The Kappa fuzzy (Kfuzzy) values of the AL-CLUE-S models (0.780, 0.773, 0.606) 
were larger than the values of the OL-CLUE-S models (0.759, 0.760, 0.599) during the three 
periods. The AL-CLUE-S models performed better than the OL-CLUE-S models in the simu-
lation of land use change. The results showed that it is reasonable to integrate autocovariates 
into CLUE-S models. However, the Kfuzzy values decreased with prolonged duration of 
simulation and the maximum range of time was not discussed in this paper.  
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1  Introduction 

The land use types have been changing due to the rapid urbanization in China. There are a 
variety of factors which impact the pattern of Chinese urban development (Liu et al., 2014). 
Scholars often use spatial change models to simulate and predict land use change in order to 
understand the reasons and progress of land use conversion (Liu et al., 2014; Koomen et al., 
2008; He et al., 2005; Verburg et al., 2004). 

At present, the Cellular Automata (CA) model (He et al., 2005; Kuang et al., 2011; Wu et 
al., 2009), the Conversion of Land Use and its Effects (CLUE) model as well as the Conver-
sion of Land Use and its Effects at Small regional extent (CLUE-S) model are the most 
commonly used models to study land use change. The CLUE model, a dynamic model to 
simulate the conversion of land use and its effects, was presented by Veldkamp et al. (1996). 
It has been widely and successfully used for the simulation of land use changes over conti-
nents, countries, etc. (DE Koning et al., 1999; Verburg et al., 2000). The work of Veldkamp 
et al. showed that the CLUE model was superior to the biophysical equilibrium models for 
the prediction of future land cover (Veldkamp and Fresco, 1996). On the basis of the CLUE 
model, Verburg et al. developed the CLUE-S model to analyse land use change at a small 
scale (Verburg et al., 2002). Verburg et al. used a global economic model and an integrated 
assessment model to calculate changes in demand for the European Union, and simulated the 
future spatial pattern of the European mainland in different economic development situa-
tions (Verburg et al., 2008). The CLUE-S model has been widely used in the simulated study 
of land use conversion at a regional scale (Bai et al., 2005; Cai et al., 2004; Guo et al., 2012; 
Zhu et al., 2010; Zheng et al., 2014). 

Land use change simulation is a complicated process, which is determined by the interac-
tion of spatial and temporal factors such as natural, social and economic, etc. (Zhou and He, 
2007). A thorough analysis and revelation of the interrelationships between land spatial dis-
tribution and driving factors is the premise and foundation of land use spatial simulation 
(Veldkamp and Fresco, 1997). Ordinary logistic regression models, which are integrated into 
the CLUE-S model, are commonly used to select the driving factors of land use change, in-
cluding biophysical and socio-economic variables (Verburg et al., 2002; Gong et al., 2014; 
Xie and Li, 2008). It assumes that the data is statistically independent and identically dis-
tributed. However, the spatial land use data has the tendency to be dependent (Overmars et 
al., 2003). The assumption does not take into account the spatial autocorrelation existing in 
the spatial data. The standard error of the statistical tests could therefore be underestimated, 
resulting in an increasing in Type 1 errors. With spatial autocorrelation being ignored, the 
importance of variables, which have little or no relevance to the response variables, might be 
overestimated (Overmars et al., 2003). Consequently, the selected driving forces and simu-
lation results could be inaccurate (Wu et al., 2009; Wu et al., 2010). The autologistic model 
proposed by Besag incorporating the spatial autocorrelation factor into the ordinary logistic 
model (Besag, 1972), can solve the problem of the spatial autocorrelation effect existing in 
spatial statistical analysis. It had been widely used in the ecological diversity modelling (Wu 
et al., 2009; Wu and Huffer, 1997). However, there is a lack of in-depth study in terms of 
land use spatial simulation (Triantakonstantis et al., 2013).  

Based on related researches, this paper chose Changsha-Zhuzhou-Xiangtan (Chang-Zhu- 
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Tan) urban agglomeration in China as the study area. The ordinary logistic regression model 
(OL) and autologistic regression model (AL) were integrated respectively with the CLUE-S 
model to simulate the regional land use spatial distribution pattern in 2000, 2005 and 2009 
based on the land use data. Environment variables and the socio-economic factors were used 

to identify explanatory factors. The observed maps（years of 2000，2005，2009）from remote 

sensing images were used to validate the precision of the models. The importance of consid-
ering the spatial autocorrelation factor in the simulated change of urban land use will be 
discussed by comparing the performance of the ordinary logistic-CLUE-S (OL-CLUE-S) 
model and the autologistic-CLUE-S (AL-CLUE-S) model. 

2  Study area and data 

2.1  Study area 

The study area is Chang-Zhu-Tan urban agglomeration, which consists of planned urban 
areas of Changsha, Zhuzhou and Xiangtan in Hunan Province. It is located in the middle and 
lower reaches of the Xiangjiang River (Figure 1), between 112°38’–113°17’E and 
37°38’–28°33’N, with an area of 4588 km2. Terrain in the study area is mainly composed of 

 

Figure 1  Location of the study area 
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low mountains, hills, lowland and flood plains. It is rich in mineral resources. The main soil 
type of the region is red soil, and the natural production potential is excellent. The 
Chang-Zhu-Tan region is an important economic tie, which connects the northern and 
southern cities together. The Chang-Zhu-Tan urban agglomeration has the highest level of 
industrialization and urbanization, and the highest density of population, compared with 
other cities in Hunan province. The spatial structure is compact and the centrality of Chang-
sha, Zhuzhou and Xiangtan is getting significantly. The Chang-Zhu-Tan urban agglomera-
tion has been expanding constantly and the urbanization rate had increased by 11.8% from 
2001 to 2006 (Zeng et al., 2012). Its population was as high as 13.57 million in 2010. 

2.2  Data 

2.2.1  Remote sensing data 

The remote sensing data used in this paper were Landsat data acquired in November 1995 
(TM), December 2000 (ETM+), October 2005 (TM) and December 2009 (TM). Based on 
previous urban land use classification systems and spectral characteristics of the Landsat 
TM/ETM image, built-up area, wetland, green land, bare land and cultivated land were iden-
tified and selected as training samples. The remote sensing data were classified using the 
SVM (Support Vector Machine) method and resampled to 300 m × 300 m. The accuracy 
assessment results showed that the Kappa indexes for each time period for cultivated land, 
built-up area and wetland, etc. were larger than 0.8, and the Kappa index for green land was 
0.75. The overall accuracy of classification conformed to the requirement of the study. The 
observed land use map for 1995 was shown as Figure 2a and the observed maps of 2000, 
2005 and 2009 were shown as Figure 4. 

The observed land use map of 1995 was used as the basal input data. The observed maps 
of 2000, 2005 and 2009 were the basic data for the calculation of land use change demanded 
area and for accuracy assessment.  

2.2.2  Collection of explanatory variables 

Driving factors not only included commonly used factors for land use change, but also in-
cluded other factors in light of the certain regional characteristics. According to the charac-
teristics of terrain, water, geographical and transportation advantages, environment variables 
such as slope, aspect and elevation were selected as the typical biophysical factors, and the 
minimum distances to roads, rivers and residential area were selected as the typical 
socio-economic factors. Therefore, Chang-Zhu-Tan traffic data (1:50000; Figure 2b), terrain 
data (1:50000; Figure 2c), regional river system map (Figure 2d), settlements data (Figure 
2e), soil type map and the Chang-Zhu-Tan land use statistical data were selected as source 
data to identify explanatory factors. The spatial distributions of 15 factors were calculated 
using the shortest Euclidean distance method. The 15 factors were distance from stations 
(DS), distance from city centres (DC), distance from urban centre (DU), distance from main 
country settlements (DCS), distance from county centre (DCT), distance from expressway 
(DEW), distance from railway (DRW), distance from village road (DVR), distance from 
county border (DCR), distance from the Xiangjiang River (DX), distance from branches of 
the Xiangjiang River (DBX), elevation, slope, aspect and soil types. 
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Figure 2  The observation map for 1995 (a); Spatial distribution of traffic system (b); DEM of Chang-Zhu-Tan 
megalopolis (c); Distribution of river network (d); Distribution of settlements (e) 

3  Methods 

3.1  The CLUE-S model 

The CLUE-S model is used to establish the statistical relationship between land use spatial 
distribution and driving factors in order to analyse land use scenarios based on systems the-
ory. First, an assumption is established: the demand for area of different land use types, in a 
given area, is an important driving force, and the relationship between the total demand area, 
regional natural environment, socio-economic situation and land use spatial pattern remains 
in a dynamic equilibrium. 

The CLUE-S model includes two distinct modules, namely a non-spatial demand module 
and a spatially explicit allocation procedure. The non-spatial analysis module calculates 
changes in area of all land use types in a certain period of time based on analysis of natural, 
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social and economic factors, or in areas of each type over a given time period. The spatial 
analysis module translates these demands into land use changes at appropriate locations ac-
cording to the impacted spatial characteristics of land use types, and produces the land use 
spatial simulation (Wang et al., 2010). The study unit of the CLUE-S model is a grid. To 
reflect spatial information at a high resolution on the premise of appropriate accuracy, the 
grid size for this paper was 300 m × 300 m. 

The CLUE-S model requires inputting the transfer matrix of possible conversion between 
various land use types. All of the five land use types in this article can change into other 
types, with the exception of urban land which cannot change into itself, bare land, green land 
or wetland. 

3.2  Logistic and autologistic regression models 

In this study, ordinary logistic regression and autologistic regression models were used to 
identify driving factors. To establish a land use spatial distribution prediction model based 
on ordinary logistic regression models, the study area was initially subdivided into a number 
of space (grid) units. The response variable (the spatial distribution of land use type) was 
expressed by a binary presence (where 1 indicated that transition occurred, and 0 indicated 
that the class did not exist and explanatory variables would be described by some biophysi-
cal and socio-economic factors). The ordinary logistic regression model is defined as: 
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where pi is the probability of specified land use type (i) transition in the grid, and βi is a co-
efficient to be estimated for each explanatory variable Xn,i. 

The autologistic model incorporated spatial dependence into the ordinary logistic regres-
sion model to eliminate the spatial autocorrelation effect. The conditional probability of a 
certain type in the grid unit (X, T) is defined as a function of various external variables and a 
variable of spatial relationship between grid units. The specific formula is as follows: 
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where autocov is the spatial autocorrelation variable. The autocov of grid i is determined by 
the formula: 
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where yj is the probability of a certain type existing in pixel j, 1 = exists, 0 = does not exist, 
wij is the weight coefficient according to the distance d between pixel i and pixel j, wij = 1/d 
when the distance between pixel i and pixel j, otherwise wij = 0. 

3.3  Validation 

3.3.1  Validation of regression results 

The ROC (Relative Operating Characteristics) was designed to evaluate the ability of logis-
tic regression models and it was widely used to verify the spatial change simulation models 
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(Pontius and Schneider, 2001). The values of ROC are between 0.5–1. The greater the ROC 
values are, the more satisfactory the regression model is, and the higher accuracy of the spa-
tial distribution of land use type is. It is generally believed when the ROC value varies be-
tween 0.5 and 0.7, the accuracy of the model is low; when the ROC value varies between 0.7 
and 0.9, the accuracy is credible; and when the ROC value is larger than 0.9, the model has a 
high precision (Manel et al., 2001). 

Nagelkerke’s R2 (which is an index attempting to imitate R2 in the linear regression model 
based on the likelihood value) reflects the closeness of fit of regression models (Nagelkerke, 
1991). Generally, the greater the index is, the greater proportion is explained by the model, 
and the higher accuracy of the model prediction is. 

The Moran's I coefficient suggests the similarity of spatial proximity pixel values (Moran, 
1950). Moran's I is used to describe the spatial autocorrelation characteristics of ordinary 
logistic regression and autologistic regression residuals. Moran’s I usually varies between –1 
and 1. When the value is between –1 and 0, the space is negative correlation; when the value 
is between 0 and 1, the space is positive correlation; when Moran’s I is 0, there is no corre-
lation and the residuals distribute randomly in space. 

3.3.2  Validation of land use simulation results 

The Kappa index and Fuzzy Kappa index (Kfuzzy) were used to assess the simulation re-
sults. The Kappa index evaluates model accuracy by comparing the actual data and the 
simulation results pixel by pixel (Pontius, 2000). According to Pontius (2002) and Hagen 
(2003), some similar landscape patterns and identical spatial pixels of two images could ex-
ist in a certain neighbouring extent. Therefore, Kfuzzy, whose formula format is the same as 
the Kappa index, is introduced to evaluate the accuracy of the simulation. Kfuzzy is a modi-
fied Kappa index, taking position ambiguity and type ambiguity in a neighbouring pixel ex-
tent. 

 ( ) / ( )o c p cKappa P P P P    
(4) 
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where Po is the observed percentage of agreement, Pc is the expected random correct simu-
lation ratio, Pc=1/n, n is the number of land use types, Pp is the correct ideal simulation ratio, 
Pp = 1, and Pe is the expected similarity, based upon given histograms. 

4  Results 

4.1  Logistic regression and autologistic regression results 

The regression coefficients (B) and standard errors (S.E.) of variables are shown in Tables 1 
and 2. Where ‘–’ represents ‘significance of variables are larger than 0.05’. If B is negative, 
the correlativity of land use change and driving factors is negative.  

According to Tables 1 and 2, the number and types of variables of autologistic regression 
results were different from ordinary logistic regression results. Distance to stations, distance 
to city centres and distance to branches of the Xiangjiang River were not in the autologistic 
regression results, and aspect was selected as a variable. Because of the incorporation of the  
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Table 1  Logistic regression results 

Built-up area Bare land Green land Wetland Cultivated land 
Variables 

B S.E. B S.E. B S.E. B S.E. B S.E. 

DS (km) 0.086 0.021 0.04 0.01 –0.013 0.005 0.057 0.011 – – 

DC (km) – – – – – – – – 0.011 0.004 

DU (km) –0.039 0.011 – – – – 0.087 0.017 – – 

DCS (km) 0.537 0.046 – – –0.184 0.049 – – –0.298 0.046 

Elevation (m) –0.446 0.041 –0.062 0.029 1.303 0.042 –0.466 0.077 –1.075 0.042 

DEW (km) –0.114 0.007 0.053 0.005 0.018 0.005 – – – – 

Slope – – – – – – – – – – 

Aspect – – 0.117 0.029 –0.134 0.039 – – – – 

DRW (km) 0.058 0.013 – – 0.04 0.017 0.079 0.021 – – 

DCT (km) –0.097 0.02 – – – – – – – – 

DCR (km) 0.087 0.005 –0.01 0.004 – – 0.041 0.009 –0.042 0.005 

DX (km) – – – – – – 0.122 0.035 – – 

DBX (km) –0.127 0.011 – – – – –0.102 0.016 0.082 0.008 

DVR (km) 0.117 0.034 –0.127 0.039 –0.079 0.036 0.107 0.055 – – 

Soil type 0.212 0.057 – – –0.189 0.073 0.4 0.092 –0.255 0.066 

Constant –0.108 0.02 – – – – – – –0.143 0.018 

 
Table 2  Autologistic regression results 

Built-up area Bare land Green land Wetland Cultivated land 
Variables 

B S.E. B S.E. B S.E. B S.E. B S.E. 

DS (km) – – – – – – – – – – 

DC (km) – – – – – – – – – – 

DU (km) – – – – – – 0.07 0.018 – – 

DCS (km) – – – – –0.167 0.054 – – –0.214 0.049 

Elevation (m) –0.357 0.05 –0.062 0.053 0.702 0.047 –0.218 0.071 –0.715 0.044 

DEW (km) –0.038 0.007 0.053 0.008 – – – – – – 

Slope 0.111 0.038 0.133 0.043 –0.077 0.03 – – 0.13 0.036 

Aspect 0.072 0.021 – – – – 0.109 0.023 –0.052 0.017 

DRW (km) – – –0.054 0.012 – – – – – – 

DCT (km) – – – – – – – – –0.032 0.005 

DCR (km) – – – – – – 0.123 0.035 – – 

DX(km) – – 0.052 0.013 – – – – 0.066 0.008 

DBX(km) – – – – – – – – – – 

DVR (km) – – – – – – – – –0.17 0.074 

Soil type –0.082 0.024 – – – – –0.156 0.04 –0.066 0.019 

Autocovariate 8.819 0.285 18.94 0.706 3.993 0.164 8.133 0.581 3.16 0.16 

Constant 0.399 0.489 –1.995 0.182 –3.088 0.147 1.067 0.79 1.995 0.459 
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autocovariate, the autologistic model eliminated and modified some variables that were 
much more significant than they should be, and took into account some spatial factors that 
impacted land use change. The regression results showed that elevation was a common fac-
tor. The terrain factor was an important variable to land use spatial distribution and change 
in Chang-Zhu-Tan. In the study area, expressways were the main driving factor for land use 
change, soil type and village settlement location were important factors for green land and 
cultivated land change. 

The ROC and pseudo R2 values of logistic and autologistic regression results are shown in 
Table 3. The ROC values of autologistic regression results were larger than 0.8 and the 
pseudo R2 values were improved, compared to the logistic regression results. The regression 
models of urban were the best and the regression accuracy of bare land was substantially 
improved. According to ROC and pseudo R2 values, the autologistic regression model per-
formed better than the ordinary logistic model. The autologistic regression model was better 
able to identify driving factors. 
 
Table 3  The ROC and pseudo R2 of the logistic regression and autologistic regression results 

Built-up area Bare land Green land Wetland Cultivated land 
Models 

ROC R2 ROC R2 ROC R2 ROC R2 ROC R2 

Logistic 0.847 0.455 0.628 0.264 0.823 0.385 0.770 0.269 0.769 0.395 

Autologistic 0.941 0.701 0.833 0.481 0.865 0.504 0.847 0459 0.813 0.481 

 
Moran’s I value for Pearson residuals of ordinary logistic and autologistic regression 

models at 600 m lag distance are shown in Figure 3. The Moran’s I values of the two models 
decreased with lag distance. Significant positive spatial autocorrelation existed in residuals 
of ordinary logistic models within a certain distance. The variables in the autologistic mod-
els were more explanatory and had a better goodness of fit than the ordinary logistic model. 
The spatial autocorrelation was insignificant in autologistic regression residuals so that the 
autologistic model had a better statistical stability and yielded more credible results. 

 

Figure 3  Moran’s I value for Pearson residuals of the logistic and autologistic regression models 
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4.2  Land use simulation results 

The Chang-Zhu-Tan land use maps from 2000, 2005 and 2009 were simulated (based on an 
observed map from 1995) by both OL-CLUE-S model and AL-CLUE-S model. Variables 
and regression coefficients (B) were the input parameters. In this study, the Xiangjiang River 
and its branches were assumed to be unchanged. The simulation maps of built-up area, bare 
land, green land, wetland and cultivated land in 2000, 2005 and 2009 are shown in Figure 4. 

According to the observed maps, the built-up area of Chang-Zhu-Tan was increasing and 
the spatial pattern was compacting. The simulation maps of the OL-CLUE-S and the 

 

 
 

Figure 4  Simulated maps of the OL-CLUE-S and the AL-CLUE-S models and the observed maps of 
Chang-Zhu-Tan megalopolis of 2000, 2005 and 2009 



846  Journal of Geographical Sciences 

 
 

AL-CLUE-S models showed similar results. The observed maps and simulation maps were 
the same as the real development in Chang-Zhu-Tan. 

4.3  Validation of land use simulation results 

In this paper, the Kappa and Kfuzzy indexes were used to calculate spatial overlap in order 
to validate the accuracy of the simulation results. The values of Kfuzzy ranged from 0 to 1. 
If the value was 1, it suggested that the simulation map matched observed map perfectly. If 
the value was 0, it suggested that the simulation map was completely different from the ob-
served map. By overlapping the observed maps, the Kappa values (Table 4) of the 
OL-CLUE-S and the AL-CLUE-S models were larger than 0.75. The results showed that the 
simulation results indicated considerable accuracy. The Kappa and Kfuzzy values (Figure 5)  
 

Table 4  The Kappa indexes of simulation results from 2000, 2005 and 2009 

Model 2000 2005 2009 

OL-CLUE-S 0.794 0.846 0.754 

AL-CLUE-S 0.805 0.872 0.757 

 
Figure 5  The simulated Fuzzy Kappa (FK) values of the OL-CLUE-S and the AL-CLUE-S models from 2000, 
2005 and 2009 
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of the AL-CLUE-S model were larger than the values of the OL-CLUE-S model in three 
time periods. It suggested that the AL-CLUE-S model performed better for the simulation of 
land use change. However, the Kfuzzy values decreased with prolonged duration of simula-
tion. The Kfuzzy values of the years 2000 and 2005 simulation maps were similar and larger 
than 0.75. While the Kfuzzy values for the 2005 and 2009 simulation maps were less than 
Kappa values. The differences were 0.16 and 0.17, respectively. 

5  Discussion 

The autologistic regression results had different and less variables comparing with ordinary 
logistic regression results. The ROC and pseudo R2 values suggested that the autologistic 
models were better able to explain dependent variables, and the results of autologistic mod-
els were more precise than the results of logistic models. Ordinary logistic models assumed 
that variables were independent and uniformly distributed. However, the residuals of ordi-
nary logistic models were significant, which suggested that the assumption of independence 
was violated (Overmars et al., 2003). Because of the Type 1 error, some variables were 
overemphasised and their significance was overestimated. The Type 1 error could cause 
some bias of land use simulation results (Lennon, 2000). Zhou et al. (2011) combined 
CLUE-S models and Markov model to predict the land use change in Jiangsu Province and 
the accuracy was verified. However, the autocorrelation factor was not considered and the 
ROC values were very different among different land use types. The ROC values of dry land 
and paddy field were less than 0.8. The application of the autologistic regression model to 
land use change simulation was suggested to be more reasonable (Dai and Zhang, 2013; Wu 
et al., 2010). According to the regression results of OL and AL models, the distance from 
expressway and elevation were important to the development of Chang-Zhu-Tan urban ag-
glomeration. Therefore, it was necessary to improve traffic environment. Besides, the roads 
should be away from wetland in order to protect wetland from being destroyed. Some 
socio-economic factors such as population density and GDP data were not included in the 
regression process due to the difficulty of collection. Therefore, the involvement of more 
factors and the consideration of dynamic driving factors in the discussion of the relationship 
between natural, societal and economic factors and their interactive relationships was a sug-
gested direction for future research. 

The Kfuzzy values of the AL-CLUE-S results, into which the spatial autocorrelation fac-
tor was incorporated, were larger than the OL-CLUE-S results. After the incorporation of 
autocovariate terms, the spatial interactions between the variables of land use change were 
adequately considered. The AL-CLUE-S model could reflect a truer process of change and 
effectively improve the simulation accuracy of the CLUE-S (Hubbell et al., 2001). The re-
sults of Wu et al. (2009) suggested that the ALCA models showed considerable improve-
ment over the OLCA models. It was necessary to consider autocovariate terms in spatial 
change simulations. Urban agglomeration was a new spatial structure of urban development. 
Unordered urban expansion could be avoided and urban development structure could be 
more reasonably assessed by the incorporation of spatial autocovariates in urban planning. 
Autocovariates had a significant effect on the simulation of urban land use change. 

Liu et al. (2009) employed CLUE-S model to simulate land use change in the upper 
reaches of the Minjiang River and the maximum simulation time range was 22 years. Bati-



848  Journal of Geographical Sciences 

 

sani and Yarnal (2009) argued that the simulation accuracy of CLUE-S model was just 16% 
when the time range was 10 years. In this paper, the accuracy of the simulated landscape 
pattern maps of the OL-CLUE-S and the AL-CLUE-S models were considerable within ten 
years and when the range of time increased to 14 years, the accuracy started to decrease due 

to the uncertainty of the input parameters (Wu et al.，2012). The faster decreasing velocity of 

the AL-CLUE-S models suggested that the limits of the AL-CLUE-S were more significant 
than those of the OL-CLUE-S models. The AL-CLUE-S models were adapted to simulate 
land use change over a short period of time and, in practice, it was important to select the 
best simulated time range. Because of the limitation of remote sensing data, the decreasing 
velocity of simulation accuracy with time ranges was not included in this paper. The maxi-
mum time range for simulation was not defined. In future work, more remote sensing data of 
different time periods will be considered to assess and analyse simulation accuracy. 

6  Conclusions 

The study employed the AL-CLUE-S models and OL-CLUE-S models to simulate land use 
change of the Chang-Zhu-Tan urban agglomeration in 2000, 2005 and 2009. In this paper, 
spatial autocorrelation was considered and the regression and simulation results were com-
pared with the results of the OL-CLUE-S models. The results showed that: (1) the selected 
variables were more reasonable and it was necessary to incorporate autocovariates into the 
land use change simulation model. According to ROC and pseudo R2 values, the autologistic 
regression model was more suitable for identifying driving factors. (2) The simulation maps 
of the AL-CLUE-S were more precise than the OL-CLUE-S based on regression results. The 
Kappa values of the AL-CLUE-S model were larger than 0.75 in three time periods. The 
Kfuzzy values of the AL-CLUE-S model were 0.780, 0.773 and 0.606 respectively in 2000, 
2005 and 2009. Both of the Kappa and Kfuzzy values of the AL-CLUE-S models were lar-
ger than the values of the OL-CLUE-S models. It suggests that the AL-CLUE-S models 
were more appropriate for the simulation of land use change than the OL-CLUE-S model. 
(3)The accuracy of the simulation results in 2000 was the highest among the three time pe-
riods and the accuracy of simulation maps decreased with time range, especially from 2005 
to 2009. This decrease suggested that the predictability of the CLUE-S could be influenced 
by the incorporation of autocovariates due to the uncertainty of the input parameters. 
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