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Abstract: In this study, we have used four methods to investigate the start of the growing 
season (SGS) on the Tibetan Plateau (TP) from 1982 to 2012, using Normalized Difference 
Vegetation Index (NDVI) data obtained from Global Inventory Modeling and Mapping Studies 
(GIMSS, 1982-2006) and SPOT VEGETATION (SPOT-VGT, 1999-2012). SGS values esti-
mated using the four methods show similar spatial patterns along latitudinal or altitudinal 
gradients, but with significant variations in the SGS dates. The largest discrepancies are 
mainly found in the regions with the highest or the lowest vegetation coverage. Between 1982 
and 1998, the SGS values derived from the four methods all display an advancing trend, 
however, according to the more recent SPOT VGT data (1999–2012), there is no continu-
ously advancing trend of SGS on the TP. Analysis of the correlation between the SGS values 
derived from GIMMS and SPOT between 1999 and 2006 demonstrates consistency in the 
tendency with regard both to the data sources and to the four analysis methods used. Com-
pared with other methods, the greatest consistency between the in situ data and the SGS 
values retrieved is obtained with Method 3 (Threshold of NDVI ratio). To avoid error, in a vast 
region with diverse vegetation types and physical environments, it is critical to know the 
seasonal change characteristics of the different vegetation types, particularly in areas with 
sparse grassland or evergreen forest. 
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1  Introduction 

Plant phenology refers to the temporal pattern of seasonal leaf development and senescence 
(Ding et al., 2013). Environmental changes may alter vegetation phenology; and in turn, the 
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altered phenology has a feed-back effect on surface–atmosphere exchanges of energy, water 
and carbon by controlling the leaf area index (LAI) (Niemand et al., 2005; Piao et al., 2007; 
Peñuelas et al., 2009; Richardson et al., 2009). As the best indicator for monitoring the in-
fluence of climate on vegetation, plant phenology has become the key target of global- 
change research (Menzel, 2002). Based on ground observation data, in the decade between 
1991 and 2000 the spring phenological changes arrived earlier for most plants in Europe and 
North America (Fitter and Fitter, 2002; Menzel et al., 2006; Parmesan, 2007). Observational 
data for China also show that, from the 1980s onwards, the spring phenological changes ar-
rived earlier in northern China (Zheng et al., 2002). 

For some regions with harsh natural conditions, however, changes in vegetation phenol-
ogy and their linkage to climate remain poorly understood, due to the lack of in situ obser-
vations of phenological data. This limits our ability to detect regional vegetation growth 
(Tang et al., 2009). Monitoring vegetation phenological changes at the regional and global 
levels could help to quantify the effects of climate change on terrestrial ecosystems. There-
fore, time-series data from satellite remote sensing have been widely used for studying 
vegetation phenology at the landscape, regional and global levels (Myneni et al., 1997; Zhou 
et al., 2001; Jeong et al., 2011; Sobrino and Julien, 2011), given that there is a strong coin-
cidence between satellite-derived metrics and ground-observed phenological characteristics 
(Reed et al., 1994). In recent years, several different methods have been developed to con-
vert satellite signals to vegetation phenological phases (Moulin et al., 1997; Myneni et al., 
1997; White et al., 2002; Zhang et al., 2003; Jeong et al., 2011; Kross et al., 2011).  

These methods all involve two critical steps. In the first step, satellite-derived vegetation 
indices, such as the normalized difference vegetation index (NDVI), which are usually ac-
quired over a period of half a month or 10 d, are expanded into time series that are suitable 
for phenological study, usually on a daily basis. Meanwhile, although the remote sensing 
data adopt the maximum-value composite (MVC) technique, effects at the sub-pixel level of 
contamination by residual clouds, long-term cloud haze or other negative influences cannot 
be removed. Therefore, further smoothing treatment is necessary, because these factors ap-
pear at random, causing the appearance of an unclear curvilinear change during the growing 
season. Through the use of these smoothing methods, noisy or abnormal points are filtered 
out based on particular mathematical rules, e.g., by using Gaussian filters (Jonsson and 
Eklundh, 2002), spline filters (White et al., 2009), Fourier filters (Roerink et al., 2000), and 
Savizky-Golay filters (Savitzky and Golay, 1964; White et al., 2009)). In the next step, 
critical thresholds for specific phenological events are determined from the reconstructed 
satellite signal time series by the application of specified rules (White et al., 2002; Zhang et 
al., 2003; Piao et al., 2009; White et al., 2009). However, individual methods vary in the 
rules that they adopt for expanding the time series and in determining the critical thresholds 
for specific phenological events. White et al. (2009) compared 10 commonly used methods 
for estimating the start-of-spring averaged by eco-region from the NDVI data derived from 
an advanced very high resolution radiometer (AVHRR) in North America and found that 
spatial phenological patterns derived from different methods often differed among 
eco-regions. Cong et al. (2012) has argued that it is critical to choose the “right” method for 
the “right” place in a vast region with diverse vegetation types and physical environments.  

As the “third pole” of the world, the Tibetan Plateau (TP) has approximately 1,521,500 
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km2 of alpine grasslands (accounting for 59.15% of the total area of 2,572,400 km2 in the TP 
(Zhang et al., 2002)). Recent studies have indicated that the terrestrial ecosystems of the TP 
play a significant role in ensuring the ecological security of China and East Asia (Zhong et 
al., 2006; Sun et al., 2012; Zhang et al., 2014). Changes in the dates of start-of-spring and 
end-of autumn, and consequently the length of the growing season, are critical factors con-
tributing to the observed carbon cycle dynamics, and they also influence stock-raising. 
Therefore, the achievement of an accurate understanding of the spatial patterns of the 
phenological changes on the TP, and of the forces driving them, appears especially important. 
Although the long-term observed phenological data are scarce for the TP due to its harsh 
physical environment, remote sensing data, including time-series NDVI data from Global 
Inventory Modeling and Mapping Studies (GIMMS), from SPOT VEGETATION 
(SPOT-VGT), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), are 
available. Several recent studies using NDVI (GIMMS) have reported that the alpine steppes 
and meadows underwent start-of-the-growing-season (SGS) advancement before the end of 
the 1990s, but that there was then a delay in the SGS after the end of the 1990s, until 2006 
(Yu et al., 2010; Piao et al., 2011). One study based on MODIS NDVI data showed that the 
alpine vegetation SGS advanced in most parts of the TP between 2001 and 2010 (Song et al., 
2011). Two of the other studies based on SPOT-VGT NDVI data found an SGS delay be-
tween 1998 and 2003 and then an advancement between 2003 and 2009 (Shen, 2011; Ding 
et al., 2013). Zhang et al. (2013) have found that the GIMMS NDVI data for 2001–2006 
differs substantially from the corresponding SPOT-VGT NDVI data and MODIS NDVI data 
and they have suggested that the GIMMS NDVI data may suffer from severe data-quality 
issues in most parts of the western plateau, so they thought that the SGS advanced continu-
ously after the end of the 1990s based on SPOT-VGT NDVI data. Overall, studies concern-
ing the trend in the SGS for alpine vegetation on the TP have shown varying results accord-
ing to the different types of remote sensing data and methods that have been used. However, 
due to a lack of observed phenological data (Piao et al., 2011; Shen, 2011; Ding et al., 2013), 
there is as yet no study that has discussed the merits and shortcomings of each remote 
sensing method with respect to the TP.  

In this study, we have applied four methods (Threshold of maximum relative change; 
Threshold of maximum relative change ratio; Threshold of NDVI ratio; and Maximum 
change of curvature), all of which are currently used in phenological studies on the TP, to 
investigate the SGS on the TP, using NDVI data from GIMMS and SPOT-VGT. We have 
focused on: (1) the spatial distribution and inter-annual change of the SGS; (2) the discrep-
ancy in the SGS inferred from satellite data based on multiple models; and (3) in relation to 
vegetation phenology on the TP, which of the models is the most suitable based on the in situ 
observed phenological data, and in what respects are improvements necessary.  

2  Data and methods 

2.1  Dataset 

We analyzed the vegetation phenology (SGS) on the TP by using two remote sensing data-
sets, GIMMS (1982–2006) and SPOT-VGT (1999–2012). NDVI, defined as the ratio of the 
difference between near-infrared reflectance and red visible reflectance to their sum, is an 
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indicator of vegetation greenness (Myneni et al., 1997).  

2.1.1  NDVI dataset from GIMMS 

The GIMMS NDVI, the longest time-series NDVI dataset, covering the period from 1981 
(July) to 2006, was provided by the Global Land Cover Facility of the University of Mary-
land (Tucker et al., 2005). The data were obtained from the Advanced Very High Resolution 
Radiometer (AVHRR) instrument onboard the National Oceanic and Atmospheric Admini-
stration (NOAA) satellite series 7, 9, 11, 14, 16, and 17. The GIMMS NDVI products, with a 
spatial resolution of 8 km, were compiled by merging segments (data strips) of a half-month 
period using the MVC method (Holben, 1986). These data had been calibrated for sensor 
shifts, and corrected to remove the effects of sensor degradation, satellite orbit drift, solar 
zenith angles and other factors, such as the effects of stratospheric aerosol loadings from the 
El Chichon and Mount Pinatubo eruptions in April 1984 and June 1991 (Zhou et al., 2001; 
Slayback et al., 2003). 

2.1.2  NDVI dataset from SPOT-VGT 

The SPOT-VGT NDVI, covering the period from 1998 (April) to 2012 and with a spatial 
resolution of 1 km, was derived from the vegetation instrument of the Système Pour 
l’Observation de la Terre (SPOT). Its temporal resolution was about 10 d, which therefore 
amounted to 36 composites in a single-year cycle. The dataset had been corrected to remove 
the effects of satellite shift and sensor degradation. Atmospheric contamination from water 
vapor, ozone and aerosols had also been corrected using a simplified method for atmospheric 
corrections (SMAC) (Rahman and Dedieu, 1994). In addition, the MVC for each 10-d in-
terval was also applied in order to minimize further the non-vegetation effects (Holben, 1986; 
Maisongrande et al., 2004).  

2.1.3  Preprocessing of NDVI data 

Despite all the efforts to improve the data quality, the remaining atmospheric contamination 
in the NDVI dataset may still result in spurious variations in the vegetation indices (Chen et 
al., 2004) and may affect the detection of vegetation phenology. Therefore, in the present 
study, we used the smoothing method ‘Harmonic Analysis of Time Series’ (HANTS) in or-
der to reduce further the potential noise. HANTS is a new method used in the analysis of 
plant phenology. It considers fully the plant growth cycle. Rebuilt time-series data based on 
this method can reflect the true periodic change properties of the curve (Roerink et al., 2000). 
The HANTS method was employed in the present work to carry out a smoothing treatment 
of the NDVI data obtained from GIMMS and SPOT-VGT. As a result of the HANTS treat-
ment, two types of data were obtained: one comprised smoothed data having the same 
temporal resolution as the raw data; the other was the smoothed data with a temporal reso-
lution of 1 day (Ding et al., 2013). Smoothed data were used only in Methods 1, 2 and 3 but 
not in Method 4. In this work, in order to eliminate the effects of bare soil, sparse vegetation 
and evergreen forest, the pixels needed to meet certain particular requirements. Based on the 
SPOT-NDVI in 2006, this study adopted the specific steps described in Ding et al. (2013) to 
process the data. 

2.2  Methods 

Currently, there are many methods which have been developed for retrieving SGS from 
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seasonal NDVI data (Julien and Sobrino, 2009; Cong et al., 2012). However, an universally 
accepted definition of SGS does not exist (White et al., 2009). Recently, the techniques ap-
plied to vegetation phenological studies on the TP have included four methods, viz.: 
Threshold of maximum relative change, used by Piao et al., (2011) and Ding et al. (2013); 
Threshold of maximum relative change ratio, used by Zhang et al. (2013); Threshold of 
NDVI ratio, used by Yu et al. (2010 and 2012); and Maximum change of curvature, used by 
Shen et al. (2011). Meanwhile, these methods also are dominant ways and widely used in the 
other regions of the world in the study of the vegetation phenology. As the environment is 
unique, there is some faultiness to use these methods to derive SGS on the TP. In this study, 
we partially modified these methods. 

2.2.1  Method 1 (Threshold of maximum relative change) (Figure 1a).  

Based on the smoothed data with the same temporal resolution as the raw data (temporal 
resolution of 10 d or 15 d), we calculated the annual NDVI time series for each pixel and the 
relative NDVI change using the following formula (Piao et al., 2006):  

 ( ) ( 1) ( )NDVI t NDVI t NDVI t     (1) 

where t is the time. We then used the corresponding NDVI(t) with the positive maximum 
ΔNDVI(t) as the NDVI threshold for the SGS date. Next, the second type of data obtained 
using HANTS (i.e., NDVI time-series data with a temporal resolution of 1 d) was used to 
determine the Julian day of the SGS. When the NDVI value of various pixels was larger 
than the SGS threshold within a specific time period, the day was regarded as the SGS.  

2.2.2  Method 2 (Threshold of maximum relative change ratio) (Figure 1b).  

Based on the smoothed data with the same temporal resolution as the raw data, we calculated 
the annual NDVI time-series curve for each pixel and the relative NDVI change ratio using 
the following formula (Zhang et al., 2013):        

 ( ) [ ( 1) ( )]/ ( )NDVI t ratio NDVI t NDVI t NDVI t     (2) 

where t is the time. The subsequent steps were the same as in Method 1. 

2.2.3  Method 3 (Threshold of NDVI ratio) (Figure 1c).   

SGS values were modeled using the NDVI ratio method developed by White et al. (1997). 
Based on the smoothed data with the same temporal resolution as the raw data, we found the 
maximum and minimum NDVI values. Yu et al. (2010) evaluated the average NDVI curve 
over 24 years (GIMMS) and noted that the NDVI reached its minimum value in February 
and March. The average NDVI in these two months was thus used as NDVImin in place of the 
annual NDVI minimum, which might occur at the time of maximum snow cover. Then, 
based on the second type of data obtained through HANTS, we normalized all the NDVI 
values using (NDVImax − NDVImin). For SGS values, we selected an NDVI ratio threshold of 
0.2. Using the thresholds, SGS values were estimated for each pixel of the study area for 
each year on record. 

2.2.4  Method 4 (Maximum change of curvature) (Figure 1d).  

To further reduce contamination by clouds, snow and ice, we applied a three-points-smooth 
method to each annual NDVI cycle, as described by Chen et al. (2000). We then divided the 
filtered time series into two phases by the time of annual maximum NDVI, and fitted them 
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using a four-parameter logistic function (see also Zhang et al. (2003)):  

                                   ( )
1 a bt

c
y t d

e  


 (3) 

where t is the Julian day, y(t) is the NDVI value at time t, a and b are fitting parameters, c+d 
is the maximum NDVI value, and d is the initial background NDVI value (Zhang et al., 
2003). We then calculated the rate of change of the curvature (RCC, see Eq. (3) in Zhang et 
al. (2003)) of the fitted function. We then defined SGS as the time when RCC reached its 
first local maximum value (Zhang et al., 2003). 

The retrieved SGS values based on the remote sensing data in this paper were validated by 
the observed phenological data from 19 agro-meteorological stations on the TP. As these 
stations are mainly located in the grasslands and meadows region, we supposed that the re-
gion where the station was located had homogeneous environment and the in situ observed 
data based on the station may represent the phenology of area around the station. In order to 
accord with the same spatial resolution as GIMMS and SPOT, the retrieved SGS values for 
the sites were averaged over a circular area with 8-km and 1-km radius centered each site for 
GIMMS and SPOT respectively. The retrieved SGS values for the sites were averaged over a 
circular area, with an 8-km and 1-km radius for the GIMMS and SPOT respectively, cen-
tered at each site.  

 

Figure 1  Schematic figures showing the methods of phenological detection. (a) Defining the NDVI threshold accord-
ing to the NDVI relative change (NDVI(t + 1) − NDVI(t)) (Method 1). (b) Defining the NDVI threshold according to the 
NDVI relative change ratio ((NDVI(t + 1) − NDVI(t)) / NDVI(t)) (Method 2) in the NDVI seasonal cycle fitted by 
HANTS (with the same temporal resolution as the raw data), and then determining SGS by applying the NDVI threshold 
in each year’s NDVI seasonal cycle fitted by HANTS (with a temporal resolution of 1 d). (c) Determining the maximum 
and minimum NDVI values based on the smoothed data with the same temporal resolution as the raw data, and then 
normalizing all the NDVI values using (NDVImax − NDVImin) based on the smoothed data with a temporal resolution of 1 
d and determining SGS by applying the NDVI ratio threshold (Method 3). (d) Based on the three-points-smooth data, 
modeling by the four-parameter logistic function, and then calculating the rate of change of the curvature and defining 
SGS as the time when RCC reached its first local maximum value (Method 4). For (a), (b) and (d), the change lines are 
shown in gray, while the smooth data are shown in black. 
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3  Results 

3.1  Spatial distribution of vegetation SGS on the TP 

In order to understand the spatial distribution of the SGS on the TP, we have analyzed the 
SGS of the general patterns and the different vegetation types, and also discussed the dis-
crepancy in the SGS derived from satellite data based on multiple models. 

3.1.1  General patterns 

Using 25-year (1982–2006) GIMMS NDVI data and 13-year (1999–2012) SPOT NDVI data, 
we first show the spatial patterns of the multi-year average of SGS values retrieved using 
each method, the mean of the multi-year average of SGS obtained by each method and the 
standard deviation (SD) of the SGS values using the four methods (Figures 2 and 3). In  

 

 
 

Figure 2  Spatial distribution of the vegetation SGS estimated from GIMMS NDVI data by the four methods 
described in the text. (a) Method 1; (b) Method 2; (c) Method 3; (d) Method 4; (e) Average of the four methods; 
and (f) SD of the four methods. The name of the physiographical regions are as follows: IB1 Golog-Nagqu 
high-cold shrub-meadow zone; IC1 Southern Qinghai high-cold meadow steppe zone; IC2 Qangtang high-cold 
steppe zone; ID1 Kunlun high-cold desert zone; IIAB1 Western Sichuan-eastern Tibet montane coniferous forest 
zone; IIC1 Southern Tibet montane shrub-steppe zone; IIC2 Eastern Qinghai-Qilian montane steppe zone; IID1 
Ngari montane desert-steppe and desert zone; IID2 Qaidam montane desert zone; IID3 Northern slopes of Kunlun 
montane desert zone; OA1 Southern slopes of Himalaya montane evergreen broad-leaved forest zone (Zheng, 
1996). 
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Figure 3  Spatial distribution of the vegetation SGS estimated from SPOT NDVI data by the four methods de-
scribed in the text. (a) Method 1; (b) Method 2; (c) Method 3; (d) Method 4; (e) Average of the four methods; and 
(f) SD of the four methods. The others same as Figure 2. 
 

general, the patterns are elevation- and longitude-dependent, and temperature, together with 
precipitation, is a key factor determining the spatial pattern. Vegetation growth in the center 
of the TP begins a little later than in the surrounding areas. Based on the average of results 
from the four methods above, for most pixels the SGS occurs between mid-April and late 
June. The SGS is delayed from east to west and it is also delayed with increasing elevation. 

Despite the similar spatial patterns revealed by the four methods using the GIMMS NDVI 
and the SPOT NDVI, there are still significant variations in the estimated SGS obtained 
using the different methods. Across this region, the range of SGS values estimated by the 
different methods varies mostly between 6 d and 20 d (GIMMS) and between 3 d and 21 d 
(SPOT). Comparing the results from the four methods, the SGS is usually earlier when 
measured by Method 2 or Method 3, especially Method 2. To test the methodological 
variation in SGS, we calculated the SD for each pixel of the estimated SGS obtained by the 
four different methods.  

With regard to SGS, nearly 86.40% (GIMMS) or 46.37% (SPOT) of the total pixels show 
an SD of less than 10 d and nearly 11.73% (GIMMS) or 45.62% (SPOT) have an SD of 
between 10 d and 15 d, but on the other hand about 2.82% (GIMMS) or 8.01% (SPOT) of the 



DING Mingjun et al.: Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods 139 

 

 

total pixels show an SD of greater than 15 d. The largest discrepancies among the different 
methods are found mainly within the Golog-Nagqu high-cold shrub-meadow zone, the 
western Sichuan/eastern Tibet montane coniferous forest zone and the Eastern Qing-
hai-Qilian montane steppe zone (Zheng, 1996), all of which have comparatively high 
vegetation coverage for the TP. This implies that the regions with high coverage will exhibit 
larger discrepancies. 

3.1.2  SGS of different vegetation types on the TP 

Spatial variations of SGS values are also associated with the type of land cover (Yu et al., 
2003; Zhang et al., 2004). Figure 4 shows a histogram of the SD of the SGS for each of the 
seven major vegetation types on the TP. Whereas most of the vegetation types have an SD of 
less than 15 d, significant variation exists within some vegetation types, particularly forest, 
scrub and alpine. The forests on the TP are mainly distributed within regions of low elevation 
around the plateau and consist of evergreen and deciduous forests. Although we have tried to 
remove the evergreen forests from our analysis, the pixels of forests contain some evergreen 
elements that may result in complicated NDVI curves; thus, phenological parameters esti-
mated from remote sensing data may show remarkable discrepancies between the different 
methods. There also exists the problem of mixed pixels in regions with scrub cover; scrubs 
and meadows are often found together on the TP. The different phenological dates of the 
scrubs and meadows probably cause the complicated NDVI curves, and result in the dis-
crepancies that are observed between the different methods. Alpine vegetation is mostly 
distributed in the regions of high elevation, where the vegetation coverage is comparatively 
low. In summary, the effect of the factors mentioned above is that the vegetation coverage 
often leads to remarkable discrepancies between the SGS values obtained by different 
methods. 

Figure 5 shows a histogram of the SGS distribution for the entire region and for each of 
the seven major vegetation types on the TP. Although, overall, SGS mainly occurs in May 
and early June, for each vegetation type, there exists significant variation in SGS when it is 
measured using different methods. Thus SGS based on Method 2 is the earliest (occurring 
before Julian day 150 for most vegetation types), SGS determinations based on Methods 1 
and 3 are intermediate and SGS measured by Method 4 is the latest (occurring after Julian 
day 130 for most vegetation types). As shown in Figure 5, areas with a high coverage of 
vegetation (forests, scrubs and crops) show an earlier SGS than areas with low vegetation 
coverage (alpine areas, deserts and grasslands).  

The results indicate that the vegetation coverage significantly influences the SGS derived 
using the different methods. Clearly, it is important to pay attention to the vegetation types 
with high or low coverage when studying the vegetation phenology on the TP using different 
remote sensing techniques. Cong et al. (2012; 2013) also thought that the large inter-method 
variance was notably observed in the agriculture cropland, the arid and semiarid vegetation 
type, which is according with our results. 

3.2  Inter-annual phenological changes on the TP 

In the present study, as shown in Figure 6, from 1982 until 1998 the SGS values derived 
using the four methods all display an advancing trend. The variation amplitudes are between 



140  Journal of Geographical Sciences 

 
 

 
 

Figure 4  Histograms of the SDs of vegetation SGS values, for different vegetation types 
 

 
 

Figure 5  Histograms of SGS values for different vegetation types, as determined by four methods 
 

3.1 d/10a and 5.0 d/10a, but the significance levels are not high, due to the large size of the 
fluctuations. The advancing trend is mainly controlled by the highest value in 1982 and the 
lowest value in 1998. From 1998 until 2003, SGS values show a delaying trend, and this is 
then followed by an advancing trend from 2003 until 2008. After 2008, SGS values exhibit a 
delaying trend. Generally, according to SPOT (1999–2012), there is no continuously ad-
vancing trend in SGS on the TP. We have also analyzed the correlation between the SGS 
values derived from GIMMS and SPOT for the years 1999–2006 using the four methods and 
have found that the correlation coefficients based on the four methods are 0.91 (P=0.002), 
0.92 (P=0.001), 0.90 (P=0.002) and 0.85 (P=0.008), respectively. From the analysis above, 
though the values for SGS derived from the four methods or two remote sensing datasets 
exhibit discrepancies, the trend of the change maintains consistency.  

Previous studies using GIMMS NDVI have shown that a prominent reversal in the 
vegetation SGS occurred on the TP at the end of the 1990s, with a significant trend towards 
advanced SGS from 1982 to 1998 and then a trend towards a delayed SGS from 1998 to 
2006 (Yu et al., 2010; Piao et al., 2011; Ding et al., 2013). Zhang et al. (2013) have stated 
that the GIMMS NDVI data-quality problem that occurred in spring during the years 
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Figure 6  Inter-annual variations of vegetation SGS on the TP from 1982 to 2012; GIMMS data are shown in 
black and SPOT data are shown in gray 
 

2001–2006 in most parts of the western TP is responsible for the spring phenological delay 
on the TP between 1998 and 2006; based on the SPOT and MODIS data, they have thought 
the SGS had been in advance from 1982 to 2011. On the other hand, based on SPOT-VGT 
data, Shen et al. (2013) have concluded that there is no evidence for a continuously ad-
vancing trend of SGS on the TP during the period from 1999 to 2012. Our results are in 
accordance with the results of Shen et al. (2013) but contradictory to those of Zhang et al. 
(2013). 

3.3  Evaluation using in situ observed data of the SGS retrieved by the use of different 
models 

The results and discussions above demonstrate that there are significant differences in the 
SGS values derived using the different methods. Here, we compare the four methods further 
and evaluate their suitability for the TP. The SGS values obtained by the application of the 
four methods in this paper have been validated using the observed phenological data ob-
tained from 19 agro-meteorological stations on the TP.  

Figure 7 shows a comparison between the in situ observed data and our retrieved results 
obtained using GIMMS data. For all sites, there are different levels of consistency between 
the observed and the retrieved SGS values, according to which of the four methods has been 
used. Although the mean absolute error (MAE) and the root-mean-square error (RMSE) for 
Method 2 are somewhat lower than for the other three methods, the R value is very low and 
does not qualify as significant (P < 0.01). For Method 3, the MAE and the RMSE are slightly 
larger than for Method 2; however, its R value is also larger and exceeds the significance 
level (P < 0.01).  
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Figure 7  Comparison between SGS estimated by the four methods described in the text (using GIMMS data) 
and the observed SGS data from 19 agro-meteorological stations on the TP 
 

Figure 8 shows the corresponding comparison using SPOT-VGT data. Again, for all sites, 
there are different levels of consistency between the observed and the calculated SGS values, 
according to which of the four methods has been used. Although for Method 1 the MAE and 
the RMSE are somewhat lower than for the other methods, R is very low; for Method 3, 
although the MAE and RMSE values are slightly larger than for Method 1, R is large and is 
significant.  

For Methods 1 and 2, because the NDVI thresholds are confirmed based on the original 
time resolution (GIMMS with a half-month period and SPOT with a 10-d period), the SGS 
values are affected by the original time resolution, even though they are derived from the 
smoothed data, which has a single-day resolution. As shown in Figures 7 and 8, the SGS 
values derived using Method 1 or Method 2 show similar dates. The SGS values based on 
Methods 3 and 4 are derived from the smoothed data with single-day resolution directly, and 
the distribution of the SGS dates is relatively reasonable and never influenced by the original 
time resolution. Method 4, however, defines SGS as the time when RCC reaches its first 
local maximum value, which will result in an earlier date for SGS.  

At present, there are many researches focusing on SGS retrieved using remote sensing on 
the TP (Piao et al., 2011; Shen et al., 2011; Song et al., 2011; Ding et al., 2013; Zhang et al., 
2013), but none of them has evaluation using in situ observed data in detail. Based on the 
analysis of evaluation above, we consider that Method 3 is more applicable than the other 
methods comparatively. However, the in situ observed data are mainly distributed in the 
grasslands and meadows. Such a lack of in situ observation data in the other vegetation  
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Figure 8  Comparison between SGS estimated by the four methods described in the text (using SPOT data) and 
the observed SGS data from 19 agro-meteorological stations on the TP 
 

types still limits our understanding of the adoption of the methods used to retrieve vegetation 
phenology based on remote sensing on the TP. 

4  Discussion 

Satellite-derived greenness vegetation indices provide a method of acquiring spatio-temporal 
information about vegetation phenology and have thus been widely used to assess the in-
fluences of climatic changes on vegetation, especially in regions where field observations 
are scarce (Piao et al., 2006; Yu et al., 2010; 2012; Ding et al., 2013). However, satel-
lite-derived phenology data should be viewed with caution, because vegetation indices are 
easily contaminated by adverse meteorological conditions and background changes, such as 
cloud cover, bare soil and snow cover, which often make the signal weak (Shen et al., 2013). 
Though the remote sensing data have already been processed to lower the noise, sometimes 
these occasional interferences still result in vegetation indices less than the actual value. As 
shown in Figure 9, there are some fluctuations within the yearly NDVI curves. As is well 
known, in regions with a natural vegetation distribution, the real NDVI curve never displays 
a sudden decrease, which often causes errors in satellite-derived phenological data. There-
fore, smoothing methods are widely used for the extraction of phenological information. We 
sampled two sites, using raw and smooth data from GIMMS in 2006, in order to explore the 
effects of the fluctuation on the phenological information that was extracted. At Qilian, the 
vegetation SGS values that were extracted from the raw data based on Methods 1, 2 and 3 
were on the 48th, 48th and 158th Julian days, respectively, whereas those that were extracted 
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from the smoothed data were on the 158th, 
142th and 158th Julian days, respectively. 
At Qingshuihe, the vegetation SGS values 
extracted from the raw data were on the 
158th, 142th and 158th Julian days, re-
spectively, whereas those extracted from 
the smoothed data were on the 142th, 111th 
and 127th Julian days, respectively.  

From the results above, it is clear that the 
smoothing method can eliminate the very 
obvious errors caused by the fluctuations. 
Shen et al. (2013) considered that the 
non-growing-season NDVI values should 
remain constant throughout different years 
and adopt a procedure (not mentioned in 
their paper) to eliminate the differences in 
the non-growing-season NDVI values be-
tween different years. They then found that 
there was no change in SGS in 2009–2011 
compared to 1998–2000, although they also 
used smoothing method. Sometimes, 
however, the smoothing method may ele-
vate the growth curve, particularly at the 
time when the SGS appears, and it probably makes the SGS advanced (Figure 9) and creates 
errors. Though there are many smoothing methods that have been used to retrieve vegetation 
phenological information, the merits and defects of these methods require more in-depth 
discussion. 

Many studies that used Method 1 (Piao et al., 2011) and Method 2 (Zhang et al., 2013) to 
retrieve vegetation phenological informa-
tion on the TP first calculated the multi-year 
average NDVI time-series curve from 1982 
to 2006 and then used the corresponding 
NDVI(t) with the maximum ΔNDVI or 
ΔNDVIratio as the NDVI threshold for the 
SGS date (details in section 2.2). However, 
using multi-year averaging to determine the 
NDVI threshold is not suitable, as shown in 
Figure 10, due to the time of the annual 
maximum NDVIratio being different in 
different years, which results in different 
thresholds. Using the threshold, a 
multi-year average threshold can lead to an 
earlier SGS when the yearly maximum 
NDVI is higher and a later SGS when the 

 
Figure 10  Schematic diagram indicating different 
yearly NDVI curves (GIMMS) in different years, which 
probably biases the derived SGS 

 
Figure 9  Vegetation growth curves at two sample sites 
in 2006 (Qilian and Qingshuihe) based on GIMMS data. 
The blue and red straight lines show the extracted vegeta-
tion phenological information based on the raw and 
smoothed data, respectively. The NDVI values were av-
eraged within a circular area, with an 8-km radius, cen-
tered at each site. The phenological information is calcu-
lated using Methods 1, 2 and 3. 
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yearly maximum NDVI is lower. Shen et al. (2013) also considered that Methods 1 and 2 
assumed that the non-growing-season NDVI values remained constant over different years 
and that sophisticated reprocessing of the non-growing-season NDVI was therefore required; 
otherwise, the retrieved SGS would be negatively biased by the increase in the 
non-growing-season NDVI. For this reason, we have used the corresponding annual NDVI(t) 

with the maximum △NDVI or △NDVIratio instead of the multi-year average as the NDVI 

threshold for the annual SGS date.  
All the methods used for phenological estimations based on remote sensing have assumed 

that the natural vegetation growth curve includes four phases within a single year: 
non-variation, increase, decrease and non-variation. Nevertheless, in areas with sparse 
vegetation and evergreen forests, the NDVI is influenced by adverse meteorological condi-
tions, background changes and other factors; the consequence of this is that the yearly NDVI 
curve never displays according to this assumption, as shown in Figure 11. It causes serious 
errors in extracting vegetation phenological information over large areas, especially in the 
northern, western and southeastern parts of the TP. For example, as shown in Figure 2 of Yu 
et al. (2010) [and also in the figures of Yu et al. (2012)] and in Figure 3 of Zhang et al. 
(2013), there are errors of phenology in the northern and southeastern TP. In order to mini-
mize the impact of soil variations in bare and sparsely vegetated regions, many researchers 
adopt particular criteria so as to erase such areas. Piao et al. (2011) and Zhang et al. (2013) 
only consider pixels with an average NDVI from April to October larger than 0.1, similar to 
the criterion of Zhou et al. (2001). In addition to the criterion above, other researchers in-
troduce several other rules (Shen et al., 2011; Ding et al., 2013). Moreover, in order to 
eliminate the impact of evergreen forests on the results, land-use and land-cover maps are 
used in many studies, despite the uncertainties of such maps. Therefore, in order to eliminate 
the effects upon the data of bare soil, sparse vegetation and evergreen forests, we conclude 
that only pixels that simultaneously meet the following criteria are suitable to be used in 
phenological analysis on the TP. These criteria are as follows: 1) the average value of NDVI  

 

 

Figure 11  Vegetation growth curves in regions
with different NDVI grades (a, b), and on the
southern slopes of the Himalaya montane ever-
green broad-leaved forest zone (c), based on the
mean NDVI, over many years, of the GIMSS
(1982–2006) and SPOT-VGT (1999–2012) data 
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in April–September shall be more than 0.10; 2) the maximum value of annual NDVI shall 
exceed 0.15; 3) the annual maximum value shall occur between July and September; and 4) 
the average value of NDVI in winter shall be less than 0.4 (Ding et al., 2013; Shen et al., 
2011). 

In this study, based on the GIMMS and SPOT NDVI data, we have focused on the dis-
crepancy in the SGS inferred from multiple methods and the applicability of methods. Be-
sides, we have also discussed the improvements necessary of the methods. However, previ-
ous studies demonstrated that the different sensor products can also lead to discrepancy in 
the SGS except for methods, because there exists inconsistency among them (Hogda et al., 
2013; Jiang et al., 2013; Zhang et al., 2013), which can be seen from Figures 2, 3 and 6 in 
the study as well. Though we have analyzed the correlation between the SGS derived from 
the GIMMS and SPOT, the same study period is relatively short, which limited our under-
standing the discrepancy between the two types of remote sensing data. Nevertheless, cur-
rently, there are many studies which used different remote sensing products to analyze 
vegetation phenology (Myneni et al., 1997; Zhou et al., 2001; Jeong et al., 2011; Sobrino 
and Julien, 2011), therefore, the assessment of the discrepancy among the SGS derived from 
different remote sensing data is very important and necessary.  

5  Conclusions 

In this paper, we have studied the SGS phenology on the TP using four methods based on 
GIMMS and SPOT NDVI data.  

(1) For all four methods, the SGS was delayed increasingly from east to west and also with 
increasing elevation. However, discrepancies exist between the SGS dates estimated using 
the four methods. Generally, Method 4 produces the latest estimate of SGS, whereas Method 
2 produces the earliest. The methods produce differences in SGS estimates that vary across 
different vegetation types and regions within the TP. The largest discrepancies amongst the 
four methods are associated mainly with the regions with the highest or lowest vegetation 
coverage, such as forests, areas of scrub, agricultural areas and alpine regions. Vegetation 
coverage plays an important role in all the different methods. More attention needs to be paid 
to vegetation types with high or low coverage when studying vegetation phenology on the TP 
using the various remote sensing techniques. 

(2) Between 1982 and 1998, the SGS values derived from the four methods all display an 
advancing trend, with a variation in amplitude between 3.1 d/10a and 5.0 d/10a; however, the 
significance levels are not high, due to the large size of the fluctuations. The advancing trend 
is mainly determined by the highest value, in 1982, and the lowest value, in 1998. From 1998 
to 2003, SGS values show a delaying trend, and then display an advancing trend from 2003 
to 2008. From 2008 onwards, the SGS values exhibit a delaying trend. Generally, according 
to the SPOT data, there is no continuously advancing trend in SGS on the TP from 1999 to 
2012. Moreover, we have analyzed the correlation between the SGS values derived from the 
GIMMS and SPOT data for the period between 1999 and 2006; the four analysis methods 
produce a consistent trend with respect to the change in SGS.  

(3) Regarding the comparison with the observed phenological data obtained from 19 
agro-meteorological stations on the TP, we consider that Method 3 is more applicable than 
the other methods comparatively.  
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However, the in situ observed data are mainly distributed in the grasslands and meadows. 
Such a lack of in situ observation data in the other vegetation types still limits our under-
standing of the adoption of the methods used to retrieve vegetation phenology based on 
remote sensing on the TP. Overall, explicit historical data from both satellite and in situ 
observations are undoubtedly required to validate and correct the results presented here. 
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