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Abstract: Global warming has been one of the major concerns behind the world’s high-speed 
economic growth. How to implement the coordinated development of the carbon footprint and 
the economy will be the core issue of the world’s economic and social development, as well 
as the heated debate of the research at home and abroad in recent years. Based on the en-
ergy consumption, integrated with the “Top-Down” life cycle approach and geographically 
weighted regression (GWR) model, this paper analyzed the spatial differences and 
multi-mechanism of carbon footprint in provincial China in 2010. Firstly, this study calculated 
the amount of carbon footprint of each province using “Top-Down” life cycle approach and 
found that there were significant differences of carbon footprint and per capita carbon foot-
print in provincial China. The provinces with higher carbon footprint, mainly located in north-
ern China, have large economic scales; the provinces with higher per capita carbon footprint 
are mainly distributed in central cities such as Beijing, Shanghai and energy-rich regions and 
heavy chemical bases. Secondly, with the aid of GIS and spatial analysis model (GWR 
model), this paper had unfolded that the expansion of economic scale is the main driver of the 
rapid growth of carbon footprint. The growth of population and urbanization also acted as 
promoting factors for the increase of the carbon footprint. Energy structure had no consider-
able promoting effect for the increase of the carbon footprint. Improving energy efficiency is 
the most important factor to inhibit the growing carbon footprint. Thirdly, developing 
low-carbon economies and low-carbon industries, as well as advocating low-carbon city 
construction and improving carbon efficiency would be the primary approaches to inhibit the 
rapid growth of carbon footprint. Moderately controlling the economic scale and population 
size would also be required to alleviate carbon footprint. Meanwhile, environmental protection 
and construction of low-carbon cities would evoke extensive attention in the process of ur-
banization. 

Keywords: carbon footprint; spatial differences; multi-mechanism; GWR model; China 



WANG Shaojian et al.: Spatial differences and multi-mechanism of carbon footprint based on GWR model 613 

 

 

1  Introduction 

Global warming has become an important issue in various fields all over the world (IPCC, 
2008). Most scholars believe that the greenhouse effect exacerbating is one of the most im-
portant causes of global warming (Pierucci, 2009). And human activity is the main driving 
factor intensifying the greenhouse effect (Duro and Padilla, 2006). The increase of energy 
consumption and population, as well as rapid economic growth, causing global carbon emis-
sions increased dramatically, are the very important driving forces of aggravating the trend 
of climate warming. Under this background, a lot of new concepts and policies, such as 
“low-carbon economy”, “low carbon industry”, “low carbon development”, “low carbon 
life”, emerge as the times require. How to control the carbon footprint growth has become a 
burning issue worldwide attracting considerable attention from policy makers and scholars 
(Liu et al., 2008; Fan et al., 2010; Shimada et al., 2007; Lee, 2011). 

Carbon footprint, originated from ecological footprint concept, is the land area possessing 
biological productiveness, to maintain a certain population survival and economic develop-
ment need or being able to absorb emissions from human waste (Wackernagel and Rees, 
1996). Carbon footprint is generally recognized as the research method to cope with climate 
change and solve the quantitative evaluation of carbon emissions intensity at home and 
abroad. The oversea research about carbon footprint sprung up very early (Wiedmann, 2009; 
Jeffrey et al., 2007). Foreign scholars focus on the regional carbon emissions of developed 
countries and carbon footprint differences and do a lot of research and argument. Research 
scope mainly involves in Europe, America, Japan and other countries and regions (Casler 
and Rose, 1998; Chang and Lin, 1998; Soytasa et al., 2007; Janssens et al., 2003). Research 
scale includes global, national, regional and other scales, with an emphasis on national re-
search scale (Piao et al., 2009; Hong, 2011). Research perspectives mainly refer to the con-
trast research about direct and indirect carbon footprint, as well as the study about produc-
tive and consumer carbon footprint (Kees and Kornelis, 1995; Kenny, 2009). The research 
evaluation methods are various, frequently covering input and output (IO), life cycle analy-
sis (LCA), and the IPCC emissions calculation method, etc (Chang and Lin, 1998; Kenny 
and Gray, 2009; Druckman and Jackson, 2009). Abroad research on regional carbon foot-
print focus primarily involves carbon footprint impacting on regional environment and eco-
nomic development, to explore the relationship between carbon emissions and economic 
growth. However, the dominant factors affecting carbon emissions are different according to 
the research of different scholars in different areas. 

The development course of western developed countries shows that the rigid connection 
exists among economic development, energy demand and carbon emissions. The rapid 
growth of energy consumption plays a decisive role in the increase of carbon emissions (Liu 
and Liu, 2009; Liu et al., 2002). Since the reform and opening up, China’s economic and 
social development has made remarkable achievements, but also paid a heavy resource and 
environmental cost (Wei et al., 2008). In order to explore the relationship between the car-
bon footprint and economic development, domestic studies began to involve in carbon foot-
print. The documents about carbon emissions and economic development at home can be 
divided into three categories. Firstly, according to Kuznets curve theory and studies of the 
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relationship between carbon emissions and per capita GDP, the analysis mainly focuses on 
the existence of the inverted U-shaped curve and the inflexion point (Du et al., 2007; Lin 
and Jiang, 2009). Secondly, using the index decomposition method, the studies analyze the 
contributions of the factors, including the energy structure, energy efficiency, economic in-
come, to carbon emissions (Xu et al., 2006). Lastly, adopting the associated patterns of in-
dustry-energy and energy-carbon emissions, researches mainly deal with the changes of the 
regional patterns of carbon emissions (Zhang, 2006). The studies not only contain the analy-
sis of carbon footprint about the industry space at the national scale but also at the regional 
scale like Jiangsu, Shanghai, mainly analyze and evaluate the state of carbon footprint in 
different industries and regions, as well as quantitative researches of the impact of economic 
and social development on regional energy consumption carbon footprint (Shi et al., 2012; 
Zhao et al., 2010; Zhao et al., 2011; Zhu et al., 2009; Zhang and Shi, 2011). The above 
mentioned are based on the national macro-level study of carbon footprint impact on eco-
nomic development and regional environment. However, publications on provincial level 
have rarely been studied. Since the reform and opening up, China has acknowledged the 
inevitable stage of uneven regional development. Preferential policies have allowed some 
regions to speed up economic growth and it is hoped that the benefits will trickle down to 
the lagged regions. This leads to the obviously increase of regional economic differences 
and the polarization phenomenon in quite a number of provinces of China. Developed areas 
also contain relatively backward areas. Based on such analysis, provincial China is the fron-
tier of research on carbon footprint given its scale and data available. Therefore, studying 
spatial differences in carbon footprint among provinces in China is very meaningful. 

In order to explore the carbon footprint in China with an emphasis on the multi-   
mechanism, this paper draws on a “Top-Down” life cycle and GWR model analytical 
framework proposed by Padgett et al. (2008) and Wei et al. (2011) to address the complex-
ity of carbon footprint and economy in provincial China and synthesize its multiple driving 
forces. Firstly, following a “Top-Down” life cycle approach, we move beyond the traditional 
analysis to quantitatively calculate the amount of carbon footprint and per capita carbon 
footprint based on energy consumption in provincial China and geographically analyze the 
spatial differences. Secondly, based on GWR model, we primarily do the regression of some 
factors, as energy structure (dominant energy share of total energy consumption), energy 
efficiency (per unit GDP energy consumption), urbanization (level of urbanization), econ-
omy factor (per capita GDP) and population factor (population size). After using the GWR 
model, we obtain the primary and secondary influencing factors affecting the carbon foot-
print, and present the major means of inhibition the rapid growth of carbon footprint and 
necessary measures to ease the rapid growth of carbon footprint. This paper is organized as 
follows. The next section presents the data sources and methods. Then we start with analyz-
ing the spatial differences of the total carbon footprint and per capita carbon footprint. This 
is followed by a detailed investigation of the multi-mechanism of carbon footprint among 30 
provinces in China with GWR model. The paper concludes with major findings and policy 
implications. 
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2  Data and methods 

2.1  Data sources 

The provincial economic and population data are collected from “China Statistical Year-
book” (China Statistics Press, 2011) and the statistical yearbook of each province. The car-
bon footprint analysis data, based on the 2010 input-output tables (IOTs), have been calcu-
lated in this paper. The data about carbon emission and its coefficient in sectors of each 
province are extracted from the corresponding province’s energy balance table in Energy 
Statistical Yearbook (China Statistics Press, 2011). Specifically, by organizing each prov-
ince’s primary energy (including coal, oil and natural gas) consumption data firstly, then 
splitting each province’s total energy consumption into the 60 departments according to the 
energy balance table and the input-output table about the final energy consumption of sec-
tors, we get each sector’s foil energy consumption. Furthermore, using the emission coeffi-
cient offered by IPCC, we transfer each province’s foil energy consumption into each sec-
tor’s carbon emission. Carbon emissions divided by the total output of various departments, 
direct carbon emission coefficient is obtained. In addition, combined with formula (10), the 
total carbon emission coefficient of divisions in each province is obtained. Due to the lack of 
relevant data in Tibet, Taiwan Province, Hong Kong and Macao Special Administrative Re-
gions, all data sources and results in this paper did not include these areas. 

2.2  Calculation methods of carbon footprint 

Generally, calculating the total carbon footprint is impossible due to the large amount of data 
required and the fact that carbon dioxide can be produced by natural occurrences (Wright et 
al., 2011). For simplicity of calculating, it is often expressed in terms of the amount of car-
bon dioxide, or its equivalent of other greenhouse gas (GHGs), emitted. Therefore, this pa-
per calculates carbon footprint in the form of carbon dioxide coming from energy consump-
tion. Specifically, total carbon footprint can be measured by two methods, one is from the 
top to down (Top-Down) and another is from the bottom to up (Bottom-Up) (Padgett et al., 
2008; MacMinn and Juanes, 2009; Shi et al., 2012). The Top-Down method is selected to 
calculate carbon emission of final demand induced by the life cycle based on the life cycle 
assessment method and the input-output analysis. The total carbon footprint of each prov-
ince is calculated based on the corresponding province’s input-output tables. In the in-
put-output model, the formula of calculating the gross output of αth department is as follows 
(Shi et al., 2012): 

 
1

n

x x  





   (1) 

where xα is the total output of the αth department; xαβ denotes the intermediate inputs from α 
department input to β department; and ωα is the final demand as to α department’s products. 

 direct input coefficient, ,k k = /x x   
(2) 

where 0< k <1 is intermediate consumption from unit output of β department to the prod-

uct of α department. 
Combined with formula (2), formula (1) can be written as: 
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   (3) 

expressed as matrix: 

 X KX W   (4) 

where X, K and W represent total output matrix, intermediate input coefficient matrix and 
final demand matrix respectively. 

(I–K) is non-singular matrix and is also reversible due to the property of K. Therefore, the 
expression of formula (4) becomes: 

 
1( )X I K W    (5) 

where 1( )I K W is the Leontief inverse matrix, donates complete demand of input sector 

by producing unit final production. 
The provincial input-output tables are Import-competing model. Implicit assumption is 

that imported products have the same properties with the similar domestic products. They 
have a competitive relationship, can replace each other completely. Imported products as 
well as domestic products enter into the intermediate demand and final demand equally. 
Therefore, it is needed to exclude the impact of imports for Leontief inverse matrix and the 
final demand. Leontief inverse matrix expression after being processed is as follows: 

  1
( )B b I I M K


          (6) 

The final demand after being processed can be written as: 

 ( )W w I M W      
(7)

 

In order to associate with carbon emission and input-output model, direct carbon emission 
coefficient should be confirmed: 

 
( ),   /E e e c x    

 
(8) 

where E is the direct carbon emission coefficient matrix; eβ is the direct carbon emission 
coefficient of β department; cβ is direct carbon emission of β department; and xβ is the output 
of β department. 

Complete carbon emission coefficient means carbon emission of unit output from prod-
ucts meeting the final demand in the entire life cycle. It can be obtained by direct carbon 
emission coefficient multiply Leontief inverse matrix: 

 
,   L l l e b   



     
 

(9) 

Carbon footprint is deprived through multiplication of complete carbon emission coefficient 

(lβ) and the final demand ( w ): 

 
,   C c c l w         (10) 

2.3  Geographically Weighted Regression (GWR model) 

Multivariate regression analysis has been extensively applied in estimating the relationships 
among variables. It is used for modeling and analyzing a couple of variables, when the focus 
is on the relationship between a dependent variable and one or more independent variables. 
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Generally, it has two main types of regression model; one is global multivariate regression 
model and another is local multivariate regression model. More specifically, a global 
multivariate regression model (including ordinary least squares, spatial error and spatial lag 
models) can investigate the average strength and significance of statistical relationships 
between independent and dependent variables with just one equation for all data (Gilbert and 
Chakraborty, 2010). However, it is difficult to obtain the satisfactory results by using global 
regression model analyzing spatial data. This is because the global model in fact has 
assumed the variables have homogeneity before analyzing the spatial data. And it may hide 
potentially significant local variations in the relationships. Geographically weighted 
regression (GWR) model embeds the data’s spatial location into the regression parameter 
(Fotheringham et al., 2002; Wang et al., 2010). GWR estimates point parameter in sequence 
using local weighted ordinary least squares and the weights is the distance function 0f the 
geospatial location of the regression point to the geospatial location of other observation 
points. The changes of geospatial position parameter estimates along with the geospatial 
location can be used to detect the spatial relationships among variables very intuitive. The 
formula of GWR model in our study is similar to global regression models; however, the 
parameters vary with spatial location (Hu et al., 2012): 

 0 1 1 5 5ln ... ...i i i i ik ik i i iy x x x         
 

(11) 

where i=1,…, 30 denotes spatial location of provinces in China; yi is the dependent variable 
total carbon footprint of s province; five independent variables xik (k=1,…,5), including 
energy structure (S), energy efficiency (F), urbanization level (U); economic factor (R) and 
population factor (P); βik are local regression parameters to be estimated; εi is random error. 
Therefore every province (except Tibet and Taiwan) in our research has a set of specific 
parameters to reflect the relationships between carbon footprint and the five independent 
variables. 

Besides parameter localization, spatial autocorrelation is imbedded in the GWR model. 
As we all know, spatial weight matrix is an important part in the GWR model (Brunsdon et 
al., 2000). It is very important to choose the appropriate spatial weight matrix. According to 
Tobler’s first law of geography, everything is related to everything else, but near things are 
more related than distant things (Tobler, 1970). Therefore, neighboring provinces of the re-
gression variable should obtain more attention than distant provinces when estimating the 
parameters of the regression variable. In our study we select a weight matrix to represent the 
relative importance between provinces. The weight value is a distance-decay function which 
is a Gaussian like “bell” shape function. The parameters are solved by the following matrix 
form, where T is the matrix transpose operation (Hu et al., 2012). 

 
1( )T I T

i iX W X X W y 
 

(12) 

Wi is a diagonal weighting matrix as follows: 
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1 2
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 (13) 

The bandwidth or neighbors for a variable to determine which nearby neighbors should be 
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included in the matrix or to determine fixed distance using the selection of “bandwidth pa-
rameter”. It is also very important in the application of GWR model because it controls the 
model’s smoothness. Generally, each variable is very different from others. Provinces with 
low carbon footprint cover a large area, while provinces with high carbon footprint have a 
small area. In order to determine how many provinces needed at least to solve the local re-
gression model, Akaike Information Criterion (AICs) or Cross Validation (CV) is employed 
to select the adaptive number (Hu et al., 2012). Both AICs and CV will attempt to identify 
the best fixed distance or the best appropriate number of adjacent points of the regression 
province using the adaptive kernel technique (Brunsdon et al., 1996). In order to improve 
the computational efficiency, a big-square weighting function is selected to calculate the 
weight between provinces instead of Gaussian function (Brunsdon et al., 1998; 
Fotheringham et al., 2002). The formula is as follows: 

 
 

22
max max1 /

0  otherwise

si si
si

d d d d
    



≤
 (14)

 

where dmax is the maximum distance from the ith farthest province to the regression province 
(i is the selected optimal neighboring provinces). 

In this study, we choose both univariate and mixed GWR models to investigate the fac-
tors’ separate and combined explanatory effects (Hu et al., 2012). Factors we select should 
have great relevance with carbon footprint. Furthermore, these factors must meet the criteria 
of non-collinearity and AICs minimization. Lastly, pseudo t tests are selected to check the 
significance of estimated local parameters (Fotheringham et al., 2002). 

3  Spatial differences of carbon footprint 

3.1  Spatial differences of the total carbon footprint in provincial China 

In this section, a “Top-Down” life cycle approach is undertaken to calculate the carbon 
footprint among provinces in China in 2010. Table 1 shows that there are significant differ-
ences of carbon footprint in provincial China, which is consistent with Shi’s (2012) study. 
Total amount of carbon footprint of China is 9.72 billion tons. Provinces with the largest 
amount of carbon footprint are Shandong and Hebei, 655 million tons and 635 million tons 
respectively, followed by Jiangsu, Henan, Guangdong, Shanxi, Inner Mongolia, Liaoning 
and Jilin. Provinces with higher carbon footprint mainly have large economic scales, such as 
Shandong and Guangdong. Due to economic development, they need large amount of en-
ergy and thus have high carbon emissions. Jilin, Inner Mongolia and Shanxi have high car-
bon emissions, with relatively small economic scales, mainly due to low energy efficiency 
and high coefficient of carbon emissions. Provinces with the smallest amount of carbon 
footprint are Hainan and Qinghai and the carbon footprint of which is 78 million tons and 43 
million tons respectively. The difference between the maximum and minimum amount of 
carbon footprint is 15 times. There are two types of provinces with low carbon footprint. 
One type is the provinces such as Qinghai and Ningxia, mainly concentrated in the Midwest, 
have low economic scales and low level of industrialization. Another is the provinces have 
relatively small energy consumption concentrating in the coastal areas, such as Hainan and 
Fujian. 
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Table 1  Total carbon footprint and per capita carbon footprint in provincial China in 2010 

Provincial region 
Carbon  

footprint (108 t)

Per capita 
carbon  

footprint (t) 
 

Provincial  
region 

Carbon footprint 
(108 t) 

Per capita 
carbon footprint 

(t) 

Beijing 2.16 11.01  Henan 5.54 5.89 

Tianjin 1.46 10.28  Hubei 3.47 6.06 

Hebei 6.35 8.84  Hunan 3.80 5.79 

Shanxi 4.84 13.55  Guangdong 5.28 5.06 

Inner Mongolia 4.77 19.31  Guangxi 2.62 5.69 

Liaoning 4.59 8.49  Hainan 0.78 8.99 

Jilin 4.38 15.95  Chongqing 1.55 5.37 

Heilongjiang 3.25 8.48  Sichuan 3.46 4.30 

Shanghai 2.36 10.25  Guizhou 2.56 7.37 

Jiangsu 5.81 7.39  Yunnan 2.30 5.00 

Zhejiang 3.83 7.04  Shaanxi 2.95 7.90 

Anhui 3.06 5.14  Gansu 1.36 5.32 

Fujian 2.03 5.50  Qinghai 0.43 7.64 

Jiangxi 2.57 5.77  Ningxia 1.03 16.35 

Shandong 6.55 6.84  Xinjiang 2.04 9.35 

 

From the view point of geography, provinces with high carbon footprint are mainly con- 
entrated in northern China (Figure 1). As illustrated in Figure 1, total carbon footprint of  
Shandong, Hebei, Henan, Shanxi, Inner Mongolia, Liaoning, Jilin and Heilongjiang is 4.03 
billion tons accounting for 41.4% of the total carbon footprint in China. Northern China with 
high total carbon footprint mainly associates with the enrichment of coal resources. On the 
one hand, the industrial structure biases towards heavy industry. On the other hand, the en-
ergy structure also depends on the coal resources, which can be converted into exporting 
carbon products, including electric power and coal chemical industry. 

 

3.2  Spatial differences of per capita carbon footprint in provincial China 

The variation in per capita carbon footprint is also very large (Table 1). Some provinces  
have more than 10 tons per capita carbon footprint; while in other provinces, the per capita  
carbon footprint is less than 5 tons. The difference is reflected by the average relative per  
capita carbon footprint, whose differences between the maximum and minimum is more than  
60%. Provinces with high per capita carbon footprint are Inner Mongolia and Ningxia, and 
the amount of per capita carbon footprint is 19.31 tons and 16.35 tons respectively. There are 
two main types’ provinces with higher per capita carbon footprint. One type is Beijing,  
Shanghai, Tianjin and other national central cities with high level of economy resulting in  
high per capita carbon footprint. Another type is Inner Mongolia, Ningxia, Jilin, Shanxi and  
other provinces with enrichment in resources. Although the economic scale is not large, due  
to low energy efficiency and high carbon emission resulting high per capita carbon footprint. 
From the view point of geography, provinces (excluding Beijing, Shanghai and other central 
cities) with high per capita carbon footprint are mainly concentrated in north of China  
(Figure 2). Moreover, rich coal resources area and provinces with high energy-consuming  
industry have high per capita carbon footprint. Southern provinces have low per capita  
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Figure 1  Spatial distribution of total carbon footprint in provincial China in 2010 
 

 
 

Figure 2  Spatial distribution of per capita carbon footprint in provincial China in 2010 
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carbon footprint. These findings, however, might reflect the light industry structure that 
dominates the southern provinces in which industrialization occurs at a much faster pace 
than the national average. Climate varies greatly from north south. Heating in winter with 
less energy consumption is one of the reasons resulting in low carbon footprint due to warm 
climate in southern provinces. 

4  Multi-mechanism of carbon footprint 

Analyzing the influencing mechanisms of the energy carbon footprint, the first step is to find 
out the related factors. The research scope of the study area covers almost the whole China. 
Five factors varied greatly from northwest to southeast of China. Descriptive statistics of the 
five factors are listed in Table 2. The difference between the maximum and minimum domi-
nant energy structure is 51.55%. The corresponding difference value of Fefficiency is o.66 
t/yuan. Cities in China have different development rates, and the variation is very large. 
Some provinces have very high urbanization, while other provinces have relatively low ur-
banization. The difference between the high and low urbanization is 58.7%. Due to the dif-
ferences of provinces’ economy and population scales, economic aggregate and population 
gross vary greatly between provinces, with the specific differences are 62955 (104 yuan) and 
9867.33 (104 persons) respectively.  
 
Table 2  Descriptive statistics of five factors in 2010 

 
Sstructure 

(%) 
Fefficiency 

(t/104 yuan) 
Uurbanization  

(%) 
Reconomy 

(104 yuan) 
Ppopulation 

(104 persons) 

Minimum 43.48 0.29 29.9 13119.00 562.67 

Mean 77.57 0.95 49.82 33964.10 4432.58 

Maximum 95.03 2.62 88.6 76074.00 10430.31 

Standard deviation 14.75 0.57 14.29 17343.43 2707.25 

Note: Sstructure: energy structure; Fefficiency: energy efficiency; Uurbanization: urbanization level; Reconomy: economic factor; 
Ppopulation: population factor 

 
The spatial distribution of Sstructure, Fefficiency, Uurbanization, Recomomy and Ppopulation are dis-

played in Figures 3a-3e. Areas of high proportion dominant energy structure are mainly 
concentrated in the northern China, while high energy efficiency areas also exist in the 
northern part of China. Areas with higher per capita GDP are mainly distributed in cen-
tral-eastern China and coastal zones. Meanwhile, population with larger scales are mainly 
concentrated in Henan, Shandong, Sichuan, Guangdong and Jiangsu provinces, etc.  

After conducting the global analyses, the non-stationary tests of the assumed coefficients 
indicate that not all of the factors’ coefficients are significantly varying over space. The re-
sults of the global regression analyses are shown in Table 3 (OLS model), Table 4 (spatial 
error model) and Table 5 (spatial lag model). The goodness-of-fit statistics, such as the AICs 
and log-likelihoods, indicate that the data are better fit using spatial analysis techniques. For 
example, AIC for the OLS model is 79.231, while for the spatial regression models they are 
67.534 and 56.518 respectively; for the GWR model AIC further decreases to 48.367. 
Therefore, these analyses results indicate that ignoring the potential spatial factors in regres-
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sion models could reduce model effectiveness. Furthermore, the AICs also point to that the 
local analyses models potentially offers a better fit for the factors than global analyses (Wei 
et al., 2011). While in the global analysis, the Robust Lagrange Multiplier tests suggest a 
spatial lag instead of an error specification. Therefore, the analysis will just focus on the 
local regression model (GWR). And the global Moran’s I index of the carbon footprint is 
0.56 (p<0.01) indicating that there is relative strong positive spatial correlation. 

 

 

 

Figure 3  The spatial distribution of five potential determinants in 2010 
Notes: energy structure (dominant energy share of total energy consumption), energy efficiency (per unit GDP 
energy consumption, t/104 yuan), urbanization (urban population/total population), economy factor (per capita 
GDP, yuan) and population factor (population size, 104 persons) 

 
Table 3  Global regression analyses (OLS model) in 2010 

OLS model 

 Coefficient Standard error t/z-value Pr(>|t|) 

CONSTANT 0.04598533 0.07577884 –0.606836 0.5490287 

Sstructure 0.1226138 0.2005283 –0.6114537 0.1460138 

Fefficiency –0.4224572 0.1843807 2.29122313 0.0299797 

Uurbanization 0.0091527 0.1504661 –0.0608201 0.0519423 

Reconomy 0.8650346 0.0990884 2.67472845 0.0125450 

Ppopulation 0.4778324 0.1223842 7.17277265 0.0000001 

Adjusted R-squared: 0.775289, F-statistic: 23.081 on 2 and 27DF, p-value: 5.67195e-009 

Note: Sstructure: energy structure; Fefficiency: energy efficiency; Uurbanization: urbanization level; Reconomy: economic factor; 
Ppopulation: population factor 
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Table 4  Global regression analyses (spatial error model) in 2010 

Spatial error model 

 Coefficient Standard error t/z-value Pr(>|t|) 

CONSTANT 0.0153703 0.0589723 –0.2606363 0.1943731 

Sstructure 0.0038843 0.1456612 0.02666697 0.0787253 

Fefficiency –0.2229032 0.1366329 1.63140212 0.0028055 

Uurbanization 0.0069441 0.1119279 0.06204101 0.1505300 

Reconomy 0.8142238 0.0931959 1.22563354 0.0000000 

Ppopulation 0.4292908 0.0918455 9.02919169 0.0000001 

Lambda: 0.787422 LR test value: 8.502896, p-value: 0.0035458, Log likelihood: 27.077155 for error model, AIC: 67.543 
(AIC for OLS: 79.231), Robust Lagrange Multiplier test: 2.5314, on 1 DF, p-value: 0.0367 

Note: Sstructure: energy structure; Fefficiency: energy efficiency; Uurbanization: urbanization level; Reconomy: economic factor; 
Ppopulation: population factor 

 
Table 5  Global regression analyses (spatial lag model) in 2010 

Spatial lag model 

 Coefficient Standard error t/z-value Pr(>|t|) 

CONSTANT 0.06978879 0.0646215 –1.079962 0.2801591 

Sstructure 0.2301915 0.1820049 –1.264755 0.2059594 

Fefficiency –0.4195918 0.1568021 2.675932 0.0074523 

Uurbanization 0.0692413 0.1309372 0.528814 0.0969344 

Reconomy 0.8338999 0.0913506 1.465779 0.0000086 

Ppopulation 0.5362292 0.1035332 8.076922 0.0000000 

Rho: 0.287546 LR test value: 4.866677, p-value: 0.0273802, Log likelihood: 25.259 for lag model, AIC: 56.5181 
(AIC for OLS: 79.231) 
Robust Lagrange multiplier test:24.328, on 1 DF, p-value: 0.000002354 

Note: Sstructure: energy structure; Fefficiency: energy efficiency; Uurbanization: urbanization level; Reconomy: economic factor; 
Ppopulation: population factor 

 

Firstly, univariate GWR models are built to test for significant relationships between the  
carbon footprint and each potential independent variable. The coefficients of variables for  
Uurbanization, Sstructure and Fefficiency are 0.56, 0.62 and 0.67 respectively (Table 6). The corre- 
ponding values of Reconomy and Ppopulation are 0.78 and 0.82 respectively. The GWR model 
with Reconomy and Ppopulation, as a unique independent variable respectively, has the lowest and 
lower AIC value and the corresponding coefficients of variables among all the univariate 
models are relatively large. The statistical significance of the regression parameters is 
checked using the pseudo t test. The value of provinces with significant relationship (p<0.05) 
between carbon footprint and the independent variables are: Uurbanization 57.7%, Sstructure 

62.4%, Fefficiency 67.5%, Reconomy 77.3% and Ppopulation 89.7% respectively. In provincial China, 
the direction of the significant relationships is not the same, even for the same variable. The 
values of provinces with significantly positive relationships are: Uurbanization 55.6%, Sstructure 

51.2%, Fefficiency 46.8%, Reconomy 75.6% and Ppopulation 88.4% respectively. The distribution of  
the direction and strength of the relationships between the carbon footprint and five inde-
pendent variables is displayed in Figure 4. The model residuals’ global Moran’s I indexes are 
Uurbanization 0.36, Sstructure 0.24, Fefficiency 0.27, Reconomy 0.25, Ppopulation 0.29 (p<0.01) respect- 
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tively. Although each of the five independent variable residuals’ spatial correlation is much 
smaller than the carbon footprint’s spatial correlation whose Moran’s I is 0.56, the inde-
pendent variables could be useful to analyze the carbon footprint’s spatial variation. 
 
Table 6  Summary of univariate GWR models for different factors in 2010 

Significantly related provinces 
Factors R2 

p<0.05 (%) + (%) – (%) 

Sstructure 0.62 62.4 51.2 7.6 

Fefficiency 0.67 67.5 46.8 17.2 

Uurbanization 0.56 57.7 55.6 5.9 

Recomomy 0.78 77.3 75.6 4.7 

Ppopulation 0.82 89.7 88.4 2.5 

Note: Sstructure: energy structure; Fefficiency: energy efficiency; Uurbanization: urbanization level; Reconomy: economic factor; 
Ppopulation: population factor 

 
Secondly, we take a further test on all the independent variables using mixed GWR model. 

The five independent variables are entered into the model under the criteria of  
non-collinearity and AIC minimization. The model’s R2 of determination is 0.87, which is 
larger than each of the univariate GWR models. The statistical significance of the regression 
parameters is checked using the non-stationary GWR test. And all the variables are statisti-
cally significant. The global Moran’s I index of the regression residual is 0.21 (p<0.01), in-
dicating that there is little spatial correlation. Therefore the mixed GWR model can analyze 
the carbon footprint’s variation appropriately. The local estimated values of independent 
variables at provincial level are derived from the mixed GWR model (Figure 5). All of the 
local models are statistically significant (p<0.05). Thus Table 7 gives the results of the 
mixed GWR models. The results of Table 7 indicate that all the determination take a positive 
correlation with the carbon footprint except Fefficiency. The coefficient of Fefficiency is negative 
which means it is opposite to the growth of carbon footprint. Therefore, energy efficiency 
factor has played a positive role in reducing the amount of carbon emission. It follows that 
developing low carbon industries and improving the energy efficiency are the effective 
measures to control the carbon emission. The mixed GWR model with Recomomy has the 
largest coefficient of determination among all the five independent variables. With the ca-
pacity of fiscal capacity, local government can finance the heavy industry to promote eco-
nomic growth. With the expanding of economic scale and the rapid growth of the economy, 
carbon footprint has been correspondingly increased. Under the background of multiples of 
economic aggregate expansion, a sharp rise in the level of consumption and increased en-
ergy supply and demand, large amounts of fossil energy consumption lead to the develop-
ment of low carbon economy faced with the increasingly pressure. Therefore, moderately 
control of the scale of economy is necessary to curb the rapid growth of carbon footprint. 
Secondly, the results also show that population scale has exerted strong influences on the 
carbon footprint and it is consistently significant in both the global and local models. China 
has experienced a rapid growth of population since the reform and opening up under further 
rapid growth of economy, which is greatly attributed to the increasing of carbon footprint. 
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Figure 4  The spatial distribution on the local relationship between carbon footprint and five factors at provincial 
level in 2010 
 
 

 
 
Figure 5  Local R2 derived from mixed GWR model in 2010 

 
These results demonstrate that the expansion of population scale plays a positive role in the 
growth of carbon footprint. The main effect comes from two aspects: first, population 
growth leads to the expansion of production by demanding. This process, however, often  
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results in the greater demand in energy consumption which also reinforces the carbon foot-
print growth. Second, population growth leads to deforestation. Deforestation, despite its 
effectiveness in creating a growth oriented environment for economy, tends to have a nega-
tive impact on the control of carbon footprint and indirectly aggravates carbon emissions. 
Thirdly, energy structure (Sstructure) promotes the growth of carbon footprint. However, in 
comparison with economic and population factors, energy structure has no longer been a 
significant factor accounting for the dominant energy changed little for a long time. Mean-
while, as shown in Table 7, reducing dependence on coal resources is helpful to reduce the 
carbon footprint. Lastly, urbanization, which is chosen as an indicator for the effect of cities, 
exhibits positive relationship with the carbon footprint. In the long term, the increase in 
carbon emissions will be associated with the enhancement of level of urbanization in the 
short term. However, there is a certain time lag in the interaction between the two. Urbani-
zation is the cause of the carbon footprint continued to grow, but carbon footprint is not the 
chief reason for the urbanization growth.  
 
Table 7  Summary of mixed GWR models for different variables in 2010 

The mixed GWR model 

 Coefficient Standard error t/z-value Pr(>|t|) 

CONSTANT 0.0956437 0.0446845 1.255213 0.214675 

Sstructure 0.2541348 0.0820820 –1.112547 0.064572 

Fefficiency –0.6278633 0.2568357 2.364672 0.036743 

Uurbanization 0.1859435 0.1409965 0.867456 0.043675 

Recomomy 0.5726534 0.0613432 0.472894 0.002672 

Ppopulation 0.7435687 0.0035566 2.047683 0.000000 

Note: Sstructure: energy structure; Fefficiency: energy efficiency; Uurbanization: urbanization level; Reconomy: economic factor; 
Ppopulation: population factor 

5  Discussion 

Carbon footprint from energy consumption calculated in this paper is 9.72 billion tons which 
is much higher than that of other Chinese scholars in recent years (Table 8). This is mainly 
due to that there are various methods to calculate carbon footprint, and different scholars 
apply different methods. Based on the input-output table (IOTs), this paper concludes that 
carbon footprint, as a concept of carbon emissions measurement, can comprehensive evalu-
ate life cycle carbon emissions of production, which not only includes the direct carbon 
emissions caused by fossil energy, but involves the embodied carbon emissions of the in-
termediate products’ consumption in production process (Shi et al., 2012). However, in the 
process of calculating carbon footprint, other Chinese scholars (Wei, 2007; Liu et al., 2008; 
Xu, 2010; Zhao et al., 2011; Chuai et al., 2012) only calculate the direct carbon emissions of 
primary energy resources, such as coal, oil, natural gas and biomass energy, not touch upon 
the embodied carbon emissions of the whole life cycle. Herein, Carbon footprint from en-
ergy consumption calculated in this paper is higher than others. 
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Table 8  Comparison of results with other authors 

Author Carbon footprint (109 tons) Year Reference 

Wei Baoren 1.282 2005 Wei, 2007 

Liu Qiang 1.51 2005 Liu et al., 2008 

Xu Guangyue 1.66 2006 Xu, 2010 

Zhao Rongqin 1.647 2007 Zhao et al., 2011 

Shi Minjun 6.01 2007 Shi et al., 2012 

Chuai Xiaowei 2.05 2008 Chuai et al., 2012 

This paper 9.72 2010  

 
The reasons of impacting the carbon footprint are miscellaneous. In order to explore the 

carbon footprint and its influence mechanisms, scholars (Jiao et al., 2012; Zhou and Song, 
2013; Chen, 2013; Peng and Wu, 2012) begin to study carbon footprint and individual factor, 
such as economic growth, energy structure and energy efficiency, only by simple linear re-
gression relationship. And significant conclusions are drawn that economic growth directly 
promotes the increase of the carbon footprint and improving energy efficiency can inhibit 
the growth of the carbon footprint. However, most studies of carbon footprint neglect that 
the influence mechanisms of carbon footprint are miscellaneous. A possible consequence of 
neglecting the multi-mechanism is the underestimation of standard errors of regression coef-
ficients, resulting in an overestimation of statistical significance. To further understand the 
carbon footprint in China, geographically weighted regression (GWR) is applied to examine 
the multiple driving forces behind the growth of carbon footprint. We select 5 exploratory 
variables based on the multi-mechanism to further reveal the factors that influence carbon 
footprint as fully as possible. Our work draws some significant conclusions, which can help 
policy makers to adopt effective measures to reduce carbon emissions and its negative ef-
fects, such as global warming. 

6  Conclusions 

This paper analyzes the spatial differences and multi-mechanism of carbon footprint in pro-
vincial China and confirms the applicability of a “Top-Down” life cycle approach and GWR 
model framework in the empirical research on China’s carbon footprint inequality at the in-
ter-provincial level. We find that carbon footprint in China is sensitive to economic scales 
and industry structural changes since China’s reform and opening up. By emphasizing the 
distinctive distributional dynamics in different provinces, this study also synthesizes its mul-
tiple driving forces for the significant differences of carbon footprint. 

(1) There are significant differences of carbon footprint and per capita carbon footprint in 
provincial China. The provinces with higher carbon footprint, mainly concentrated in north-
ern China, have large economic scales. Total carbon footprint of Shandong, Hebei, Henan, 
Shanxi, Inner Mongolia, Liaoning, Jilin and Heilongjiang is 4.03 billion tons accounting for 
41.4% of the total carbon footprint in China in 2010. Northern China with high total carbon 
footprint mainly associates with the enrichment of coal resources. On one hand, the indus-
trial structure biases towards heavy industry. On the other hand, the energy structure also 
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depends on the coal resources, which can be converted into exporting carbon products, in-
cluding electric power and coal chemical industry. The spatial distribution of the per capita 
carbon footprint is different from the total carbon footprint. The provinces with higher per 
capita carbon footprint can be divided into two types. One type is Beijing, Shanghai, Tianjin 
and other national central cities with high level of economy resulting in high per capita car-
bon footprint. Another type is Inner Mongolia, Ningxia, Jilin, Shanxi and other provinces 
with enrichment in resources. Although the economic scale is not large, low energy effi-
ciency and high carbon emission cause high per capita carbon footprint.  

(2) The application of spatial analysis model (GWR model) enables us to uncover that the 
economic scale is the primary driving force contributing to the rapid growth of carbon foot-
print. Added to this, the progressions of urbanization and population growth also act as the 
promoting factors while energy structure is marginally significant for promoting the increase 
of the carbon footprint. Improving energy efficiency is the most important factor to inhibit 
the growing carbon footprint.  

(3) As China is facing great ecological pressure brought by carbon emissions, we argue 
that some effective measures, such as developing low-carbon economies and low-carbon 
industries, should be taken to reduce carbon emissions. Moreover, advocating low-carbon 
city construction and improving carbon efficiency would be the primary approaches to in-
hibit the rapid growth of carbon footprint. Moderately controlling the economy and the rapid 
growth of population size would also be required to alleviate the environmental pressure. 
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